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Motivation: Network Models

= want to develop good algorithms for large real-world networks
want to have asymptotic statements, benchmarks, ...

= real network data is scarce and hard to obtain
social: facebook, twitter, mobile phone, friendship, collaboration..
technological. internet, www, web of things, ...

= these networks share many properties
power law degrees, (ultra-)small world, strong clustering, small
separators,...
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= best model so far: hyperbolic random graphs

= each vertex draws a random position in a hyperbolic disc of
radius R.

= two points connect if and only if their distance is at most R.

= has many nice properties:
power law degrees, clustering, small world, ...
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Motivation: Hyperbolic Random Graphs ="

= best model so far: hyperbolic random graphs

= each vertex draws a random position in a hyperbolic disc of
radius R.

= two points connect if and only if their distance is at most R.

= has many nice properties:
power law degrees, clustering, small world, ...

BUT: kind of complicated.... &

‘l\'- , . e "OS ‘:' . Je
k(r) = 2m(cosh R — 1) — 2cosh R | arcsin lm?h('/ 2) + arctan cosh Relabir) 3)
2m(cosh R — 1) tanh R v/sinh(R + r/2) sinh(R — r/2)
+ arctan (cosh R + cosh r)v/cosh 2R — coshr — arctan (cosh R — cosh r)\/cosh 2R — coshr } (11)
"~ V/2(sinh® R — cosh R — coshr) sinh(r/2) ~ V/2(sinh® R + cosh R — coshr)sinh(r/2) J ’

Johannes Lengler Geometric Inhomogeneous Random Graphs ALEA 2016




EMdgendisische Techniche Hochichule Zurich
M Ot i vat i O n u G I R G s Swia federal Inmstitute of Technology Terkh
n

GIRGs (Geometric Inhomogeneous Random Graphs)

= are natural.
= are very easy lo analyze.
= are extremely flexible.
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GIRGs (Geometric Inhomogeneous Random Graphs)
= are natural.

= are very easy lo analyze.
= are extremely flexible.

Model 3: General

Model 2: GIRGs

Model 1:

@/
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otivation: S

GIRGs (Geometric Inhomogeneous Random Graphs)

= are natural.
= are very easy to analyze.
= are extremely flexible.

Chung-Lu
Model 3: General /

Norros-Reittu
Model 2: GIRGs e

Model 1:
Euclidean

hyperbolic
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GIRGs (Geometric Inhomogeneous Random Graphs)

= are natural.
= are very easy lo analyze.
= are extremely flexible.

Chung-Lu
Model 3: General /

Norros-Reittu
Model 2: GIRGs o

hyperbolic
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Model 1: Euclidean AT S
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Model 1: Euclidean

= We start with n vertices.
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Model 1: Euclidean

= We start with n vertices.

= Each vertex vi draws independently a weight w; from a power
law distribution:

Pr{w; = w] = O(w™ "), where 2 < < 3.
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odel 1: Euclidean

= We start with n vertices.

= Each vertex vi draws independently a weight w; from a power
law distribution:
Pr{w; = w] = O(w™ "), where 2 < < 3.

= Each vertex vi draws independently a position xi from the
hypercube [0, 1]%
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Model 1: Euclidean

= We start with n vertices.

= Each vertex vi draws independently a weight w; from a power
law distribution:

Pr{w; = w] = O(w™ "), where 2 < < 3.

= Each vertex vi draws independently a position xi from the
hypercube [0, 1]%

= For each pair (i,j), we independently connect vi and v; with prob.

. B Wi W - 84
pi,j :p(wi,wj,:ci,a;j) E— @ (mm{l, ‘QZZ — ZEj| do ( rinj ‘7) }) ,

where o > 1 is a parameter.
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Basic Properties

Lemma: For any fixed xi, wi, w;,
L P s e~ ] = @ (o {11, ==L )
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Basic Properties

Lemma: For any fixed xi, wi, w;,
L P s e~ ] = @ (o {11, ==L )

2. Eldeg(v;)] = O(w;).
Corollary:

= The degree of a vertex vi of weight wi is Poisson distributed (in
the limit) with mean O (w;).

= Elw;] =6©(1) => There are O(n) edges.
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(Ultra-)Small World

Theorem: Whp,

1. the graph contains a giant component of linear size.
2. all other components are of polylog size.

3. the diameter of the graph is polylogarithmic.

4. the average distance in the giant is (2 4 o(1)) | llsgg(gf g’)|.
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(Ultra-)Small World

Theorem: Whp,
1. the graph contains a giant component of linear size.
2. all other components are of polylog size.

3. the diameter of the graph is polylogarithmic.

log logn
[ log(8—2)]°

4. the average distance in the giant is (2 4 o(1))

= holds in the most general model (including Chung-Lu graphs)

= same is true for other power-law graph models (e.g., preferential
attachment)
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Clustering

Definition:
The clustering coefficient of a graph is

B0 5= 1200, 50 [0 o 0 | 0 E s & 0@l
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Definition:
The clustering coefficient of a graph is

B0 5= 1200, 50 [0 o 0 | 0 E s & 0@l

= Social (and other) networks have large clustering coefficient.

= most models with power law degrees have cc = ©(1/n).
(Chung-Lu, preferential attachment, ...)

= exception: hyperbolic random graphs have cc = §2(1).
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Definition:
The clustering coefficient of a graph is

B0 5= 1200, 50 [0 o 0 | 0 E s & 0@l

= Social (and other) networks have large clustering coefficient.

= most models with power law degrees have cc = ©(1/n).
(Chung-Lu, preferential attachment, ...)

= exception: hyperbolic random graphs have cc = §2(1).

Theorem: GIRGs have cc = €)(1).
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Theorem: GIRGs have small separators:

It suffices to delete n! =) edges from the graph to split the giant

into two components of linear size.
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Theorem: GIRGs have small separators:

It suffices to delete n! =) edges from the graph to split the giant

into two components of linear size.

= was unstudied for hyperbolic random graphs.

= Chung Lu and pref. attachment models are different: Removing
o(n) edges or vertices reduces the giant by at most o(n).

= Real-world networks have small separators.
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Entropy/Compression
Observation:
The web graph can be stored using bits per edge.
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Entropy/Compression

Observation:
The web graph can be stored using 2-3 (!) bits per edge.
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Entropy/Compression

Observation:
The web graph can be stored using 2-3 (!) bits per edge.

Theorem: We can store a GIRG with expected O(n) bits, so that
we can answer the queries

- “What is the degree of v?”

- “What is the i-th neighbor of v?”

in time O(1). The algorithm has expected runtime O(n).
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Entropy/Compression

Observation:
The web graph can be stored using 2-3 (!) bits per edge.

Theorem: We can store a GIRG with expected O(n) bits, so that
we can answer the queries

- “What is the degree of v?”

- “What is the i-th neighbor of v?”

in time O(1). The algorithm has expected runtime O(n).

= compression algorithm for hyperbolic graphs was known.

= Chung Lu and pref. attachment models have entropy ©(n log n).
(l.e., need O(logn) bits per edge.)

Johannes Lengler Geometric Inhomogeneous Random Graphs ALEA 2016




Eddgendisische Techniche Hachschule Zurich

S I i Swia federal Inmstitute of Technology Terkh

Theorem: For every concrete function

T\ Wil 085 At ) — (S (min {1, (|a:z — :Uj\_d : w)a}) ,

n

we can sample a GIRG in expected linear time (under some
technical assumptions).
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Theorem: For every concrete function
e, Wl 0, 65y — (&) [amati AL (g — g |5 w)a}) :

n

we can sample a GIRG in expected linear time (under some
technical assumptions).

= Naive sampling needs time ©(n?).
= Efficient algorithms were known for Chung-Lu model and others.

= Best previous algorithm for hyperbolic random graphs had
runtime ©(n3/?).
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G reedy Routing Bt it ket
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G reedy Routin g N e

= Vertex s wants to send message to vertex t.
= s only knows position and weight of its neighbors and of t
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Greedy Routing

= Vertex s wants to send message to vertex t.
= s only knows position and weight of its neighbors and of t

= We try to maximize greedily ¢(v) := Pr[t is neighbor of v].
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Greedy Routing

= Vertex s wants to send message to vertex t.
= s only knows position and weight of its neighbors and of t

= We try to maximize greedily ¢(v) := Pr[t is neighbor of v].

= ALGORITHM (greedy routing):
REPEAT until we find t:

- s’ := best neighbor of s
-IF o(s") > ¢(s) THEN s’ := s ELSE fail.
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Greedy Routing

= Vertex s wants to send message to vertex t.
= s only knows position and weight of its neighbors and of t

= We try to maximize greedily ¢(v) := Pr[t is neighbor of v].

= ALGORITHM (greedy routing):
REPEAT until we find t:

- s’ := best neighbor of s
-IF o(s") > ¢(s) THEN s’ := s ELSE fail.

Theorem: With probability €2(1), greedy routing succeeds
log logn
| log(8 — 2)|

With small modifications (e.g. backtracking), it succeeds within this
time whp and in expectation.

in (24 o(1))

steps.
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Bootstrap Percolation

= We fix a region B of volume .

= |n round 0, every vertex in B turns active with probability p.
= An active vertex stays active forever.

= Avertex has with k active neighbors turns active next round.
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Bootstrap Percolation

= We fix a region B of volume .

= |n round 0, every vertex in B turns active with probability p.
= An active vertex stays active forever.

= A vertex has with k active neighbors turns active next round.

Theorem: Let py := v~ /(8= Then
e if p > pg then O(n) vertices turn active whp;
o if p < po then no vertex turns active after round 0 whp;
o if p=0O(py) then either case happens with prob Q(1).
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Bootstrap Percolation

= We fix a region B of volume .

= |n round 0, every vertex in B turns active with probability p.
= An active vertex stays active forever.

= A vertex has with k active neighbors turns active next round.
Theorem: Let po := v~ /(5= Then
e if p > pg then O(n) vertices turn active whp;
e if p < pg then no vertex turns active after round 0 whp;
o if p=0O(py) then either case happens with prob Q(1).

Theorem: Assume o > § — 1. Let v be a vertex of weight w > 1
and distance » > ... from B. The whp v turns active in round

(1+0(1))f(v) + O(1), where

oy o {max(0. Toglog, (Irtnfw) /llog(5 =)}, iFw > ()1,
Y} =
(2loglog, (rin) — loglog, w)/|log(B8 — 2)|, if w < (rdn)l/(B-1),
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Non-Euclidean GIRGs

Chung-Lu

Model 3: General

Norros-Reittu
Model 2: GIRGs o

Model 1:
Euclidean

hyperbolic
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Non-Euclidean GIRGs e e

Chung-Lu

Model 3: General

./ Norros-Reittu

hyperbolic
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Model 1: Euclidean

= We start with n vertices.

= Each vertex vi draws independently a weight w; from a power
law distribution:

Pr{w; = w] = O(w™ "), where 2 < < 3.

= Each vertex vi draws independently a position xi from the
hypercube [0, 1]%

= For each pair (i,j), we independently connect vi and v; with prob.

. B Wi+ \ &
p,,;,j :p(wi,wj,:vi,xj) = @ (mm{l, (‘CBZ — CEj’ d . zn ‘7) }) )

where o > 1is a parameter,
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= We start with n vertices.

= Each vertex vi draws independently a weight w; from a power
law distribution:

Pr{w; = w] = O(w™ "), where 2 < < 3.

= Each vertex vi draws independently a position xi from the
hypercube [0, 1]%

= For each pair (i,j), we independently connect vi and v; with prob.

pij = plwi,w;j,x;, ;) =0 (min {1, (VOl(BZ'J')_l- w@-wj)a}) :

n

where o > 1is a parameter,
and B, ; is the ball around x; with radius d(z;, z;).
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Model 2: Distance

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bm-)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance
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Model 2: Distance @™ T

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bi,j)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance

/ e-neighborhood

Johannes Lengler Geometric Inhomogeneous Random Graphs ALEA 2016



ETH

Eddgendisische Techniiche Hochschule 2irich

Model 2: Distance @™ T

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bi,j)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance

/ e-neighborhood

Johannes Lengler Geometric Inhomogeneous Random Graphs ALEA 2016



ETH

Eddgendisische Techniiche Hochschule 2irich

Model 2: Distance @™ T

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bi,j)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance

/ e-neighborhood
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Model 2: Distance @™ T

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bi,j)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance

x / e-neighborhood
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Model 2: Distance @™ T

= For each pair (i,j), we independently connect vi and v; with prob.

pij =p(w;, w;,x;,x;) =06 (min {1, (Vol(Bi,j)_l- wiwj) }) :

n

where o > 1is a parameter,
and B; ; is the ball around x; with radius d(x;, z;).

Example: minimum component distance

x / e-neighborhood
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Summary

General Model:
- power law degrees
- small world: components, diameter, average distance

Distance Model:
- strong clustering (if distance function is “nice”)
- may be non-rigid clustering

Euclidean Model (or other norms):
- small separators

- small entropy, efficient compression
- linear time sampling
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Future Work

Algorithms
- communication protocols
- de-anonymization

Processes
- infection processes (work in progress)

- information dissemination

Others

- recovering the underlying geometry
- attacks

- dynamic graph problems

- games on graphs
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Thank you for your attention!

Questions?
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