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MARCUS NICOLAS

The formula for the tensor product on Pr{j. Let V a presentably symmetric monoidal category, or in
other words a commutative algebra object in Pr. For C, D and £ three V-modules, the chain of identifications

Fun), (c, Fun);(D, &) ~ Funy, (c, Fun);(£°P, D°P))

~ Fun{} (SOP, Fun{j (C, DOp))

~ Fun}; ( Fun};(C, D°P)°P, £)

~ Funj; ( Fun}(C°?, D), £)
is natural in all variables. More explicitly, this identification sends F' € Fun{j (C,Fun{j(D,S)) to the left
adjoint of the functor & — Fun}(C°?, D) given by the formula

2z (2 F(z)R(2))
where (—)® denotes the action of passing to right adjoints. In particular, we have
C ®y D ~ Fun}}(C°?, D)

since both objects have the same universal property. As an exercise, describe the functoriality of the right-
hand side in variables C and D by tracing back through the above identifications.

An important special case occurs when C = Psh(I) ® V for some small category Z, where the above
isomorphism can be rewritten

Fun(Z, Funl;(D, &) ~ Fun}, (Fun(Z°?, D), €)

Exercise 1. Let R be a commutative ring spectrum.

(1) For C any small category, we get by the above an isomorphism
Fun(C°, Mod(R)) ~ Fun(C°?, Fun}(Mod(R), Mod(R)))
~ Funj; ( Fun(C, Mod(R)), Mod(R))
sending F: C°? — Mod(R) to the left adjoint of the functor
Homp(F,—): Mod(R) — Fun(C,Mod(R))

given by the formula
M +— (z — Hompg(F(z), M))
But, for M an R-module and X': C — Mod(R):

Hom(X, Hompg(F, M)) ~ /ec Homp (X (), Homp(F(x), M))

~ /ec Homp (X (z) ® F(x), M)

c
2HomR</ X®]7,M)

Finally, the above isomorphism is explicitly given by the formula

]-'%/C()@)]-'



(2)
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This restricts to the correct formula when C = X is a groupoid since, since in this case Tw(X) ~ X.

For C and D two small categories, the identification:
Fun(C° x D, Mod(R)) ~ Fun (D, Fun(C°?, Mod(R)))
~ Fun (D, Fun]é(Fun(C, Mod(R)), Mod(R)))
~ Funf, (Fun(C, Mod(R)), Fun(D, Mod(R)))
sends F: C°P x D — Mod(R) to the functor

X (w/c<—>®f<—,y>)

Exercise 2. Let X be a compact spectrum. Since Sp is generated under filtered colimits by finite spectra,
X is a retract of some finite spectrum. Without loss of generality, we can thus assume that X is connective
and that X ® Z is n-coconnective for some n > 0. We prove by induction on n that X is finite.

(1)

If n =0, then X ®Z ~ H,(X ® Z) ~ M for some classical Z-module M. The compacity of X implies
that M is projective and finitely generated, which in this case means free of finite rank r. Choose
an identification Z" ~ M, which by stable Hurewicz lifts to a map ¢: S" — X. In particular

(cofibp) ® Z ~ cofib p ® Z
~0

But cofib ¢ is connective since X is, and stable Hurewicz implies cofib ¢ ~ 0. The morphism ¢ is
therefore an isomorphism and the S-module X is free of finite rank.

Assume that the result holds for some n > 0 and that X ® Z is (n+ 1)-coconnective. Since the chain
complex X ® Z is perfect, the group Ho(X ® Z) is finitely generated and there exists a presentation
Z" — Ho(X ® Z). By the stable Hurewicz theorem, this morphism lifts to ¢: S” — X, and from the
long exact sequence induced in homology

e Hiy(Z7) o By (X ®Z) —— Hyoq ((fibp) © 2) —— -

one sees that (fib ¢)®Z is connective and n-coconnective'. Because X was supposed to be connective,
the spectrum fibp ~ Q(cofib ) is (—1)-connective a priori, and therefore also connective by the
stable Hurewicz theorem. The induction assumption implies that fib ¢ is finite, and this concludes
since X =~ cofib (ﬁbgo — ST).

Exercise 3. Denote iy and i3 the inclusions of $2 and S? respectively in the wedge sum S? Vv S3, and

[ig,i;g]: 54— §%2v 83

the induced Whitehead bracket. It sits inside a cocartesian square

gt Lzl goy, g8

|

* —3 82 x §3

so that [ig, i3] is homotopic to the attaching map for the 5-cell of S? x S3.

(1)

For any a: S* — S? v S3, the diagram

IThis uses n + 1 > 1, so that one cannot just merge the base case with this induction step.
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C

St §2V S 5 x

RN

% — cofiby ——— S°P

shows that the reduced (co)homology of cofib« is concentrated in degrees 2, 3 and 5. Denote
() € HP(cofib o) the unique lift of [S®].

Pasting cocartesian squares, we obtain

(R B RV

[ T

* ———— YP?(C) ———— 5%V XP?(C) ~ cofibizn

The map S? ~ P!(C) — P?(C) induces a isomorphism on H?*(—), so there exists w € H?(P?(C))
lifting [52] and then

H* (P*(C)) ~ Z[w]/(w?)
We have in particular:
S (Sw) = £ Sa?(w)
= Yw?
= c(isn)
in HP(cofibizn; Fy).
If a: §* = 5% v S3 factors through 4o, wrting o ~ i3 for some 3 we have an equivalence
cofiba ~ cofib B v S3

and the inclusion of the second factor S% — cofib a induces an isomorphism on H?(—). In particular
in this case the Steenrod operation

Sq?: H3(cofib o; Fy) — HO(cofib a; Fy)
is trivial.
Let a: S* — S§% v S? factoring through either ip or i3. Observe that the sum [ig, i3] + « factors as
[ p— 2 S UL RV N ARy L AVE L
by definition. In particular, consider the following commutative diagram

V2 li2,i3]Va

L 2 (2vsh)? — ¥ L 2ves

l
r r l r

* — 3 (52 x 53) V cofib a

and make the following remarks.

e The cofiber sequence
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implies that the reduced (co)homology of X () is concentrated in degrees 2, 3 and 5. Denote
[X(oz)] the unique class in Hy (X(a)) lifting the homological fundamental class [55} via u. Using
the notation [55] to denote the cohomological fundamental class as well, the computation

uy ([X ()] Nu*[S°]) = us [X ()] N [S?]
= [$°] n [5°]
=1

implies
(X ()] Nu*[5°] =1
in Ho (X (a)). In particular [X(a)] N (—) induces isomorphisms
H°(X () ~ Ho(X(a)) and H°(X(a)) ~H;5(X(a))
In the following, we will also use the notation [X ()] := u.[S%], so that [X(a)] N [X(a)] = 1.
e Similarly, the cofiber sequence
S2v 8 —— Y(a) —— S°V S°
shows that the reduced (co)homology of Y («) is also concentrated in degrees 2, 3 and 5. Fix
bases

H?(Y(@)) ~ZX, H*(Y(a)) ~Zp and H?(Y(a)) ~ Zo @ Zt
such that
— X and p lift [S?] and [S3] respectively;
— (o, 7) lifts the canonical basis of H?(S° v S%), so that
g*o = c([iz,i3]) = [S*] ® [S®] and h*T = c(a)
e As a consequence, the map
f: X(a) > Y(a)
induces isomorphisms on H?(—) and H3(—), and
fro=f1=[X(a)]
Under our assumption, « factors either through iy or iz. This implies that cofib(«) is of the form
Z Vv 83 or §%V Z for some pointed groupoid Z, and thus
RN - h*'u=0
Since (g, h) induces an isomorphism on H?(—), this shows
Ap=o

and therefore
FX - = [X ()]

Since

([X(@)] N FA) N = [X(@)] 1 [X ()]
1

the class [X ()] N f*\ must be a generator of Hz(X () ~ Z. The class [X ()] N f*p is a generator
of Hy (X (at)) ~ Z for the same reason. Finally, the morphism

(X ()] N (=): B¥(X(a)) = Hs_ (X ()
is an isomorphism for all ¥ and X («) satifies Poincaré duality.
(5) Let a: S* — S? Vv S3 be such that one of the following conditions is satisfied

(a) « factors through io

(b) « is homotopic to izn
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In particular, the discussion from (4) applies and we reuse notation thereof. To describe the action
of the Steenrod algebra on H* (Y («)), it suffices to compute Sq'()\) and Sq?(u) since the reduced
cohomology of Y («) is concentrated in degree 2, 3 and 5.

e Since the map S? V S% — Y («) is an isomorphism on H?(—;F5) and H?(—;Fy), it follows that
Sq': H3 (Y (); Fo) — H?(Y(a); F2)
is null, or in other words Sq'()\) = 0.
e The map (g,h): (5% x S®) V cofiba — Y (a) induces an isomorphism on H®(—;F3), and
— Sq*(g* ) = Sq? [S3] = 0 by the Cartan formula;
— if (a) is true, then cofibav ~ Z v S3 for some pointed groupoid Z, and Sq*(h*u) = 0;
— in case (b), the discussion (2) shows that Sq*(h*u) = c(a).

Finally

Sa’ (10 =0 qu(f*u):{[XO(a)] o

and this completely describes the Steenrod operations on the cohomology of X («).
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