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We are in the situation of Milnor patching as in the lecture.

Exercise 1. Assume that S ∈ Mn,m(B
′) is the image of an invertible matrix T ∈ Mn,m(B). Then

M(A′n, Bm, S) is finite free and the A-linear maps A′n ←M(A′n, Bm, S)→ Bm induce isomorphisms

M(A′n, Bm, S)⊗A A′ ∼= A′n and M(A′n, Bm, S)⊗A B ∼= Bm.

The resulting isomorphism

B′n ∼= A′n ⊗A′ B′ ∼=M(A′n, Bm, S)⊗A B′ ∼= Bm ⊗B B′ ∼= B′m

is S.

Solution. Our conventions are so that elements of Mn,m(R) determine R-linear maps Rn → Rm.

Consider the following commutative diagram of spans

A′n B′n Bn

A′n B′m Bm

f ′

S T

p

S◦f ′ p

all whose vertical maps are isomorphisms. Therefore, on pullbacks we obtain an isomorphism

An
∼=−→M(A′n, Bm, S)

showing that the latter is finite free over A. The second claim is now immediate, since the analogous

result is true for S = id and the final claim follows similarly.

Exercise 2. Let S ∈Mn,m(B
′) be an invertible matrix and assume that B → B′ is surjective. Then

the invertible matrix (
S 0

0 S−1

)
∈Mm+n,m+n(B

′)

is the image of an invertible matrix in Mm+n,m+n(B).

Solution. We have(
S 0

0 S−1

)
=

(
1n S

0 1m

)
·

(
1n 0

−S−1 1m

)
·

(
1n S

0 1m

)
·

(
0 −1n
1m 0

)
and all of the matrices appearing on the right hand side can be lifted to matrices of the same shape

since B → B′ is surjective. Since any matrix of these shapes is invertible, the claim follows.
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Exercise 3. Assume P is a finite free A′-module, Q is a finite free B-module, and α : P ⊗A′ B′ ∼=
Q⊗B B′ is an isomorphism of B′-modules. Then M(P,Q, α) is finite projective and the tautological

mapsM(P,Q, α)⊗AA′ → P andM(P,Q, α)⊗AB → Q are isomorphisms and the resulting composite

isomorphism

P ⊗′
A B

′ ∼=M(P,Q, α)⊗A B′ ∼= Q⊗B B′

is α.

Proof. Fix isomorphisms P ∼= A′n and Q ∼= Bm so that α is equivalently described by an invertible

matrix S ∈Mn,m(B
′). Then we compute

M(A′n, Bm, S)⊕M(A′m, Bn, S−1) =M(A′n+m, Bn+m,

(
S 0

0 S−1

)
) ∼= An+m

where the latter isomorphism follows from Exercise 2 and Exercise 1. It follows that M(P,Q, α) ∼=
M(A′n, Bm, S) is finite projective. Moreover, the sum of the maps

M(A′n, Bm, S)→ A′n and M(A′m, Bn, S−1)→ A′m

identifies with the corresponding map

M(A′n+m, Bn+m, S ⊕ S−1)→ A′n+m

which is an isomorphism by Exercise 1. Hence, both maps appearing in the upper display are also

isomorphisms and therefore also M(P,Q, α) ⊗A A′ → P and M(P,Q, α) ⊗A B → Q. Similarly, the

sum of the composite isomorphisms

B′n → B′m and B′m ⊕B′n

identifies with the composite isomorphism

B′n+m → B′n+m

which Exercise 1 shows to be S ⊕ S′. Consequently, we obtain the the two composite isomorphisms

in the upper display are given by S and S−1 respectively, showing all claims.

Exercise 4. Let now (P,Q, α) be a general object of Proj(A′) ×Proj(B′) Proj(B). Show that there

exists (P ′, Q′, α′) such that P ⊕ P ′ and Q ⊕ Q′ are free and finish the proof of Milnor’s patching

theorem.

Solution. Pick P̄ and Q̄ such that P ⊕ P̄ ∼= A′n and Q ⊕ Q̄ ∼= Bm. Define P ′ = P̄ ⊕ A′m and

Q′ = Q̄⊕Bn. Then we need to argue that there is an isomorphism α′ between P ′⊗A′B′ and Q′⊗BB′.

To see this, we compute

P ′⊗A ∼= P̄ ⊗A′ B′ ⊕B′m

∼= P̄ ⊗A′ B′ ⊕ [Q⊗B B′ ⊕ Q̄⊗B B′]

∼= P̄ ⊗A′ B′ ⊕ P ⊗A′ B′ ⊕ Q̄⊗B B′

∼= B′n ⊕ Q̄⊗B B′

∼= Q′ ⊗B B′
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as needed. It then follows that

M(P,Q, α)⊕M(P ′, Q′, α′) ∼=M(P ⊕ P ′, Q⊕Q′, α⊕ α′)

and the latter is finite projective by Exercise 3, so it follows that M(P,Q, α) is also finite projective.

Finally, just like in the argument in Exercise 3, the maps

M(P,Q, α)⊗A A′ → P and M(P,Q, α)⊗A B → Q

are direct summand of the same maps for M(P ⊕ P ′, Q ⊕ Q′, α ⊕ α′) which are isomorphisms by

Exercise 3, and are hence themselves isomorphisms; Similarly, the composite isomorphism

P ⊗A A′ ∼=M(P,Q, α)⊗A B′ ∼= Q⊗B B′

is α, again by reducing the the case of M(P ⊕ P ′, Q⊕Q′, α⊕ α′) and using Exercise 3.

Exercise 5. Show that the map ∂ : GL(B′) → K0(A) defined in the lecture is a monoid homomor-

phism.

Solution. Pick S, T ∈ GL(B′) and find n ≥ 0 so that S, T ∈ GLn(B
′). Then we have

M(A′n, Bn, ST )⊕An ∼=M(A′2n, B2n, ST ⊕ 1n).

Moreover, we have (
ST 0

0 1n

)
=

(
S 0

0 T

)
·

(
T 0

0 T−1

)

and the

(
T 0

0 T−1

)
can be lifted to U ∈ GL2n(B) by Exercise 2. Consider then the diagram

A′2n B′2n B2n

A′2n B′2n B2n

ϕ

θ η

p

ψ p

where ϕ is multiplication by

(
S 0

0 T

)
, θ is multiplication by

(
T 0

0 T−1

)
, ψ is multiplication by(

ST 0

0 1n

)
and η is multiplication by U . As all of the vertical maps in this diagram are isomorphisms,

this shows that

M(A′2n, B2n, ST ⊕ 1n) ∼=M(A′2n,B2n,

(
S 0

0 T

)
) ∼=M(A′n, Bn, S)⊕M(A′n, Bn, T ).

With this, we finally have

∂[ST ] = [M(A′n, Bn, ST )]− [An]

= [M(A′2n, B2n, ST ⊕ 1n)− [A2n]

= [M(A′n, Bn, S)]− [Am] + [M(A′n, Bn, T )]− [An]

= ∂[S] + ∂[T ]

This sheet will be discussed on 3 July 2025.
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