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Motivation: Network Models
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§ want to develop good algorithms for large real-world networks 
want to have asymptotic statements, benchmarks, …

§ real network data is scarce and hard to obtain   
social: facebook, twitter, mobile phone, friendship, collaboration.. 
technological: internet, www, web of things,… 

§ these networks share many properties 
power law degrees, (ultra-)small world, strong clustering, small 
separators,… 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§ best model so far: hyperbolic random graphs 

§ each vertex draws a random position in a hyperbolic disc of 
radius R. 

§ two points connect if and only if their distance is at most R. 
 

§ has many nice properties:  
  power law degrees, clustering, small world, …
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§ best model so far: hyperbolic random graphs 

§ each vertex draws a random position in a hyperbolic disc of 
radius R. 

§ two points connect if and only if their distance is at most R. 
 

§ has many nice properties:  
  power law degrees, clustering, small world, …

BUT: kind of complicated…. 😧
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§ We start with n vertices. 

§ Each vertex vi draws independently a weight wi from a power 
law distribution: 
 

§ Each vertex vi draws independently a position xi from the 
hypercube           .  

§ For each pair (i,j), we independently connect vi and vj with prob. 
 
 
 
where            is a parameter.

[0, 1]d

↵ > 1

Pr[wi = w] = ⇥(w��), where 2 < � < 3.

pi,j = p(wi, wj , xi, xj) = ⇥
⇣

min
n

1, |xi � xj |�d↵
⇣

wiwj

n

⌘↵o⌘

,
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Lemma: For any fixed xi, wi, wj,

 
1. Pr
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1, wiwj
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2. E[deg(v
i

)] = ⇥(w
i
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Lemma: For any fixed xi, wi, wj,

 
1. Pr

xj [vi ⇠ v
j

] = ⇥
�
min

�
1, wiwj

n

 �
.

2. E[deg(v
i

)] = ⇥(w
i

).

Corollary:

§ The degree of a vertex vi of weight wi is Poisson distributed (in 
the limit) with mean           . 

§                           =>   There are O(n) edges. 

⇥(wi)

E[wi] = ⇥(1)
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Theorem:

 

Whp,

1. the graph contains a giant component of linear size.

2. all other components are of polylog size.

3. the diameter of the graph is polylogarithmic.

4. the average distance in the giant is (2 + o(1))

log logn
| log(��2)| .



Johannes Lengler Geometric Inhomogeneous Random Graphs

(Ultra-)Small World

ALEA 2016

Theorem:

 

§ holds in the most general model (including Chung-Lu graphs) 

§ same is true for other power-law graph models (e.g., preferential 
attachment) 

Whp,

1. the graph contains a giant component of linear size.

2. all other components are of polylog size.

3. the diameter of the graph is polylogarithmic.

4. the average distance in the giant is (2 + o(1))

log logn
| log(��2)| .
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Definition:
The clustering coefficient of a graph is

cc := Pru,v,w[v ⇠ w | u 2 V, v, w 2 �(u)].

§ Social (and other) networks have large clustering coefficient. 

§ most models with power law degrees have                      .
(Chung-Lu, preferential attachment, …) 

§ exception: hyperbolic random graphs have 

cc = ⇥(1/n)

cc = ⌦(1).
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Definition:
The clustering coefficient of a graph is

cc := Pru,v,w[v ⇠ w | u 2 V, v, w 2 �(u)].

§ Social (and other) networks have large clustering coefficient. 

§ most models with power law degrees have                      .
(Chung-Lu, preferential attachment, …) 

§ exception: hyperbolic random graphs have 

cc = ⇥(1/n)

cc = ⌦(1).

Theorem: GIRGs have cc = ⌦(1).
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Theorem: GIRGs have small separators: 

It suffices to delete              edges from the graph to split the giant 
into two components of linear size.

n1�⌦(1)
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§ was unstudied for hyperbolic random graphs. 

§ Chung Lu and pref. attachment models are different: Removing          
        edges or vertices reduces the giant by at most        . 

§ Real-world networks have small separators.

Theorem: GIRGs have small separators: 

It suffices to delete              edges from the graph to split the giant 
into two components of linear size.

n1�⌦(1)

o(n)o(n)
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Theorem: We can store a GIRG with expected          bits, so that 
we can answer the queries 
- “What is the degree of v?” 
- “What is the i-th neighbor of v?”
in time         . The algorithm has expected runtime          . 
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Entropy/Compression
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Observation:
The web graph can be stored using           bits per edge.2-3 (!)

O(1)

O(n)

§ compression algorithm for hyperbolic graphs was known.  

§ Chung Lu and pref. attachment models have entropy  
(I.e., need                 bits per edge.)

⇥(n log n).
⇥(log n)

O(n)



Theorem: For every concrete function

 
we can sample a GIRG in expected linear time (under some 
technical assumptions).
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p(wi, wj , xi, xj) = ⇥
�
min

�
1,
�
|xi � xj |�d · wiwj

n

�↵ �
,
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§ Naive sampling needs time           . 

§ Efficient algorithms were known for Chung-Lu model and others. 

§ Best previous algorithm for hyperbolic random graphs had  
runtime              .             

⇥(n2)

⇥(n3/2)

p(wi, wj , xi, xj) = ⇥
�
min

�
1,
�
|xi � xj |�d · wiwj

n

�↵ �
,
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§ s only knows position and weight of its neighbors and of t

§ We try to maximize greedily  '(v) := Pr[t is neighbor of v].
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§ Vertex s wants to send message to vertex t.
§ s only knows position and weight of its neighbors and of t

§ We try to maximize greedily 

§ ALGORITHM (greedy routing): 
REPEAT until we find t: 
- s’ := best neighbor of s 
- IF                        THEN              ELSE fail.

'(v) := Pr[t is neighbor of v].

'(s0) > '(s) s0 := s



Theorem: With probability         , greedy routing succeeds 
 
in                                          steps. 

With small modifications (e.g. backtracking), it succeeds within this 
time whp and in expectation.
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Greedy Routing
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§ Vertex s wants to send message to vertex t.
§ s only knows position and weight of its neighbors and of t

§ We try to maximize greedily 

§ ALGORITHM (greedy routing): 
REPEAT until we find t: 
- s’ := best neighbor of s 
- IF                        THEN              ELSE fail.

'(v) := Pr[t is neighbor of v].

'(s0) > '(s) s0 := s

⌦(1)

(2 + o(1))

log log n

| log(� � 2)|
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§ We fix a region B of volume .
§ In round 0, every vertex in B turns active with probability p.
§ An active vertex stays active forever.
§ A vertex has with k active neighbors turns active next round.
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§ We fix a region B of volume .
§ In round 0, every vertex in B turns active with probability p.
§ An active vertex stays active forever.
§ A vertex has with k active neighbors turns active next round.

• if p � p0 then ⇥(n) vertices turn active whp;

• if p ⌧ p0 then no vertex turns active after round 0 whp;

• if p = ⇥(p0) then either case happens with prob ⌦(1).

Let p0 := ⌫�1/(��1). Then
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§ We fix a region B of volume .
§ In round 0, every vertex in B turns active with probability p.
§ An active vertex stays active forever.
§ A vertex has with k active neighbors turns active next round.

• if p � p0 then ⇥(n) vertices turn active whp;

• if p ⌧ p0 then no vertex turns active after round 0 whp;

• if p = ⇥(p0) then either case happens with prob ⌦(1).

Theorem: 

`(v) :=

(
max{0, log log⌫

�
krdn/w

�
/| log(� � 2)|}, if w > (rdn)1/(��1),

(2 log log⌫(r
dn)� log log⌫ w)/| log(� � 2)|, if w  (rdn)1/(��1).

and distance r � . . . from B. The whp v turns active in round

(1± o(1))`(v)±O(1), where

Assume ↵ > � � 1. Let v be a vertex of weight w � 1

Let p0 := ⌫�1/(��1). Then
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§ We start with n vertices. 

§ Each vertex vi draws independently a weight wi from a power 
law distribution: 
 

§ Each vertex vi draws independently a position xi from the 
hypercube           . 
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[0, 1]d

↵ > 1

Pr[wi = w] = ⇥(w��), where 2 < � < 3.

pi,j = p(wi, wj , xi, xj) = ⇥
⇣

min
n

1,
⇣

|xi � xj |�d · wiwj

n

⌘↵o⌘

,

§ For each pair (i,j), we independently connect vi and vj with prob.

    where            is a parameter, 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General Model: 
- power law degrees 
- small world: components, diameter, average distance

Distance Model: 
- strong clustering (if distance function is “nice”) 
- may be non-rigid clustering

Euclidean Model (or other norms): 
- small separators 
- small entropy, efficient compression  
- linear time sampling
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Algorithms
- communication protocols 
- de-anonymization

Processes
- infection processes (work in progress) 
- information dissemination

Others 
- recovering the underlying geometry
- attacks 
- dynamic graph problems 
- games on graphs
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Questions?
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