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Exercise 1. In this exercise, you may use the following fact about colimits in anima. Let I be a

small ∞-category and and let τ̄ : X̄ → Ȳ a natural transformation of functors I▷ → An. Suppose Ȳ

is a colimit cone and that τ = τ̄|I : X → Y is a cartesian transformation of functors I → An, where

X = X̄|I and Y = Ȳ|I . That is, for all morphisms i → j in I, the square

X(i) Y (i)

X(j) Y (j)

is cartesian. Then X̄ is a colimit cone if and only if τ̄ : X̄ → Ȳ is a cartesian transformation.

Now, show the following result (called Rezk’s equifibrancy criterion). Given a pullback diagram of

functors I → An
X ′ X

Y ′ Y

τ ′ τ

where τ is a cartesian transformation. Then the square of colimits

colimI X
′ colimI X

colimI Y
′ colimI Y

is again a pullback diagram.

Solution. Let Ȳ ′, Ȳ , and X̄ be colimit cones over Y ′, Y , and X respectively. Consider the pullback

diagram of functors I▷ → An

Ȳ ′ ×Ȳ X̄ X̄

Ȳ ′ Ȳ

whose restriction to I is given by the diagram of the statement of the exercise (since that diagram is a

pullback). By the general result on colimits explained above, it suffices to show that the left vertical

map is a cartesian transformation. Note that τ ′, as a pullback of a cartesian transformation, is again

a cartesian transformation. Since the restriction to I is τ ′ it remains to show that for each i ∈ I, the

left square in the diagram

X ′(i) colimI Y
′ ×colimI Y colimI X colimI X

Y ′(i) colimI Y
′ colimi Y
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is a pullback. Since the right square is one, it suffices to show that the big square is. This square can

also be factored as
X ′(i) X(i) colimI X

Y ′(i) Y (i) colimI Y

whose left square is a pullback by assumption and the right square is a pullback since X̄ → Ȳ is a

cartesian transformation since both X̄ and Ȳ are colimit cones.

Exercise 2. Let X be a Segal anima. Show that its décalage dec(X) is again a Segal anima and

participates in a pullback diagram

const(X1) dec(X)

const(X0) X

as in the lecture.

Solution. That there is a commutative diagram of the claimed shape is immediate. To see that it is a

pullback we may argue levelwise, so consider n ≥ 0. Then there is a commutative diagram

X1 X1+n X1 ×X0 Xn X1

X0 Xn Xn X0

d0

≃

d0 d0

where the left and right squares are induced by the commutative squares in ∆ (together with the Segal

property of X):

[n] [0] [0] [n]

[1 + n] [1] [1] [1 + n]

d0 1

0

1 d0

(0≤1)

where the map [1+n] → [1] sends 0 to 0 and all other elements to 1. Now in the upper large diagram,

right most square is a pullback square and the big square is a pullback because both horizontal

composites are the identity. Hence, the left most square is a pullback as well.

Exercise 3. In this exercise you may use that |dec(X)| ≃ X0 for any simplicial anima X. Let

G ∈ Grp(An) be a group in anima. Show that the square

G |dec(Bar(G))|

∗ |Bar(G)|

2



is a pullback and deduce that G ≃ Ω|Bar(G)|, where | − | = colim∆op . Why does the proof not apply

in case M is a monoid rather than a group?

Solution. By Exercise 2, the diagram

const(G) dec(Bar(G))

const(∗) Bar(G)

is a pullback diagram. Now, since ∆op is contractible (it has an initial object), we have colim∆op const(G) ≃
G and colim∆op ∗ ≃ ∗. Hence the statement follows from Exercise 1 as soon as we show that the map

dec(Bar(G)) → Bar(G) is a cartesian transformation. So let [m] → [n] be a map in ∆. Then we need

to show that the left square in the diagram

Bar(G)1+n Bar(G)1+m Bar(G)1

Bar(G)n Bar(G)m Bar(G)0

is a pullback; here the right map is induced by a map [0] → [m]. By pasting pullbacks, it therefore

suffices to treat the case of the maps i : [0] → [n] for 0 ≤ i ≤ n. In that case, the diagram becomes

G1+n G

Gn ∗

d0

where the top horizontal map is induced by [1] → [1 +n] sending 0 to 0 and 1 to 1+ i. For i = 0, this

is true, as appeared in Exercise 2. However, for i > 0, this is not a priori the case, and it is exactly at

this point where the proof uses that G is a group rather than a monoid. Indeed, for i > 0, the map

G1+n → G is given by multiplying together the first i product factors. But since G is a group, there

is a self-equivalence G1+n → G1+n which commutes with the projection onto the last n-factors and

which translates the multiplication of the first i factors map to the projection onto the first factor (for

i = 1 this is precisely the shear map witnessing that G is a group, rather than a mere monoid). It

follows that, in case G is a group, the diagram under investigation is equivalent to a pullback diagram,

and hence a pullback diagram as desired.

Exercise 4. Let M ∈ CMon(An) be a commutative monoid. Show that Bar(M) is indeed left Kan

extended from both its restrictions to ∆op
≤1 and ∆op

≤1,inj.

Solution. Denote by M̄ the restriction of M to ∆op
≤1,inj and by M̂ the left Kan extension of M̄ along

the inclusion ∆op
≤1,inj ⊆ ∆op. By the pointwise formula for left Kan extensions, for [n] ∈ ∆op, we have

to study the category (∆op
≤1,inj)/[n] ≃ [(∆≤1,inj)[n]/]

op. Now (∆≤1,inj)[n]/ is given by the category whose

objects are all simplicial maps [n] → [1] and the unique map [n] → [0]. Now, there are two constant

maps [n] ⇒ [1], given by the composite [n] → [0] ⇒ [1]. The non-constant maps [n] → [1] are precisely
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what we called Dedekind cuts in the lecture, and are in bijection to ⟨n⟩ = {1, . . . , n} where j ∈ ⟨n⟩
corresponds to the map [n] → [1] sending j−1 to 0 and j to 1. We find that (∆≤1,inj)[n]/ is isomorphic

to the disjoint union of the category classifying pushouts with the discrete category {1, . . . , n}. Its

opposite is then given by the disjoint union of the category classifying pullbacks and the discrete

category {1, . . . , n}. In particular, we find that

M̂n = colim
(∆

op
≤1,inj)/[n]

M̄ = M0 ⨿
n∐

j=1

M1.

Now in CMon(An), the coproduct is simply the product, and M0 = ∗, so that we find

M̂n = ∗ ×M×n
1 = M×n

1 .

We now argue that M̂ is a Segal object. To that end consider for 1 ≤ i ≤ n the Segal map ρi : [1] →
[n] classifying the morphism (i − 1 ≤ i) in [n]. This induces the following functor (∆≤1,inj)[n]/ →
(∆≤1,inj)[1]/: It is an isomorphism on the pushout-classifying component of both categories. To see

what happens to the objects of the discrete category {1, . . . , n}, pick 1 ≤ j ≤ n. Then we need to

study the composite

[1]
ρi−→ [n]

j−→ [1]

where the latter map, as indicated above, sends j− 1 to 0 and j to 1. If i ≤ j− 1, then this composite

is constant at 0 and if i− 1 ≥ j then it is constant at 1, and if i = j it is the identity. This shows that

the functor under consideration sends j ∈ {1, . . . , n} to one of the objects of the pushout-classifying

category if j ̸= i, and sends i to the unique object of {1} not in the pushout-classifying category. On

colimits, we deduce that the Segal map ρi induces the map Mn → M which is the projection to the

ith product factor. In particular, M̂ is a Segal object. Now the counit of the restriction-Kan extension

adjunction provides a map M̂ → M . This map induces on 0- and 1-simplices the maps

∗ → ∗ and ∗ ×M1 → M1

where the first map is the identity, and the second map is the degeneracy on ∗ and the identity on

M1. Using that ∗ ×M1 ≃ M1 via the projection, we find that M̂ → M is an equivalence on 0- and

1-simplices. Since both M̂ and M are Segal objects, it then follows that the map M̂ → M is an

equivalence, showing that M is left Kan extended from its restriction to ∆op
≤1,inj. To see that it is also

left Kan extended from its restriction to ∆op
≤1, it remains to argue that the left Kan extension of M̄

to ∆op
≤1 is equivalent to the restriction of M to ∆op

≤1. But this is a formal consequence of the fact that

∆op
≤1 ⊆ ∆op is a full subcategory: Indeed, this says that left Kan extending from ∆op

≤1 to ∆op, and

then restricting back again is the identity. Since composites of left Kan extensions are the is the left

Kan extension of the composite, the claim follows.

This sheet will be discussed on 5 June 2025.
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