

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2025

May 14, 2025

Topology IV

Sheet 3

Exercise 1. Consider the fibre sequence

 $S^{d-1} \to BSO(d-1) \to BSO(d).$

Show that the first map classifies the tangent bundle TS^d of S^{d-1} , i.e. the subbundle of $S^{d-1} \times \mathbb{R}^d$ on those pairs (x, y) such that $\langle x, y \rangle = 0$. Furthermore, show that the boundary map associated to this fibration factors as

 $\partial \colon \pi_d(\mathrm{BSO}(d)) \to \pi_d(\mathrm{BSG}(d)) \to \mathbb{Z} \cong \pi_{d-1}(S^{d-1})$

where the latter map sends an oriented spherical fibration $E \to S^d$ to its Euler class.

Exercise 2. Suppose that there is a fibre sequence $S^d \to S^m \xrightarrow{\pi} S^n$. Then d = n - 1, m = 2n - 1, and $e(\pi) = \pm 1$. Compute the Euler classes of the tautological complex and quaternionic bundles over S^2 and S^4 .

Exercise 3. Prove the following relations in $H^*(BG; \mathbb{F}_2)$:

- (1) $\operatorname{Sq}^{1}(w_{2n}) = w_1 w_{2n} + w_{2n+1}$.
- (2) $\operatorname{Sq}^1(w_{2n+1}) = w_1 w_{2n+1}$.

Exercise 4. Let $\pi: E \to B$ and $\pi': E' \to B'$ be (oriented) spherical fibrations of rank d-1 and d'-1, respectively. Show that $e(\pi \star \pi') = e(\pi) \times e(\pi') \in H^{d+d'}(B \times B')$ and consequently that, if $B = B', e(\pi \oplus \pi') = e(\pi) \cdot e(\pi')$.

This sheet will be discussed on May 23.