

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2025

Algebraic *K*-theory

Sheet 7

Exercise 1. The goal of this exercise is to directly prove the following version of Quillen's Theorem A. Let $f: \mathcal{C} \to \mathcal{D}$ be a functor and assume that for all $d \in \mathcal{D}$ the categories $\mathcal{C}_{d/} = \mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{d/}$ are contractible. Then show that

- (1) $|f|: |\mathcal{C}| \to |\mathcal{D}|$ is an equivalence, and
- (2) for all functors $F: \mathcal{D} \to \mathcal{E}$, the induced map $\operatorname{colim}_{\mathcal{C}} Ff \to \operatorname{colim}_{\mathcal{D}} F$ is an equivalence.

Exercise 2. Given a functor $F: \Delta^{\mathrm{op}} \to \mathcal{E}$ for some cocomplete category \mathcal{E} , show that the canonical map $\operatorname{colim}_{\Delta_{\operatorname{ini}}^{\operatorname{op}}} F' \to \operatorname{colim}_{\Delta_{\operatorname{op}}} F$ is an equivalence, where $F' = F_{|\Delta_{\operatorname{ini}}^{\operatorname{op}}}$.

Exercise 3. Let \mathcal{C} be a non-empty ∞ -category which admits binary products. Show that \mathcal{C} is contractible, that is, $|\mathcal{C}| \simeq *$.

Exercise 4. Let \mathcal{E} be an exact ∞ -category and \mathcal{E}^{op} its opposite exact ∞ -category. Show that there is a canonical equivalence $K(\mathcal{E}) \simeq K(\mathcal{E}^{\mathrm{op}})$.

Exercise 5. Let $\mathcal{E}: I \to \operatorname{Cat}_{\infty}^{ex}$ be a filtered diagram of exact ∞ -categories and exact functors. Show that $\operatorname{colim}_I \operatorname{in} \mathcal{E}_i$ and $\operatorname{colim}_I \operatorname{pr} \mathcal{E}_i$ define an exact structure on $\operatorname{colim}_I \mathcal{E}_i$ and that the canonical map $\operatorname{colim}_i K(\mathcal{E}_i) \to K(\operatorname{colim}_i \mathcal{E}_i)$ is an equivalence.

3. Juli 2025