

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2025

Algebraic *K*-theory

Sheet 4

Exercise 1. In this exercise, you may use the following fact about colimits in anima. Let I be a small ∞ -category and and let $\bar{\tau} \colon \bar{X} \to \bar{Y}$ a natural transformation of functors $I^{\triangleright} \to An$. Suppose \bar{Y} is a colimit cone and that $\tau = \bar{\tau}_{|I} \colon X \to Y$ is a cartesian transformation of functors $I \to An$, where $X = \bar{X}_{|I}$ and $Y = \bar{Y}_{|I}$. That is, for all morphisms $i \to j$ in I, the square

$$\begin{array}{ccc} X(i) & \longrightarrow & Y(i) \\ & & \downarrow & & \downarrow \\ X(j) & \longrightarrow & Y(j) \end{array}$$

is cartesian. Then \bar{X} is a colimit cone if and only if $\bar{\tau} \colon \bar{X} \to \bar{Y}$ is a cartesian transformation.

Now, show the following result (called Rezk's equifibrancy criterion). Given a pullback diagram of functors $I \to \mathrm{An}$

where τ is a cartesian transformation. Then the square of colimits

$$\begin{array}{ccc} \operatorname{colim}_{I} X' & \longrightarrow & \operatorname{colim}_{I} X \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{colim}_{I} Y' & \longrightarrow & \operatorname{colim}_{I} Y \end{array}$$

is again a pullback diagram.

Exercise 2. Let X be a Segal anima. Show that its décalage dec(X) is again a Segal anima and participates in a pullback diagram

as in the lecture.

1

May 28, 2025

Exercise 3. In this exercise you may use that $|\operatorname{dec}(X)| \simeq X_0$ for any simplicial anima X. Let $G \in \operatorname{Grp}(\operatorname{An})$ be a group in anima. Show that the square

is a pullback and deduce that $G \simeq \Omega |\text{Bar}(G)|$, where $|-| = \text{colim}_{\Delta^{\text{op}}}$. Why does the proof not apply in case M is a monoid rather than a group?

Exercise 4. Let $M \in \text{CMon}(\text{An})$ be a commutative monoid. Show that Bar(M) is indeed left Kan extended from both its restrictions to $\Delta_{\leq 1}^{\text{op}}$ and $\Delta_{\leq 1,\text{inj}}^{\text{op}}$.

This sheet will be discussed on 5 June 2025.