TOPOLOGIE 1V — EXERCISE SHEET 7

MARCUS NICOLAS

The formula for the tensor product on Prt. For C, D and £ three presentable categories, the chain of
identifications

Fun®™ (C,Fun (D,£)) ~ ~ Fun® (c, Fun®(£°P ,D°P))

~ Fun" (£°P, Fun"(C, D°P))
(Fun (C,DP)°P, &)

~ Fun" (Fun®(C?, D), €)

~ Fun®

is natural in all variables. More explicitly, this identification sends F' € Fun" (C,FunL(Df)) to the left
adjoint of the functor & — Fun®(C°P, D) given by the formula

2 (2 F(m)R(z))
where (—)® denotes the action of passing to right adjoints. In particular, we have
C ® D ~ Fun®(C°P, D)

since both objects have the same universal property. As an exercise, describe the functoriality of the right-
hand side in variables C and D by tracing back through the above identifications.

An important special case occurs when C = Psh(Z) for some small category Z, where the above isomor-
phism can be rewritten

Fun(Z, Fun"(D, £)) ~ Fun" (Fun(Z°?, D), €)

Exercise 1. Let R be a commutative ring spectrum.

(1) For C any small category, we get by the above an isomorphism
Fun(C°?, Mod(R)) ~ Fun(C°P, Fun®(Mod(R), Mod(R)))
~ Fun" ( Fun(C, Mod(R)), Mod(R))
sending F: C°? — Mod(R) to the left adjoint of the functor
Hompg(F,—): Mod(R) — Fun(C, Mod(R))

given by the formula

M + (x — Hompg(F(z), M))
But, for M an R-module and X': C — Mod(R):

Hom(X, Homp(F, M)) ~ Hom(X ® F, M)
~ Hompg, (r(X ® F), M)

where ri: Fun(C,Mod(R)) — Mod(R) is the colimit functor. Finally, the above isomorphism is
explicitly given by the formula

F=nr(—®F)
since r(— ® F) is left adjoint to Hompg(F, —).
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For C and D two small categories, the identification:
Fun(C° x D, Mod(R)) ~ Fun (D, Fun(C°?, Mod(R)))
~ Fun (D, Fun" ( Fun(C, Mod(R)), Mod(R)))
~ Fun" ( Fun(C, Mod(R)), Fun(D, Mod(R)))
sends F: C°P x D — Mod(R) to the functor
X — (y =y (— ®.7:(—,y)))

Exercise 2. Let X be a compact spectrum. Since Sp is both generated under filtered colimits by finite
spectra, X is a retract of some finite spectrum. Without loss of generality, we can thus assume that X is
connective and that X ® Z is n-coconnective for some n > 0. We prove by induction on n that X is finite.

(1)

Ifn =0, then X®Z ~ H,.(X ®Z) ~ M for some classical Z-module M. The compacity of X implies
that M is projective and finitely generated, which in this case means free of finite rank r. Choose
an identification Z" ~ M, which by stable Hurewicz lifts to a map ¢: S” — X. In particular

(cofib ) ® Z ~ cofib p ® Z
~0

But cofib ¢ is connective since X is, and stable Hurewicz implies cofib ¢ ~ 0. The morphism ¢ is
therefore an isomorphism and the S-module X is free of finite rank.

Assume that the result holds for some n > 0 and that X ® Z is (n+ 1)-coconnective. Since the chain
complex X ® Z is perfect, the group Ho(X ® Z) is finitely generated and there exists a presentation
Z" — Ho(X ® Z). By the stable Hurewicz theorem, this morphism lifts to ¢: S” — X, and from the
long exact sequence induced in homology

one sees that (fib ¢)®Z is connective and n-coconnective®. Because X was supposed to be connective,
the spectrum fib ¢ ~ Q(cofib ¢) is (—1)-connective a priori, and therefore also connective by the
stable Hurewicz theorem. The induction assumption implies that fib ¢ is finite, and this concludes
since X =~ cofib (ﬁb<p — ST).

Exercise 3. Denote iy and i3 the inclusions of S? and S® respectively in the wedge sum S? v S3, and

[iQ,ig]i S4 — S2 V 53

the induced Whitehead bracket. It sits inside a cocartesian square

g4 sl L goy, g3

|

* —3 82 x §3

so that [ig, i3] is homotopic to the attaching map for the 5-cell of S? x S3.

(1)

For any a: S* — S2 v S3, the diagram

C

e I CAVAC LI

R

% — cofibag ——— S5

IThis uses n + 1 > 1, so that one cannot just merge the base case with this induction step.
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shows that the reduced (co)homology of cofib«a is concentrated in degrees 2, 3 and 5. Denote
() € HP(cofib o) the unique lift of [S®].

(2) Pasting cocartesian squares, we obtain

54 S8 52 v §3

I T

* ——— YP?(C) ———— 5%V XP?(C) ~ cofibizn

The map S? ~ P!(C) — P?(C) induces a isomorphism on H?*(—), so there exists w € H?(P?(C))
lifting [S?] and then

xn

H*(P*(C)) ~ Z[w]/(w?)
We have in particular:
Sq’(Sw) = B Sq*(w)
= Yuw?
= c(isn)
in HP(cofibizn; Fy).
(3) If a: S* — S2% v S? factors through is, wrting a =~ i3 for some 3 we have an equivalence
cofib v ~ cofib B v §3

and the inclusion of the second factor S — cofib a induces an isomorphism on H*(—). In particular
in this case the Steenrod operation

Sq?: H3(cofib a; Fy) — HP(cofib o; Fy)
is trivial.
(4) Let a: S* — S? v §3 factoring through either iy or i3. Observe that the sum [ig, i3] + « factors as
[orp— -2 R C LN RV ) N RN -C VR
by definition. In particular, consider the following commutative diagram

V2 li2,i3]Va

L T (CERVICE) R A2 SV S—

|
: -] -

wo (8% % $3) Vcofiba . Y () (§°)v2

and make the following remarks.
e The cofiber sequence
S2v 8 —— X(a) —— S°
implies that the reduced (co)homology of X () is concentrated in degrees 2, 3 and 5. Denote
[X (a)] the unique class in Hs (X (cv)) lifting the homological fundamental class [S®] via u. Using
the notation [55] to denote the cohomological fundamental class as well, the computation
uy ([X ()] Nu*[S°]) = ua [X ()] N [S?]
= [$°]n [5°]
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=1
implies
(X ()] Nu*[S°] =1
in Ho (X (a)). In particular [X(a)] N (—) induces isomorphisms
H° (X () ~ Ho(X(a)) and H°(X(a)) ~H;5(X(a))
In the following, we will also use the notation [X ()] := u.[S%], so that [X(a)] N [X(a)] = 1.
e Similarly, the cofiber sequence
S2v 8 —— Y(a) —— S°V S°

shows that the reduced (co)homology of Y («) is also concentrated in degrees 2, 3 and 5. Fix
bases

H?(Y(@)) ~ZX, H*(Y(a)) ~Zp and H*(Y(a)) ~ Zo @ Zt
such that
— X and p lift [S?] and [S3] respectively;
— (o, 7) lifts the canonical basis of H?(S° v S%), so that
g*o = c([iz,i3]) = [S*] ® [S®] and h*T = c(a)
e As a consequence, the map
f: X(a) > Y(a)
induces isomorphisms on H?(—) and H?(—), and
fro=fr=[X(a)]
Under our assumptions, « factors either through is or i. This implies that cofib(a) is of the form
Z Vv 83 or §%V Z for some pointed groupoid Z, and thus
KA - h*pu=0
Since (g, h) induces an isomorphism on H?(—), this shows
Ap=o
and therefore
X fru=[X(o)]
Since
([X(@)]nfa)nfu=[X()]n[X()]
=1
the class [X ()] N f*A must be a generator of H3 (X ()) ~ Z. The class [X ()] N f* is a generator
of Hy (X (a)) ~ 7 for the same reason. Finally, the morphism
(X ()] N (=): B¥(X (@) = Hs_ (X (av))
is an isomorphism for all £ and X («) satifies Poincaré duality.

Let a: S* — S2? v S2 be such that one of the following conditions is satisfied
(a) « factors through io
(b) « is homotopic to i3n

In particular, the discussion from (4) applies and we reuse notation introduced thereof. To describe
the action of the Steenrod algebra on H* (Y (av)), it suffices to compute Sq'()\) and Sq?(p) since the
reduced cohomology of Y'(«) is concentrated in degree 2, 3 and 5.
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e Since the map S? vV .S — Y («) is an isomorphism on H?(—;Fy) and H3(—;Fy), it follows that
Sqt: H? (Y(a); ]FQ) — 3 (Y(a); Fg)
is null, or in other words Sq*()\) = 0.
e The map (g,h): (5% x S%) V cofiba — Y (a) induces an isomorphism on H®(—;F3), and
— Sq*(g* 1) = Sq® [S?] = 0 by the Cartan formula;
— if (a) is true, then cofibav ~ Z Vv S3 for some pointed groupoid Z, and Sq?(h*p) = 0;
— in case (b), the discussion (2) shows that Sq?(h* 1) = ¢(a).

Finally

SA(FA) =0 SC(fu) = {[X()(a)] . Eb))

and this completely describes the Steenrod operations on the cohomology of X («).
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