

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

June 5, 2025

Summer term 2025

Topology IV

Sheet 6

Exercise 1. Prove Wu's formula in $H^*(BO; \mathbb{F}_2)$ using the splitting principle.

Recall that Pic(S) is the groupoid of tensor invertible objects in Sp – this anima classifies stable spherical fibrations of possibly non-zero virtual rank. Its 0 component is given by BG, so this classifies stable spherical fibrations of virtual rank 0.

Exercise 2. Let $\xi: B \to BG$ be an oriented stable spherical fibration of virtual rank 0 with Thom spectrum $M(\xi)$. Denote by $u: M(\xi) \to \mathbb{Z}$ the Thom class. Recall the Thom diagonal map $M(\xi) \to B \otimes M(\xi)$. Consider the composite

$$M(\xi) \to B \otimes M(\xi) \xrightarrow{B \otimes u} B \otimes \mathbb{Z}$$

and use the adjunction $\text{Sp} \leftrightarrows \text{Mod}(\mathbb{Z})$ induced from the ring map $\mathbb{S} \to \mathbb{Z}$ to get a \mathbb{Z} -linear map

$$M(\xi) \otimes \mathbb{Z} \to B \otimes \mathbb{Z}.$$

Show that this map is an equivalence of \mathbb{Z} -modules and explain why this recovers what we called Thom isomorphism in the lecture.

Exercise 3. For $E \in CAlg(Sp)$, denote similarly to $Pic(\mathbb{S})$ by Pic(E) the groupoid of \otimes_E -invertible objects in Mod(E). Let $\xi \colon B \to Pic(\mathbb{S})$ be a stable spherical fibration. Show that ξ -admits a Thom isomorphism in E-cohomology if and only if $B \to Pic(\mathbb{S}) \to Pic(E)$ is null-homotopic. Here, we use that $Sp \to Mod(E)$, $X \mapsto X \otimes E$ is symmetric monoidal and hence induces a map $Pic(\mathbb{S}) \to Pic(E)$.

Show that for n > 0 we have

$$\pi_n(\operatorname{Pic}(E)) = \begin{cases} \pi_0(E)^{\times} & \text{if } n = 1\\ \pi_{n-1}(E) & \text{if } n > 1 \end{cases}.$$

Use this to reprove that that any stable spherical fibration ξ admits a Thom isomorphism in \mathbb{F}_2 cohomology, and that there is a Thom isomorphism in \mathbb{Z} -cohomology if and only $w_1(\xi) = 0$.

Exercise 4. Show that $\pi_0(\operatorname{Pic}(\mathbb{S})) \to \pi_0(\operatorname{Pic}(\mathbb{Z}))$ and $\mathbb{Z} \to \pi_0(\operatorname{Pic}(\mathbb{Z}))$, $1 \mapsto \Sigma\mathbb{Z}$, are isomorphisms. You may use here that $\operatorname{Mod}(\mathbb{Z}) \simeq \mathcal{D}(\mathbb{Z})$, so that $\operatorname{Pic}(\mathbb{Z})$ identifies with the groupoid of $\otimes_{\mathbb{Z}}$ -invertible objects of the derived category of \mathbb{Z} .

This sheet will be discussed on June 6.