Prof. Dr. Günther Kraus

Übungen zur Vorlesung Differential- und Integralrechnung I (NV) Lösungsvorschlag

37. a) Beide Parabeln sind stetig auf ganz \mathbb{R} , damit ihre Einschränkungen, zu untersuchen bleibt x=-1:

$$\lim_{x \searrow -1} f(x) = \lim_{x \searrow -1} a(x+1)^2 + a + 1 = a + 1 = -(x+1)^2 + a + 1 = f(-1).$$

Damit ist f stetig.

b) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -(x+1)^2 + a + 1 = -\infty,$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} a(x+1)^2 + a + 1 = \infty,$

da a > 0. Daher gibt es für jedes s > 0 $a, b \in \mathbb{R}$ mit f(a) < -s und f(b) > s, wegen der Stetigkeit werden mit dem Zwischenwertsatz auch alle Werte aus [-s, s] angenommen. $\Longrightarrow W_f = \mathbb{R}$.

c) Wie man leicht sieht, haben beide Parabeln ihren Scheitel bei -1. Die nach unten geöffnete Parabel $-(x+1)^2+a+1$ steigt also strikt monoton in $]-\infty,-1]$, ebenso die nach oben geöffnete $a(x+1)^2+a+1$ in $[-1,\infty[$. Also steigt f strikt monoton auf ganz $\mathbb R$ und ist umkehrbar. f^{-1} berechnet sich wie folgt:

$$x = -(y+1)^{2} + a + 1$$

$$a + 1 - x = (y+1)^{2}$$

$$\pm \sqrt{a+1-x} = y+1$$

$$\pm \sqrt{a+1-x} - 1 = y$$

und

$$x = a(y+1)^{2} + a + 1$$

$$\frac{x-a-1}{a} = (y+1)^{2}$$

$$\pm \sqrt{\frac{x-1}{a} - 1} = y + 1$$

$$\pm \sqrt{\frac{x-1}{a} - 1} - 1 = y.$$

Weil f^{-1} wie f steigen muß, machen die - keinen Sinn, und wir erhalten:

$$f^{-1}(x) = \begin{cases} \sqrt{a+1-x} - 1 & \text{falls } x \le a+1, \\ \sqrt{\frac{x-1}{a} - 1} - 1 & \text{falls } x > a+1. \end{cases}$$

38. a) i. Das folgt daraus, dass e^x steigt und e^{-x} fällt.

ii.

$$0 \le x < y$$

$$1 \le e^x < e^y$$

$$e^x(e^{x+y} - 1) < e^y(e^{x+y} - 1)$$

$$\frac{1}{2}(e^x + e^{-x}) < \frac{1}{2}(e^y + e^{-y})$$

- b) i. $\lim_{x\to\pm\infty}\sinh(x)=\pm\infty$, wegen der Stetigkeit ist ihr Wertebereich also ganz \mathbb{R} , sinh ist damit surjektiv, die Injektivität folgt aus a).
 - ii. Die Injektivität folgt aus a). $\cosh(0) = 1$ und $\lim_{x\to\infty} \cosh(x) = \infty$, wegen der Stetigkeit ist ihr Wertebereich also ganz $[1, \infty[$, also surjektiv.
- c) i.

$$x = \frac{1}{2}(e^y - e^{-y})$$
$$(e^y)^2 - 2xe^y - 1 = 0$$
$$e_{1/2}^y = \frac{2x \pm \sqrt{4x^2 + 4}}{2} = x \pm \sqrt{x^2 + 1} > 0,$$

deshalb macht das - keinen Sinn, und wir erhalten:

$$y = \log(x + \sqrt{x^2 + 1}).$$

- ii. Ebenso.
- 39. g(0) = 0 f(0) = 0. Zu gegebenem $\varepsilon > 0$ müssen wir ein $\delta > 0$ finden, so dass $|g(x) 0| < \varepsilon$ für $|x 0| < \delta$. Sei C eine Schranke für f, d.h. $|f(x)| \le C$ für alle $x \in \mathbb{R}$. Dann gilt mit $\delta := \frac{\varepsilon}{C}$ für $|x| < \delta$:

$$|g(x) - 0| = |xf(x)| = |x||f(x)| < \frac{\varepsilon}{C}C = \varepsilon.$$

- 40. a) $f(x) = f(\frac{1}{2}x + \frac{1}{2}x) = f(\frac{1}{2}x)f(\frac{1}{2}x) = (f(\frac{1}{2}x))^2 \ge 0.$
 - b) f(x) = f(x-1+1) = f(x-1)f(1) = 0.
 - c) $f(0)a = f(0)f(1) = f(0+1) = f(1) = a \Longrightarrow f(0) = 1.$
 - d) Anfang: f(1) = a, Schritt: $f(n+1) = f(n)f(1) = a^n a = a^{n+1}$.

Dazu verschieben wir die Funktion so, dass der Punkt(a,b)im Ursprung landet, und erhalten

$$f(x+a) - b.$$

Für die muß jetzt die Bedingung erfüllt sein, d.h.

$$f(-x+a) - b = -(f(x+a) - b),$$

also

$$f(-x+a) = -f(x+a) + 2b.$$