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Exercise 1. In this exercise, you may use the following fact about colimits in anima. Let I be a
small oo-category and and let 7: X — Y a natural transformation of functors I — An. Suppose Y
is a colimit cone and that 7 = 7j;: X — Y is a cartesian transformation of functors I — An, where
X = X|r and Y =Y|;. That is, for all morphisms ¢ — j in I, the square

X(i) —— Y(i)

| |

X(j) — Y ()

is cartesian. Then X is a colimit cone if and only if 7: X — Y is a cartesian transformation.
Now, show the following result (called Rezk’s equifibrancy criterion). Given a pullback diagram of

functors I — An
X — X
’T/i J’T
Y — Y
where 7 is a cartesian transformation. Then the square of colimits

colimy X’ —— colim; X

| J

colim; Y’ —— colim; Y
is again a pullback diagram.

Solution. Let Y'Y, and X be colimit cones over Y’, Y, and X respectively. Consider the pullback
diagram of functors I — An

YVixg X ——

|

Y ——— Y

I<;:><|

whose restriction to I is given by the diagram of the statement of the exercise (since that diagram is a
pullback). By the general result on colimits explained above, it suffices to show that the left vertical
map is a cartesian transformation. Note that 7/, as a pullback of a cartesian transformation, is again
a cartesian transformation. Since the restriction to I is 7/ it remains to show that for each i € I, the
left square in the diagram

X'(i) —— colimy Y” X¢olim; y colim; X —— colimy X

| | l

Y'(i)) ———— colim; Y/ ——— colim; YV



is a pullback. Since the right square is one, it suffices to show that the big square is. This square can
also be factored as

X'(4) » X (1) colimy X
| |
Y'(7) Y (i) » colim; Y

whose left square is a pullback by assumption and the right square is a pullback since X — Y is a
cartesian transformation since both X and Y are colimit cones. ]

Exercise 2. Let X be a Segal anima. Show that its décalage dec(X) is again a Segal anima and
participates in a pullback diagram

const(X;) —— dec(X)
const(Xg) — X
as in the lecture.

Solution. That there is a commutative diagram of the claimed shape is immediate. To see that it is a
pullback we may argue levelwise, so consider n > 0. Then there is a commutative diagram

X1 —_— X1+n i) X1 XXOXn —_— X1

bl Tk

where the left and right squares are induced by the commutative squares in A (together with the Segal
property of X):

] —— [0] 0] —— [n]
b b s
[14n] — [1] 1] o 171

where the map [14n] — [1] sends 0 to 0 and all other elements to 1. Now in the upper large diagram,
right most square is a pullback square and the big square is a pullback because both horizontal
composites are the identity. Hence, the left most square is a pullback as well. ]

Exercise 3. In this exercise you may use that |dec(X)| ~ X for any simplicial anima X. Let
G € Grp(An) be a group in anima. Show that the square

G —— |dec(Bar(Q))|

| !

x —— |Bar(G)|



is a pullback and deduce that G ~ Q|Bar(G)|, where | — | = colimaop. Why does the proof not apply
in case M is a monoid rather than a group?

Solution. By Exercise 2, the diagram

const(G) —— dec(Bar(G))

| |

const(x) —— Bar(G)

is a pullback diagram. Now, since A°P is contractible (it has an initial object), we have colimaop const(G) ~
G and colimpaop * ~ x. Hence the statement follows from Exercise 1 as soon as we show that the map
dec(Bar(G)) — Bar(G) is a cartesian transformation. So let [m] — [n] be a map in A. Then we need

to show that the left square in the diagram

Bar(G)i14n, —— Bar(G)14ym — Bar(G)y

| | |

Bar(G), — Bar(G),, —— Bar(G)y

is a pullback; here the right map is induced by a map [0] — [m]. By pasting pullbacks, it therefore
suffices to treat the case of the maps i: [0] — [n] for 0 < < n. In that case, the diagram becomes

G1+n — QG

o |

GP — 5 %

where the top horizontal map is induced by [1] — [1+ n] sending 0 to 0 and 1 to 1+ . For ¢ = 0, this
is true, as appeared in Exercise 2. However, for ¢ > 0, this is not a priori the case, and it is exactly at
this point where the proof uses that G is a group rather than a monoid. Indeed, for ¢ > 0, the map
Gt — G is given by multiplying together the first i product factors. But since G is a group, there
is a self-equivalence G'*" — G which commutes with the projection onto the last n-factors and
which translates the multiplication of the first ¢ factors map to the projection onto the first factor (for
i = 1 this is precisely the shear map witnessing that G is a group, rather than a mere monoid). It
follows that, in case G is a group, the diagram under investigation is equivalent to a pullback diagram,
and hence a pullback diagram as desired. O

Exercise 4. Let M € CMon(An) be a commutative monoid. Show that Bar(M) is indeed left Kan
extended from both its restrictions to AZ} and A% ;..

Solution. Denote by M the restriction of M to A%pl inj and by M the left Kan extension of M along
the inclusion A%pl imj © A°P. By the pointwise formula for left Kan extensions, for [n] € A°P, we have
to study the category (A%punj)/[n] >~ [(A<1,inj)n)/]°P Now (A<iinj)[n)/ is given by the category whose
objects are all simplicial maps [n] — [1] and the unique map [n] — [0]. Now, there are two constant
maps [n] =2 [1], given by the composite [n] — [0] = [1]. The non-constant maps [n] — [1] are precisely



what we called Dedekind cuts in the lecture, and are in bijection to (n) = {1,...,n} where j € (n)
corresponds to the map [n] — [1] sending j —1 to 0 and j to 1. We find that (A<1,inj)[,)/ 18 isomorphic
to the disjoint union of the category classifying pushouts with the discrete category {1,...,n}. Its
opposite is then given by the disjoint union of the category classifying pullbacks and the discrete
category {1,...,n}. In particular, we find that

n
M,= colim M =M1l ]_[ M.
(Agpl,inj)/[n] j=1

Now in CMon(An), the coproduct is simply the product, and My = %, so that we find
M, = % x M™ = M]™.

We now argue that M is a Segal object. To that end consider for 1 < i < n the Segal map p;: [1] —
[n] classifying the morphism (i — 1 < ) in [n]. This induces the following functor (A<i inj)p); —
(Agl,inj)m s+ It is an isomorphism on the pushout-classifying component of both categories. To see
what happens to the objects of the discrete category {1,...,n}, pick 1 < j < n. Then we need to
study the composite '
[1] 2 [n] = [1]

where the latter map, as indicated above, sends j —1 to 0 and j to 1. If ¢ < 5 — 1, then this composite
is constant at 0 and if ¢ — 1 > j then it is constant at 1, and if ¢ = j it is the identity. This shows that
the functor under consideration sends j € {1,...,n} to one of the objects of the pushout-classifying
category if j # ¢, and sends i to the unique object of {1} not in the pushout-classifying category. On
colimits, we deduce that the Segal map p; induces the map M™ — M which is the projection to the
ith product factor. In particular, M is a Segal object. Now the counit of the restriction-Kan extension
adjunction provides a map M — M. This map induces on 0- and 1-simplices the maps

*—=* and *x xM; — M;

where the first map is the identity, and the second map is the degeneracy on * and the identity on
M. Using that % x My ~ M; via the projection, we find that M — M is an equivalence on 0- and
1-simplices. Since both M and M are Segal objects, it then follows that the map M — M is an

equivalence, showing that M is left Kan extended from its restriction to A% To see that it is also

<l,inj"
left Kan extended from its restriction to A%}, it remains to argue that the le%t Kan extension of M
to A%, is equivalent to the restriction of M to A%,. But this is a formal consequence of the fact that
AP 'C A°P is a full subcategory: Indeed, this says that left Kan extending from A% to A°P, and
then restricting back again is the identity. Since composites of left Kan extensions are the is the left

Kan extension of the composite, the claim follows. O
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