

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2025

Algebraic *K*-theory

Sheet 5

Exercise 1. Let $f: X \to Y$ be a map of anima. Show that the following conditions are equivalent.

- (1) For every local coefficient system \mathcal{L} on Y, the map $f_* \colon H_*(X; f^*\mathcal{L}) \to H_*(Y; \mathcal{L})$ is an isomorphism,
- (2) the map $\overline{X} = X \times_Y \widetilde{Y} \to \widetilde{Y}$ induces an isomorphism upon applying $H_*(-;\mathbb{Z})$; here $\widetilde{Y} \to Y$ denotes the universal cover, and
- (3) for every point $y \in Y$, the map $\operatorname{fib}_u(f) \to *$ induces an isomorphism upon applying $H_*(-;\mathbb{Z})$.

Solution. We recall that $H_*(Y; \mathcal{L})$ is the homology of the chain complex $C_*(\widetilde{Y}) \otimes_{\mathbb{Z}[\pi_1(Y)]} \mathcal{L}$. Moreover, we have

$$C_*(\widetilde{X}) \otimes_{\mathbb{Z}[\pi_1(X)]} f^*(\mathcal{L}) = C_*(\widetilde{X}) \otimes_{\mathbb{Z}\pi_1(X)} \mathbb{Z}\pi_1(Y) \otimes_{\mathbb{Z}\pi_1(Y)} \mathcal{L} = C_*(\overline{X}) \otimes_{\mathbb{Z}\pi_1(Y)} \mathcal{L}.$$

Consequently, since $C_*(\bar{X}) \to C_*(\tilde{Y})$ is $\mathbb{Z}\pi_1(Y)$ -equivariant (and degreewise free), it it is a quasiisomorphism, it is a $\mathbb{Z}\pi_1(Y)$ -chain homotopy equivalence; in particular the map remains a quasiisomorphism upon tensoring with arbitrary $\mathbb{Z}\pi_1(Y)$ -modules, showing that (2) implies (1). Conversely, (1) implies (2) since we may choose $\mathcal{L} = \mathbb{Z}\pi_1(Y)$. To see that (2) is equivalent to (3), not that there is a fibre sequence

$$\operatorname{fib}(f) \to \overline{X} \to \overline{Y}.$$

Since \widetilde{Y} is simply connected, the Serre spectral sequence is

$$H_p(\widetilde{Y}; H_q(\operatorname{fib}(f)) \Rightarrow H_{p+q}(\overline{X}; \mathbb{Z}).$$

If $\operatorname{fib}(f) \to *$ is a homology isomorphism, the spectral sequence collapses and immediately gives that $\overline{X} \to \widetilde{Y}$ is a homology isomorphism. Conversely, if $\overline{X} \to \widetilde{Y}$ is a homology isomorphism, then there cannot be any differentials eminating out of the *x*-axes and the $E_{p,q}^{\infty}$ -term must be trivial for q > 0. Inductively, this implies that $E_{0,q}^2$ must be trivial for q > 0: Suppose *n* is the smallest positive number such that $H_n(\operatorname{fib}(f)) = E_{0,n}^2 \neq 0$. Then, as $E_{0,n}^{\infty} = 0$, there must be a non-trivial differential hitting $H_n(\operatorname{fib}(f))$. By the minimality of *n*, such a differential must come from the *x*-axes; but we have just argued that all differentials out of the *x*-axes are trivial.

Exercise 2. Without using the construction, show that if the inclusion $\operatorname{An}^{\operatorname{hypo}} \subseteq \operatorname{An}$ admits a left adjoint L, then the unit map $X \to LX$ induces an isomorphism on $H_*(-;\mathbb{Z})$. Hint: Show that $X \to LX$ induces an isomorphism on $H^*(-;\mathbb{Z})$ and show that a map which induces an isomorphism on $H^*(-;\mathbb{Z})$ in fact also induces an isomorphism on $H_*(-;\mathbb{Z})$.

June 4, 2025

Solution. $X \to LX$ induces an equivalence $\operatorname{Map}(LX, K(\mathbb{Z}, n)) \to \operatorname{Map}(X, K(\mathbb{Z}, n))$ since $K(\mathbb{Z}, n)$ is in particular hypoabelian; it follows that $H^*(LX; \mathbb{Z}) \to H^*(X; \mathbb{Z})$ is an isomorphism. Now, we show that the functor $\operatorname{map}_{\mathbb{Z}}(-, \mathbb{Z}) \colon \mathcal{D}(\mathbb{Z})^{\operatorname{op}} \to \mathcal{D}(\mathbb{Z})$ is conservative; then we apply this to $C_*(X; \mathbb{Z}) \to$ $C_*(LX; \mathbb{Z})$, where applying $\operatorname{map}_{\mathbb{Z}}(-, \mathbb{Z})$ gives $C^*(LX; \mathbb{Z}) \to C^*(X; \mathbb{Z})$. To see the conservativity, pick $M \in \mathcal{D}(\mathbb{Z})$ with $\operatorname{map}_{\mathbb{Z}}(M, \mathbb{Z}) = 0$. Then

$$0 = \operatorname{map}_{\mathbb{Z}}(M, \mathbb{Z})/p = \operatorname{map}_{\mathbb{Z}}(M, \mathbb{F}_p) = \operatorname{map}_{\mathbb{F}_p}(M \otimes_{\mathbb{Z}} \mathbb{F}_p, \mathbb{F}_p)$$

and since \mathbb{F}_p is a field, we find $M \otimes_{\mathbb{Z}} \mathbb{F}_p = 0$. This holds for every prime p, showing that M is rational. If M is non-trivial, it contains some (shift of) \mathbb{Q} as a direct summand, but $\operatorname{map}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z})$ is non-trivial (its π_{-1} is $\operatorname{Ext}(\mathbb{Q},\mathbb{Z})$ which is non-trivial). \Box

Exercise 3. Show that the canonical map $(X \times Y)^+ \to X^+ \times Y^+$ is an equivalence for all anima X and Y.

Solution. First option: Use Exercise 4, and the fact that the maximal perfect subgroup of $\pi_1(X) \times \pi_1(Y)$ is the product of the maximal perfect subgroups: This implies that the map in question is a π_1 -isomorphism. Moreover, it is also acyclic since products of acyclic maps are acyclic.

Second option: For formal reasons, $\operatorname{An}^{\operatorname{hypo}} \subseteq \operatorname{An}$ is closed under arbitrary limits. In particular, if A is hypoabelian and T is any anima, then $\operatorname{Map}(T, A)$ is hypoabelian. Then by Yoneda we have

 $\operatorname{Map}((X \times Y)^+, A) \simeq \operatorname{Map}(X \times Y, A) \simeq \operatorname{Map}(X, \operatorname{Map}(Y, A)) \simeq \operatorname{Map}(X^+, \operatorname{Map}(Y^+, A)) \simeq \operatorname{Map}(X^+ \times Y^+, A)$

as needed.

Exercise 4. Let $f: X \to Y$ be acyclic. Show that for all $x \in X$, the map $\pi_1(X) \to \pi_1(Y)$ is surjective with perfect kernel. Moreover, show that if f induces an isomorphism $\pi_1(X, x) \to \pi_1(Y, f(x))$ for all $x \in X$, then f is an equivalence.

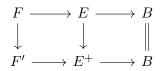
Solution. Let $F = \operatorname{fib}_{f(x)}(f)$. Since f is acyclic, we have that $\widetilde{H}_*(F) = 0$. In particular, F is connected and $\pi_1(F)$ has trivial abelianzation, i.e. is perfect. Then we have a long exact sequence of homotopy groups

$$\pi_1(F) \to \pi_1(X) \to \pi_1(Y) \to 1$$

Hence, the kernel of $\pi_1(X) \to \pi_1(Y)$ is a quotient of $\pi_1(F)$ and therefore also perfect. For the second claim, since f is acyclic, the induced map $\overline{X} \to \widetilde{Y}$ is a homology isomorphism. Since f is a π_1 -isomorphism, $\overline{X} = \widetilde{X}$ is simply connected, so that the Hurewicz theorems imply that $\widetilde{X} \to \widetilde{Y}$ is an equivalence. In particular, f also induces an isomorphism on π_n for $n \geq 2$, and is hence an equivalence.

Exercise 5. Let $F \to E \to B$ be a fibre sequence with B hypoabelian. Show that $F^+ \to E^+ \to B$ is again a fibre sequence.

Solution. Since B is hypothesian, the map $E \to B$ factors as $E \to E^+ \to B$. Let $F' = \text{fib}(E^+ \to B)$. Then we have a commutative diagram



The left square is a pullback square, since the map on horizontal fibres is the identity of ΩB . It follows that $F \to F'$ is acyclic (since its a fibre agrees with the fibre of the map $E \to E^+$ which is homologically trivial since $E \to E^+$ is acyclic) and in particular induces a bijection on π_0 . Moreover, $\pi_1(F) \to \pi_1(F')$ is surjective with perfect kernel K; in particular, this kernel is contained in the maximal perfect subgroup P of $\pi_1(F)$. We now show that P is contained in K. To that end, consider the diagram of exact sequences

Now $i(P) \subseteq \pi_1(E)$ is perfect, so j(f(P)) is trivial. It follows that f(P) is contained in the image of $\pi_2(B) \to \pi_1(F')$ which is abelian. At the same time f(P) is perfect, so it is trivial, showing that $P \subseteq K$ and hence P = K. We deduce that F' is hypoabelian and that the induced map $F^+ \to F'$ is acyclic and a π_1 -isomorphism, so the result follows from Exercise 4.