TOPOLOGIE IV - EXERCISE SHEET 7

MARCUS NICOLAS

The formula for the tensor product on Pr^L . For C, D and E three presentable categories, the chain of identifications

$$\begin{split} \operatorname{Fun}^{\operatorname{L}} \big(\mathcal{C}, \operatorname{Fun}^{\operatorname{L}} (\mathcal{D}, \mathcal{E}) \big) &\simeq \operatorname{Fun}^{\operatorname{L}} \big(\mathcal{C}, \operatorname{Fun}^{\operatorname{L}} (\mathcal{E}^{\operatorname{op}}, \mathcal{D}^{\operatorname{op}}) \big) \\ &\simeq \operatorname{Fun}^{\operatorname{L}} \big(\mathcal{E}^{\operatorname{op}}, \operatorname{Fun}^{\operatorname{L}} (\mathcal{C}, \mathcal{D}^{\operatorname{op}}) \big) \\ &\simeq \operatorname{Fun}^{\operatorname{L}} \big(\operatorname{Fun}^{\operatorname{L}} (\mathcal{C}, \mathcal{D}^{\operatorname{op}})^{\operatorname{op}}, \mathcal{E} \big) \\ &\simeq \operatorname{Fun}^{\operatorname{L}} \big(\operatorname{Fun}^{\operatorname{R}} (\mathcal{C}^{\operatorname{op}}, \mathcal{D}), \mathcal{E} \big) \end{split}$$

is natural in all variables. More explicitly, this identification sends $F \in \operatorname{Fun}^{\mathbf{L}}(\mathcal{C}, \operatorname{Fun}^{\mathbf{L}}(\mathcal{D}, \mathcal{E}))$ to the left adjoint of the functor $\mathcal{E} \to \operatorname{Fun}^{\mathbf{R}}(\mathcal{C}^{\operatorname{op}}, \mathcal{D})$ given by the formula

$$z \mapsto (x \mapsto F(x)^{\mathbf{R}}(z))$$

where $(-)^{R}$ denotes the action of passing to right adjoints. In particular, we have

$$\mathcal{C} \otimes \mathcal{D} \simeq \operatorname{Fun}^{\operatorname{R}}(\mathcal{C}^{\operatorname{op}}, \mathcal{D})$$

since both objects have the same universal property. As an exercise, describe the functoriality of the right-hand side in variables \mathcal{C} and \mathcal{D} by tracing back through the above identifications.

An important special case occurs when $\mathcal{C} \equiv \mathrm{Psh}(\mathcal{I})$ for some small category \mathcal{I} , where the above isomorphism can be rewritten

$$\operatorname{Fun} \bigl(\mathcal{I}, \operatorname{Fun}^L(\mathcal{D}, \mathcal{E}) \bigr) \simeq \operatorname{Fun}^L \bigl(\operatorname{Fun}(\mathcal{I}^{\operatorname{op}}, \mathcal{D}), \mathcal{E} \bigr)$$

Exercise 1. Let R be a commutative ring spectrum.

(1) For \mathcal{C} any small category, we get by the above an isomorphism

$$\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Mod}(R)) \simeq \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Fun}^{\operatorname{L}}(\operatorname{Mod}(R),\operatorname{Mod}(R)))$$
$$\simeq \operatorname{Fun}^{\operatorname{L}}(\operatorname{Fun}(\mathcal{C},\operatorname{Mod}(R)),\operatorname{Mod}(R))$$

sending $\mathcal{F} \colon \mathcal{C}^{\mathrm{op}} \to \mathrm{Mod}(R)$ to the left adjoint of the functor

$$\operatorname{Hom}_R(\mathcal{F}, -) \colon \operatorname{Mod}(R) \to \operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R))$$

given by the formula

$$M \mapsto (x \mapsto \operatorname{Hom}_R(\mathcal{F}(x), M))$$

But, for M an R-module and $\mathcal{X}: \mathcal{C} \to \operatorname{Mod}(R)$:

$$\operatorname{Hom}(\mathcal{X}, \operatorname{Hom}_{R}(\mathcal{F}, M)) \simeq \operatorname{Hom}(\mathcal{X} \otimes \mathcal{F}, \underline{M})$$
$$\simeq \operatorname{Hom}_{R} \left(r_{!}(\mathcal{X} \otimes \mathcal{F}), M \right)$$

where $r_!$: Fun(\mathcal{C} , Mod(R)) \to Mod(R) is the colimit functor. Finally, the above isomorphism is explicitly given by the formula

$$\mathcal{F} \to r_!(-\otimes \mathcal{F})$$

since $r_!(-\otimes \mathcal{F})$ is left adjoint to $\operatorname{Hom}_R(\mathcal{F}, -)$.

(2) For \mathcal{C} and \mathcal{D} two small categories, the identification:

$$\begin{split} \operatorname{Fun}(\mathcal{C}^{\operatorname{op}} \times \mathcal{D}, \operatorname{Mod}(R)) &\simeq \operatorname{Fun}\left(\mathcal{D}, \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Mod}(R))\right) \\ &\simeq \operatorname{Fun}\left(\mathcal{D}, \operatorname{Fun}^{\operatorname{L}}\left(\operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R)), \operatorname{Mod}(R)\right)\right) \\ &\simeq \operatorname{Fun}^{\operatorname{L}}\left(\operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R)), \operatorname{Fun}(\mathcal{D}, \operatorname{Mod}(R))\right) \end{split}$$

sends $\mathcal{F} \colon \mathcal{C}^{\mathrm{op}} \times \mathcal{D} \to \mathrm{Mod}(R)$ to the functor

$$\mathcal{X} \mapsto (y \mapsto r_!(-\otimes \mathcal{F}(-,y)))$$

Exercise 2. Let X be a compact spectrum. Since Sp is both generated under filtered colimits by finite spectra, X is a retract of some finite spectrum. Without loss of generality, we can thus assume that X is connective and that $X \otimes \mathbb{Z}$ is n-coconnective for some $n \geq 0$. We prove by induction on n that X is finite.

(1) If n = 0, then $X \otimes \mathbb{Z} \simeq H_*(X \otimes \mathbb{Z}) \simeq M$ for some classical \mathbb{Z} -module M. The compacity of X implies that M is projective and finitely generated, which in this case means free of finite rank r. Choose an identification $\mathbb{Z}^r \simeq M$, which by stable Hurewicz lifts to a map $\varphi \colon \mathbb{S}^r \to X$. In particular

$$(\operatorname{cofib}\varphi) \otimes \mathbb{Z} \simeq \operatorname{cofib}\varphi \otimes \mathbb{Z}$$
$$\simeq 0$$

But $\operatorname{cofib} \varphi$ is connective since X is, and stable Hurewicz implies $\operatorname{cofib} \varphi \simeq 0$. The morphism φ is therefore an isomorphism and the \mathbb{S} -module X is free of finite rank.

(2) Assume that the result holds for some $n \geq 0$ and that $X \otimes \mathbb{Z}$ is (n+1)-coconnective. Since the chain complex $X \otimes \mathbb{Z}$ is perfect, the group $H_0(X \otimes \mathbb{Z})$ is finitely generated and there exists a presentation $\mathbb{Z}^r \to H_0(X \otimes \mathbb{Z})$. By the stable Hurewicz theorem, this morphism lifts to $\varphi \colon \mathbb{S}^r \to X$, and from the long exact sequence induced in homology

$$\cdots \longrightarrow \mathrm{H}_k(\mathbb{Z}^r) \stackrel{\varphi_*}{\longrightarrow} \mathrm{H}_k(X \otimes \mathbb{Z}) \longrightarrow \mathrm{H}_{k-1}\big((\mathrm{fib}\,\varphi) \otimes \mathbb{Z}\big) \longrightarrow \cdots$$

one sees that $(\operatorname{fib}\varphi)\otimes\mathbb{Z}$ is connective and n-coconnective. Because X was supposed to be connective, the spectrum $\operatorname{fib}\varphi\simeq\Omega(\operatorname{cofib}\varphi)$ is (-1)-connective a priori, and therefore also connective by the stable Hurewicz theorem. The induction assumption implies that $\operatorname{fib}\varphi$ is finite, and this concludes since $X\simeq\operatorname{cofib}\big(\operatorname{fib}\varphi\to\mathbb{S}^r\big)$.

Exercise 3. Denote i_2 and i_3 the inclusions of S^2 and S^3 respectively in the wedge sum $S^2 \vee S^3$, and

$$[i_2,i_3]\colon S^4\to S^2\vee S^3$$

the induced Whitehead bracket. It sits inside a cocartesian square

$$S^{4} \xrightarrow{[i_{2},i_{3}]} S^{2} \vee S^{3}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$* \longrightarrow S^{2} \times S^{3}$$

so that $[i_2, i_3]$ is homotopic to the attaching map for the 5-cell of $S^2 \times S^3$.

(1) For any $\alpha: S^4 \to S^2 \vee S^3$, the diagram

¹This uses $n+1 \ge 1$, so that one cannot just merge the base case with this induction step.

shows that the reduced (co)homology of cofib α is concentrated in degrees 2, 3 and 5. Denote $c(\alpha) \in H^5(\operatorname{cofib} \alpha)$ the unique lift of S^5 .

(2) Pasting cocartesian squares, we obtain

$$S^{4} \xrightarrow{\Sigma\eta} S^{3} \xrightarrow{i_{3}} S^{2} \vee S^{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \Sigma\mathbb{P}^{2}(\mathbb{C}) \longrightarrow S^{2} \vee \Sigma\mathbb{P}^{2}(\mathbb{C}) \simeq \operatorname{cofib} i_{3}\eta$$

The map $S^2 \simeq \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^2(\mathbb{C})$ induces a isomorphism on $H^2(-)$, so there exists $w \in H^2(\mathbb{P}^2(\mathbb{C}))$ lifting $[S^2]$ and then

$$\mathrm{H}^*(\mathbb{P}^2(\mathbb{C})) \simeq \mathbb{Z}[w]/(w^3)$$

We have in particular:

$$Sq^{2}(\Sigma w) = \Sigma Sq^{2}(w)$$
$$= \Sigma w^{2}$$
$$= c(i_{3}\eta)$$

in $\mathrm{H}^5(\mathrm{cofib}\,i_3\eta;\mathbb{F}_2)$.

(3) If $\alpha : S^4 \to S^2 \vee S^3$ factors through i_2 , writing $\alpha \simeq i_2\beta$ for some β we have an equivalence

$$\operatorname{cofib}\alpha\simeq\operatorname{cofib}\beta\vee S^3$$

and the inclusion of the second factor $S^3 \to \operatorname{cofib} \alpha$ induces an isomorphism on $H^3(-)$. In particular in this case the Steenrod operation

$$\operatorname{Sq}^2 \colon \operatorname{H}^3(\operatorname{cofib} \alpha; \mathbb{F}_2) \longrightarrow \operatorname{H}^5(\operatorname{cofib} \alpha; \mathbb{F}_2)$$

is trivial.

(4) Let $\alpha \colon S^4 \to S^2 \vee S^3$ factoring through either i_2 or i_3 . Observe that the sum $[i_2, i_3] + \alpha$ factors as

$$S^4 \longrightarrow (S^4)^{\vee 2} \xrightarrow{[i_2,i_3]\vee \alpha} (S^2\vee S^3)^{\vee 2} \longrightarrow S^2\vee S^3$$

by definition. In particular, consider the following commutative diagram

definition. In particular, consider the following commutative diagram
$$S^{4} \longrightarrow (S^{4})^{\vee 2} \xrightarrow{[i_{2},i_{3}]\vee\alpha} (S^{2}\vee S^{3})^{\vee 2} \longrightarrow S^{2}\vee S^{3} \longrightarrow *$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

and make the following remarks.

• The cofiber sequence

$$S^2 \vee S^3 \longrightarrow X(\alpha) \longrightarrow S^5$$

implies that the reduced (co)homology of $X(\alpha)$ is concentrated in degrees 2, 3 and 5. Denote $[X(\alpha)]$ the unique class in $H_5(X(\alpha))$ lifting the homological fundamental class $[S^5]$ via u. Using the notation S^5 to denote the cohomological fundamental class as well, the computation

$$u_*([X(\alpha)] \cap u^*[S^5]) = u_*[X(\alpha)] \cap [S^5]$$
$$= [S^5] \cap [S^5]$$

= 1

implies

$$\left[X(\alpha)\right]\cap u^*\big[S^5\big]=1$$

in $H_0(X(\alpha))$. In particular $[X(\alpha)] \cap (-)$ induces isomorphisms

$$\mathrm{H}^5(X(\alpha)) \simeq \mathrm{H}_0(X(\alpha))$$
 and $\mathrm{H}^0(X(\alpha)) \simeq \mathrm{H}_5(X(\alpha))$

In the following, we will also use the notation $[X(\alpha)] := u_*[S^5]$, so that $[X(\alpha)] \cap [X(\alpha)] = 1$.

• Similarly, the cofiber sequence

$$S^2 \vee S^3 \longrightarrow Y(\alpha) \longrightarrow S^5 \vee S^5$$

shows that the reduced (co)homology of $Y(\alpha)$ is also concentrated in degrees 2, 3 and 5. Fix bases

$$\mathrm{H}^2(Y(\alpha)) \simeq \mathbb{Z}\lambda, \quad \mathrm{H}^3(Y(\alpha)) \simeq \mathbb{Z}\mu \quad \text{and} \quad \mathrm{H}^5(Y(\alpha)) \simeq \mathbb{Z}\sigma \oplus \mathbb{Z}\tau$$

such that

- $-\lambda$ and μ lift $[S^2]$ and $[S^3]$ respectively;
- $-(\sigma,\tau)$ lifts the canonical basis of $H^5(S^5 \vee S^5)$, so that

$$g^*\sigma = c([i_2, i_3]) = [S^2] \otimes [S^3]$$
 and $h^*\tau = c(\alpha)$

• As a consequence, the map

$$f: X(\alpha) \to Y(\alpha)$$

induces isomorphisms on $H^2(-)$ and $H^3(-)$, and

$$f^*\sigma = f^*\tau = [X(\alpha)]$$

Under our assumptions, α factors either through i_2 or i_3 . This implies that $cofib(\alpha)$ is of the form $Z \vee S^3$ or $S^2 \vee Z$ for some pointed groupoid Z, and thus

$$h^*\lambda \cdot h^*\mu = 0$$

Since (g,h) induces an isomorphism on $H^5(-)$, this shows

$$\lambda \cdot \mu = \sigma$$

and therefore

$$f^*\lambda \, \cdot \, f^*\mu = \big[X(\alpha)\big]$$

Since

$$([X(\alpha)] \cap f^*\lambda) \cap f^*\mu = [X(\alpha)] \cap [X(\alpha)]$$

$$= 1$$

the class $[X(\alpha)] \cap f^*\lambda$ must be a generator of $H_3(X(\alpha)) \simeq \mathbb{Z}$. The class $[X(\alpha)] \cap f^*\mu$ is a generator of $H_2(X(\alpha)) \simeq \mathbb{Z}$ for the same reason. Finally, the morphism

$$[X(\alpha)] \cap (-) \colon \mathrm{H}^k \big(X(\alpha) \big) \to \mathrm{H}_{5-k} \big(X(\alpha) \big)$$

is an isomorphism for all k and $X(\alpha)$ satisfies Poincaré duality.

- (5) Let $\alpha \colon S^4 \to S^2 \vee S^3$ be such that one of the following conditions is satisfied
 - (a) α factors through i_2
 - (b) α is homotopic to $i_3\eta$

In particular, the discussion from (4) applies and we reuse notation introduced thereof. To describe the action of the Steenrod algebra on $H^*(Y(\alpha))$, it suffices to compute $\operatorname{Sq}^1(\lambda)$ and $\operatorname{Sq}^2(\mu)$ since the reduced cohomology of $Y(\alpha)$ is concentrated in degree 2, 3 and 5.

- Since the map $S^2 \vee S^3 \to Y(\alpha)$ is an isomorphism on $H^2(-; \mathbb{F}_2)$ and $H^3(-; \mathbb{F}_2)$, it follows that $\operatorname{Sq}^1 \colon H^2\big(Y(\alpha); \mathbb{F}_2\big) \longrightarrow H^3\big(Y(\alpha); \mathbb{F}_2\big)$ is null, or in other words $\operatorname{Sq}^1(\lambda) = 0$.
- The map (g,h): $(S^2 \times S^3) \vee \operatorname{cofib} \alpha \to Y(\alpha)$ induces an isomorphism on $\operatorname{H}^5(-;\mathbb{F}_2)$, and $-\operatorname{Sq}^2(g^*\mu) = \operatorname{Sq}^2\left[S^3\right] = 0$ by the Cartan formula; $-\operatorname{if}$ (a) is true, then $\operatorname{cofib} \alpha \simeq Z \vee S^3$ for some pointed groupoid Z, and $\operatorname{Sq}^2(h^*\mu) = 0$; $-\operatorname{in case}$ (b), the discussion (2) shows that $\operatorname{Sq}^2(h^*\mu) = c(\alpha)$.

Finally

$$\operatorname{Sq}^{1}(f^{*}\lambda) = 0$$
 $\operatorname{Sq}^{2}(f^{*}\mu) = \begin{cases} 0 & \text{if (a)} \\ [X(\alpha)] & \text{if (b)} \end{cases}$

and this completely describes the Steenrod operations on the cohomology of $X(\alpha)$.