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Exercise 1. Let R be a ring. Show that the elementary matrices Ei,j(r) ∈ GL(R) satisfy the following

relations:

(1) Ei,j(r)Ei,j(r
′) = Ei,j(r + r′),

(2) [Ei,j(r), Ej,k(r
′)] = Ei,k(rr

′), if i ̸= k and

(3) [Ei,j(r), Ek,l(r
′)] = 1 if i ̸= l and j ̸= k.

Solution. Recall that for matrices A,B ∈ Mn(R) and 1 ≤ k, l ≤ n, we have

(A ·B)k,l =

n∑
s=1

Ak,s ·Bs,l.

Hence we obtain

(A · Ei,j(r))k,l =

n∑
s=1

Ak,s · Ei,j(r)s,l = Ak,l + δj,lrAk,i.

Hence, we find A ·Ei,j(r) is the matrix obtained from A by adding r times the i-th column to the jth

column, similarly for Ei,j(r) · A. From here, the exercise is to multiply matrices. Perhaps I’ll add the

actual computations at some point.

Exercise 2. Let R be a ring. Show that the center C(E(R)) of the group of elementary matrices is

trivial. Hint: Show that if A ∈ GLn(R) commutes with all elements of En(R), then A is a homothetie,

i.e. a diagonal matrix (r, . . . , r) with r ∈ C(R). Deduce that no element of En−1(R) lies in the center

of En(R) and let n go to infinity.

Solution. Note that Ei,j(r) = 1 + Vi,j(r) where Vi,j(r) is the matrix with 0s everywhere except at

spot (i, j) where the entry is r. Hence, if A commutes with Ei,j(1) it also commutes with Vi,j(1). But

AVi,j(1) is the matrix obtained from A by putting the jth column in the ithe column and setting all

other columns to zero. Likewise, Vi,j(1)A is obtained from A by putting the ith row in the jth row and

setting all other rows to zero. For these two matrices to be equal (for all i ̸= j) there can only be terms

on the diagonal and all these terms have to be equal. We conclude that if A ∈ GLn(R) commutes with

En(R), then A is a diagonal matrix with common terms on the diagonal. Now consider A ∈ En−1(R)

and view A ⊕ 1 ∈ En(R). If this matrix commutes with all elements of En(R), then A is diagonal

with common term on the diagonal. But the lowest diagonal term of A is a 1, so this implies that A

is the identity matrix. Finally, every element in E(R) is contained in En−1(R) for some n, and if it

commutes with all elements of E(R) it in particular commutes with all elements of En(R). The result

follows.
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Exercise 3. Let R be a ring and C ∈ GLn(R). Show that the following matrices are elementary:(
1 C

0 1

)
and

(
1 0

−C−1 1

)

Solution. For 1 ≤ i, j ≤ n, consider the matrices Vi,j(r) which have r at spot (i, j) and 0 in every

other spot. Consider then the matrices Si,j(r)(
1 Vi,j(r)

0 1

)

and note that they pairwise commute and are contained in E2n(R). Taking the product over all

1 ≤ i, j ≤ n of the matrices Si,j(Ci,j) gives the matrix(
1 C

0 1

)
The argument for the second matrix is analogous.

Exercise 4. Show that the map Rn−1 → St(R) given by

(r1, . . . , rn−1) 7→ e1,n(r1) · e2,n(r2) · · · en−1,n(rn−1)

is an injective group homomorphism.

Solution. We claim that the lements {ei,n(ri)}i=1,...,n−1 pairwise commute. Indeed, we want to apply

the defining relation (3), and so need that i ̸= n and j ̸= n for ei,n(r) and ej,n(r
′) to commute. Since

i, j < n, this is true. It then remains to note from defining relation (1) that ei,n(r+s) = ei,n(r) ·ei,n(s).
We therefore obtain a canonical group homomorphism as stated. To see that it is injective, let us

compose with the tautological map St(R) → GL(R). Then the product becomes the following matrix

1 0 . . . 0 r1

0 1 . . . 0 r2

. . .

. . .

0 0 . . . 1 rn−1

0 0 . . . 0 1


This shows that the composite

Rn−1 → St(R) → GL(R)

is injective, so that in particular the first map is injective as claimed.

Exercise 5. Use Matsumoto’s theorem to show that K2(Fq) = 0 where Fq is a finite field.
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Solution. Recall that Matsumoto’s theorem says that

K2(F ) = F× ⊗Z F×/⟨a⊗ 1− a | a ∈ F× \ {1}⟩.

Since the right hand side involves a tensor product over Z, it is more convenient to write the group F×

additively. However, since F× ⊆ F this is confusing, so we follow Milnor’s suggestion to give a name to

the isomorphism F× → K1(F ), say ℓ, and then write K2(F ) as the quotient of K1(F )⊗ZK1(F ) by the

subgroup generated by ℓ(a)⊗ℓ(1−a) for a ∈ F× \{1}. With this notation, we have ℓ(ab) = ℓ(a)+ℓ(b),

as we write K1(F ) additively. First, some general relations that follow in K2(F ):

(1) ℓ(a)⊗ ℓ(−a) = 0,

(2) ℓ(a)⊗ ℓ(a) = ℓ(a)⊗ ℓ(−1), and

(3) ℓ(a)⊗ ℓ(b) = −ℓ(b)⊗ ℓ(a).

Indeed, to see (1), note the equality in F× given by −a = 1−a
1−a−1 . Hence we have

ℓ(a)⊗ ℓ(−a) = ℓ(a)⊗ [ℓ(1− a)− ℓ(1− a−1)] = ℓ(a)⊗ ℓ(1− a) + ℓ(a−1)⊗ ℓ(1− a−1) = 0 + 0 = 0

giving (1). Then, since a = (−1)(−a), we get

ℓ(a)⊗ ℓ(a) = ℓ(a)⊗ [ℓ(−1) + ℓ(−a)] = ℓ(a)⊗ ℓ(−1) + ℓ(a)⊗ ℓ(−a) = ℓ(a)⊗ ℓ(−1)

showing (2). Moreover, using (1) three times, we obtain (3):

0 = ℓ(ab)⊗ ℓ(−ab) = ℓ(a)⊗ [ℓ(−a) + ℓ(b)] + ℓ(b)⊗ [ℓ(a) + ℓ(−b)] = ℓ(a)⊗ ℓ(b) + ℓ(b)⊗ ℓ(a)

Now for F a finite field, we have F× is a cyclic group, say of order q − 1 (i.e. F = Fq is a finite

field with q = pn elements). Pick a generator ξ. Then any two units in F are given by ξn and ξm for

some n,m. Then

ℓ(ξn)⊗ ℓ(ξm) = nm · [ℓ(ξ)⊗ ℓ(ξ)].

But using (3) above, we find that ℓ(ξ)⊗ ℓ(ξ) is of order 2. Thus K2(F ) is generated by an element of

order 2 and is hence either cyclic of order two or trivial. In fact, we also find ℓ(1) = ℓ(ξq−1) = (q−1)ℓ(ξ),

showing that

(q − 1)2 · ℓ(ξ)⊗ ℓ(ξ) = ℓ(1)⊗ ℓ(1)

which is the trivial element in K2(F ) as we recall that ℓ(1) = 0 ∈ K1(F ). However, if q is even, then

(q − 1)2 ≡ 1 mod 2, so the fact that ℓ(ξ) ⊗ ℓ(ξ) has order two implies that it vanishes. It remains

to argue the case where q is odd, in which, possibly ℓ(ξ) ⊗ ℓ(ξ) is a non-trivial element of order 2 in

K2(F ).

Now to treat the case where q is odd, we first claim that there are elements u, v ∈ nS = F× \ (F×)2

such that 1 = u + v. Indeed, consider the set nS and the set 1 − nS. Both these sets have (q − 1)/2

many elements and are subsets of F \ {0, 1} which has q− 2 many elements. Hence the intersection is

non-trivial, showing that there is a non-square u for which 1 − u = v is also a non-square. It follows

that ℓ(u)⊗ℓ(v) = ℓ(u)⊗ℓ(1−u) = 0. Now since ξ ∈ F× is a generator, it is not a square. Moreover, the

multiplication by squares acts transitively on the non-squares. This implies that there exists a, b ∈ F×
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such that a2u = ξ = b2v. Furthermore, as we have already argued that K2(F ) is 2-torsion, we know

that for any unit a, we have 0 = 2 · ℓ(a) ⊗ ℓ(v) = ℓ(a2) ⊗ ℓ(v), and similarly, 0 = ℓ(u) ⊗ ℓ(b2).

Consequently, we obtain

0 = ℓ(u)⊗ ℓ(v) = ℓ(a2u)⊗ ℓ(v) = ℓ(a2u)⊗ ℓ(b2v) = ℓ(ξ)⊗ ℓ(ξ)

showing that the generator of K2(F ) is trivial, and hence finally that K2(F ) = 0 as wanted.

This sheet will be discussed on 22 May 2023.
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