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Exercise 1. Let R be aring. Show that the elementary matrices F; () € GL(R) satisfy the following

relations:
(1) Eij(r)Ei;(r') = Eij(r+1'),
(2) [Eij(r), Bjx(r')] = Eip(rr'), it i # k and
(3) [Eij(r), Exy(r)] = 1if i # 1 and j # k.

Solution. Recall that for matrices A, B € M,(R) and 1 < k,l < n, we have

(A . B)k,l = EAk,s : Bs,l-

s=1
Hence we obtain

L 1= s "L s, = , i, Vi
(A~ Eij(r)k ZAk Eij(r)sy = Ak + jmAg
s=1

Hence, we find A - E; j(r) is the matrix obtained from A by adding r times the i-th column to the jth
column, similarly for E; j(r) - A. From here, the exercise is to multiply matrices. Perhaps I'll add the
actual computations at some point. O

Exercise 2. Let R be a ring. Show that the center C(E(R)) of the group of elementary matrices is
trivial. Hint: Show that if A € GL,,(R) commutes with all elements of E,,(R), then A is a homothetie,
i.e. a diagonal matrix (r,...,r) with » € C(R). Deduce that no element of E,_;(R) lies in the center
of E,(R) and let n go to infinity.

Solution. Note that E; ;(r) = 1+ V; ;(r) where V; ;(r) is the matrix with Os everywhere except at
spot (i,7) where the entry is r. Hence, if A commutes with E; ;(1) it also commutes with V; ;(1). But
AV; ;(1) is the matrix obtained from A by putting the jth column in the ithe column and setting all
other columns to zero. Likewise, V; j(1)A is obtained from A by putting the ith row in the jth row and
setting all other rows to zero. For these two matrices to be equal (for all i # j) there can only be terms
on the diagonal and all these terms have to be equal. We conclude that if A € GL,,(R) commutes with
E,(R), then A is a diagonal matrix with common terms on the diagonal. Now consider A € E,,_1(R)
and view A ® 1 € E,(R). If this matrix commutes with all elements of E,(R), then A is diagonal
with common term on the diagonal. But the lowest diagonal term of A is a 1, so this implies that A
is the identity matrix. Finally, every element in E(R) is contained in E,_;(R) for some n, and if it
commutes with all elements of E(R) it in particular commutes with all elements of E,,(R). The result
follows. O



Exercise 3. Let R be a ring and C € GL,,(R). Show that the following matrices are elementary:

1 C . 10
1
o 1/ ° —c!

Solution. For 1 < i,j < n, consider the matrices V; ;(r) which have r at spot (i,j) and 0 in every
other spot. Consider then the matrices S; ;(r)

(1 Vz;j(?“))
0 1

and note that they pairwise commute and are contained in Fs,(R). Taking the product over all
1 <4,j < n of the matrices S; ;(C; ;) gives the matrix

o)

The argument for the second matrix is analogous. O

Exercise 4. Show that the map R"~! — St(R) given by
(r1s. oy pa1) = 61,n(7”1) : eZ,n(TQ) s €n—1,n(7"n—1)
is an injective group homomorphism.

Solution. We claim that the lements {e;,(7;)}i=1,... n—1 pairwise commute. Indeed, we want to apply
the defining relation (3), and so need that ¢ # n and j # n for e;,,(r) and e;,(r’) to commute. Since
i,j < n, this is true. It then remains to note from defining relation (1) that e; »(r+s) = €; (7)€ n(s).
We therefore obtain a canonical group homomorphism as stated. To see that it is injective, let us
compose with the tautological map St(R) — GL(R). Then the product becomes the following matrix

... 0 ™1

1 ... 0 T2

0o 0 ... 1 Tn—1
0 0 0 1

This shows that the composite
R" — St(R) — GL(R)

is injective, so that in particular the first map is injective as claimed. ]

Exercise 5. Use Matsumoto’s theorem to show that Ky(F,) = 0 where Fy is a finite field.



Solution. Recall that Matsumoto’s theorem says that
Ky(F)=F"Qz F*/{a®1—a|aec F*\{1}).

Since the right hand side involves a tensor product over Z, it is more convenient to write the group F'*
additively. However, since F'* C F this is confusing, so we follow Milnor’s suggestion to give a name to
the isomorphism F* — Kj(F'), say ¢, and then write K5 (F') as the quotient of K1 (F)®yz K1 (F') by the
subgroup generated by ¢(a) ®{(1—a) for a € F*\ {1}. With this notation, we have ¢(ab) = £(a)+£(b),
as we write K (F') additively. First, some general relations that follow in Ky(F'):

(1) £(a) @ £(—a) =0,
(2) £(a) ®l(a) = €(a) @ £(—1), and
(3) L(a) @ L(b) = —L(b) @ L(a).

1—a_ Hence we have

Indeed, to see (1), note the equality in F* given by —a = —%

la)@l(—a) =La)@[(1 —a) — L1 —a V] =la) @1 —a)+La ) @L(1—-a)=0+0=0
giving (1). Then, since a = (—1)(—a), we get
(a) @ £(a) = £(a) @ [((—1) + £(—a)] = L(a) @ £(—1) + £(a) ® £(—a) = £(a) @ £(—1)
showing (2). Moreover, using (1) three times, we obtain (3):
0 = £(ab) ® £(—ab) = £(a) @ [((—a) + £(b)] + £(b) @ [€(a) + £(—b)] = £(a) @ £(b) + £(b) ® £(a)

Now for F' a finite field, we have F'* is a cyclic group, say of order ¢ — 1 (i.e. F' = [, is a finite
field with ¢ = p™ elements). Pick a generator £. Then any two units in F' are given by & and ™ for

some n, m. Then
((E") @ 6(E™) = nm - [£(£) @ £(£))].

But using (3) above, we find that £(§) ® £(§) is of order 2. Thus K3 (F) is generated by an element of
order 2 and is hence either cyclic of order two or trivial. In fact, we also find £(1) = £(¢971) = (g—1)£(¢),
showing that

(a—1)%-£&) @ L&) = £(1) @ (1)

which is the trivial element in Ks(F') as we recall that (1) = 0 € K;(F'). However, if g is even, then
(g —1)2 =1 mod 2, so the fact that £(¢) ® £(£) has order two implies that it vanishes. It remains
to argue the case where ¢ is odd, in which, possibly £(£) ® £(£) is a non-trivial element of order 2 in
Ky(F).

Now to treat the case where g is odd, we first claim that there are elements u,v € nS = F*\ (F*)?
such that 1 = u + v. Indeed, consider the set n.S and the set 1 — nS. Both these sets have (¢ — 1)/2
many elements and are subsets of F'\ {0,1} which has ¢ — 2 many elements. Hence the intersection is
non-trivial, showing that there is a non-square u for which 1 — u = v is also a non-square. It follows
that ¢(u) ®@€(v) = ¢(u)@¢(1—u) = 0. Now since { € F* is a generator, it is not a square. Moreover, the
multiplication by squares acts transitively on the non-squares. This implies that there exists a,b € F'*



such that a?u = ¢ = b?v. Furthermore, as we have already argued that Ko(F) is 2-torsion, we know
that for any unit a, we have 0 = 2 - £(a) ® £(v) = £(a?) ® £(v), and similarly, 0 = £(u) ® £(b?).
Consequently, we obtain

0 ={(u) ®£(v) = £(a*u) @ L(v) = L(a*u) @ L(b*v) = £(§) @ £(&)

showing that the generator of K»(F) is trivial, and hence finally that K5(F) = 0 as wanted. O

This sheet will be discussed on 22 May 2023.



