

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2025

July 10, 2025

Topology IV

Sheet 9

Exercise 1. Let X be an anima and $f: X \to X$ an equivalence. Define the mapping torus Tf of f as the colimit in anima of the functor $B\mathbb{Z} \to An$ determined by f.

(1) Show that there is a long exact sequence

$$\cdots \to H^{*-1}(X) \xrightarrow{1-f^*} H^{*-1}(X) \to H^*(Tf) \to H^*(X) \xrightarrow{1-f^*} \to \dots$$

- (2) Show that Tf is a Poincaré duality complex if X is a Poincaré duality complex.
- (3) Assume that X is an oriented Poincaré duality complex of dimension 4d-1 that and f preserves the orientation. Show that Tf is then also oriented and that $\operatorname{sign}(Tf) = 0$. Hint: Construct a Lagrangian in $H^{2d}(Tf; \mathbb{R})$.

Recall here that for an oriented 4*d*-dimensional PD complex X we set $\operatorname{sign}(X) = \operatorname{sign}(\mu_X)$ where $\mu_X \colon H^{2d}(X;\mathbb{Z})/\operatorname{tors} \otimes_{\mathbb{Z}} H^{2d}(X;\mathbb{Z})/\operatorname{tors} \to \mathbb{Z}$ is the intersection pairing $\mu_X(a,b) = \langle ab, [X] \rangle$ induced by Poincaré duality. Moreover, recall that for a unimodular symmetric bilinear form b on a finite free \mathbb{Z} -module, the signature $\operatorname{sign}(b)$ is defined as the signature of $b \otimes_{\mathbb{Z}} \mathbb{R}$, the associated unimodular symmetric bilinear form over \mathbb{R} and that this in turn is computed as the number of positive minus the number of negative eigenvalues of a representing matrix for b.

Moreover, recall that given a unimodular symmetric bilinear form b on a finite dimensional \mathbb{R} -vector space V, a Lagrangian for b is a sub vector space $L \subseteq V$ such that b(l, l') = 0 for all $l, l' \in L$ (such L's are called isotropic subspaces) such that the induced sequence

$$0 \to L \to V \stackrel{b}{\cong} V^{\vee} \to L^{\vee} \to 0$$

is exact. Show that an isotropic subspace $L \subseteq V$ is a Lagrangian if and only if $2 \dim_{\mathbb{R}}(L) = \dim_{\mathbb{R}}(V)$ and show that if a unimodular symmetric bilinear form b admits a Lagrangian, then $\operatorname{sign}(b) = 0$.

Exercise 2. Let b be a unimodular symmetric bilinear form on a finite free \mathbb{Z} module V. Then b is called *even* if $b(x, x) \in 2\mathbb{Z}$ for all $x \in V$, if it is not even it is called *odd*. The goal of this exercise is to show that if b is even, then $\operatorname{sign}(b) \in 8\mathbb{Z}$.

For the suggested outline, you may use the following fact from algebra: Two indefinite unimodular forms b and b' on finite \mathbb{Z} -modules V and V' are isomorphic if and only if they have the same type (i.e. are either both even or both odd), rank (i.e. $\operatorname{rk}(V) = \operatorname{rk}(V')$), and signature (i.e. $\operatorname{sign}(b) = \operatorname{sign}(b')$.

- (1) Show that b admits a characteristic element $c \in V$, i.e. an element such that $b(x, x) \equiv b(c, x) \mod 2$ for all $x \in V$.
- (2) Show that the value $b(c,c) \in \mathbb{Z}/8\mathbb{Z}$ is independent of the choice of a characteristic element c.
- (3) Show that if b' is another unimodular symmetric bilinear form, and c' is a characteristic element for b', then $c \oplus c'$ is one for $b \oplus b'$.
- (4) Show that if b is even, then $sign(b) \in 8\mathbb{Z}$.

This sheet will be discussed on July 18.