
Recognizing tokens in a finitary algebra

Basil A. Karádais

(a note— draft of 30 Nov 2012, 2:11 p.m.)

Abstract

I describe here a technique of recognizing in linear time trees over a
free algebra given by constructors. The technique is arithmetical rather
than automata theoretic, in that it depends on the arities of the constructors
rather than on their names.

1 Algebras, terms, and the recognition problem

A finitary (free) algebra is given by a ranked alphabet or a signature, that is, a finite
collection of symbols Ci, i = 1, . . . , k, each of them paired with a non-negative
integer ri, their arity or rank. With the prospect of denotational semantics as
in [6], one thinks of the ranked symbols as constructors and requires that one of
these is the special partiality constructor ∗ of arity 0, and that at least one of the
rest is also nullary; the first requirement is not essential in general, while the
second one is crucial, since otherwise empty algebras sneak in the picture.

Let K denote a fixed signature; write ar (C) to denote the arity of its construc-
tor C. A string or word over K is just a string over the (unranked) alphabet that
underlies K, that is, a string that may neglect arities. Strings may be defined
inductively in the following manner: ε is a string, the so-called empty string; if
a is already a string, then Ca is a string, where C is a given symbol in K.

For example, consider the signature K given by the pairs (∗, 0), (0, 0), (1, 0),
(S, 1), and (B, 2). The following are strings: ε, 1, 0S, S10, SB∗1—by convention
we write a instead of aε when a is nonempty.

A term or token over K is a string of the form Ca1 · · · ar, where C is in K
with arity r, and a1, . . . , ar are already terms, if any are needed—note that the
definition is again inductive. The second and the last of the previous strings
are also terms, the others not.

Write S(K) for the collection of strings over K and T(K) for the collection of
terms over K. The recognition problem of K is this: given an arbitrary a ∈ S(K),
decide if a ∈ T(K) or not. It is clear that the recognition problem in this setting
is decidable, but the question is how to solve it in an efficient way.

To illustrate the issue, consider the following string over our toy signature:

a = BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0SB1 ∗ .

We want to recognize a. Based on a direct interpretation of the definition of
terms, we would reason more or less as follows: The string a starts with a B,
whose arity is 2; so it will be a term if we make sure that its tail (the substring

1

left if we drop the head) is the concatenation of two strings that are themselves
terms. So start recognizing the tail; if you get a term before it exhausts, recognize
the rest of the string; if it turns out to be a term, then you’re done and a ∈ T(K).
In all other cases it is a < T(K).

The above shows two things clearly enough: (a) due to branching con-
structors, that is, constructors of superunary arity, there are potentially many
simultaneous recursive calls of “recognize” that raise the complexity of the
procedure exponentially; (b) the names of the symbols do not play a role so
much as their arity. I present a way to recognize a term that circumvents (a) by
exploiting (b).

2 A linear solution through the tree rank of a string

There are some very well-known mappings that send strings or terms to non-
negative integers, which serve as measures, like the length or size of a string,
that is, the number of involved symbols, or the height or depth of a term, that
is, the number of nodes in a branch of maximal length in its treeform. Here I
make use of a similar mapping that intends to capture some of the “treeness”
of a given string.

Let a be a string over K. Define its tree rank, and write tr (a), by

tr (ε) := 1 ,
tr (Ca) := ar (C) + tr (a) − 1 .

For example, the tree ranks of the terms ε, 1, 0S, S10, and SB∗1 are 1, 0, 0, −1,
and 0 respectively. Note that the tree rank can take negative values.

A possibly suggestive intuition for this choice is the following: emptiness
needs to be appended 1 well-formed term to trivially yield a well-formed term;
if we have a string a that already needs r well-formed terms to “complete” to
a well-formed term, and we further extend it by a constructor C of arity r′, in
order to complete the concatenated string Ca we will need r well-formed terms
for a, minus 1 because of C, plus r′ for what C needs in turn to be completed.

Suggestive or not, the intuition goes only half way: zero tree rank does not
necessarily mean that we have a proper term in our hands, as we just saw in
the examples above. To wholly capture “treeness” we need to do some work.

Let a = C1 · · ·Cm, for Ci constructors in K of arities ri, i = 1, . . . ,m; the length
of a, which we write |a|, is here m. It is direct to see that the tree rank mapping
admits the explicit definition

tr (a) = 1 +

m∑
i=1

(ri − 1) = 1 −m + r1 + · · · + rm ,

and the following formula for any a, a′ ∈ S(K) is also direct to calculate:

tr (aa′) = tr (a) + tr (a′) − 1 . (?)

We say that a string a′ is a proper prefix of a, when it has length m < |a|, and
consists of a’s first m constructors, that is, a′(i) = a(i), for all i = 1, . . . ,m. The
main observation of the note is the following.

2

Proposition. Let a ∈ S(K). It is a ∈ T(K) if and only if tr (a) = 0, and tr (a0) > 0, for
all proper prefixes a0 of a.

Proof. Let a be a string over K. Assuming that a is a term, we proceed by
induction on a as a term. It must have the form Ca1 · · · ar, for some constructor
C of arity r in K. It is

tr (Ca1 · · · ar)
(?)
= ar (C) + tr (a1) + · · · + tr (ar) − (r − 1) − 1

(IH)
= 0 ,

so tr (a) = 0. Now let a0 be a proper prefix of a. If a consists of one nullary
constructor C, that is, if r = 0, there is nothing to show. If not, and r > 0,
suppose that a0 = Ca1 · · · amam+1,0, where am+1,0 is a prefix of am+1, for some
m < r. It is

tr (Ca1 · · · amam+1,0) = ar (C) + tr (a1) + · · · + tr (am) + tr (am+1,0) − (m + 1)
= r −m − 1︸ ︷︷ ︸

≥0

+ tr (am+1,0)︸ ︷︷ ︸
>0 by (IH)

,

so tr (a0) > 0.
Conversely, assume that (i) tr (a) = 0 and (ii) tr (a0) > 0, for all of its proper

prefixes a0. We will perform induction on a as a string. We first observe that
assumption (i) forces us to disregard the case a = ε, so we only consider strings
of the form a = C0a′, with |a′| ≥ 0, in other words, such that a = C0C1 · · ·Cm,
where Ci’s are constructors of arities ri, for i = 0, . . . ,m, and m ≥ 0. The
induction takes the form of an induction over m, that is, the length of the tail a′:

• For m = 0, it is a = C0 with tr (C0) = ar (C0) = 0; a nullary constructor does
indeed form a term.

• For m ≥ 1 and n ≤ m, the induction hypothesis is: if the tail a′ of a is of
length n, and assumptions (i) and (ii) hold, then a is a term. Since with
respect to arities assumption (i) yields

r0 + r1 + · · · + rn = n , (1)

and assumption (ii) yields

n−1

∀
i=0

r0 + r1 + · · · + ri > i , (2)

we may reread the induction hypothesis as: if the sequence r0, . . . , rn is a
solution to the diophantine equation (1) under the conditions (2), then it corre-
sponds to (the constructor sequence of) a term. Let us denote this associated
diophantine system of (1) and (2) by S(n, r0).

• For m + 1, the associated diophantine system is S(m + 1, r0):

r0 + r1 + · · · + rm + rm+1 = m + 1 ,
m

∀
i=0

r0 + r1 + · · · + ri > i .

By induction hypothesis, it suffices to show that for any fixed r0, the se-
quence r1, . . . , rm+1 is uniquely partitioned into r0 subsequences s j,0, . . . , s j,n j ,
the j-th of which solves S(n j, s j,0), for j = 1, . . . , r0. We do this by inner
induction on r0, which by (1) and (2) may take the values 1, . . . ,m:

3

– For r0 = 1, the partition that we seek is trivial, since it should corre-
spond to an argument for the unary constructor C0. The associated
system S(m + 1, 1) is

1 + r1 + · · · + rm + rm+1 = m + 1 ,
m

∀
i=0

1 + r1 + · · · + ri > i .

Set si := ri+1, for i = 0, . . . ,m − 1. Then S(m + 1, 1) becomes

s0 + · · · + sm = m ,

m−1

∀
i=0

s0 + · · · + si > i ,

which is S(m, s0), which is granted by the (outer) induction hypoth-
esis.

– For r0 ≥ 1 and r ≤ r0, the inner induction hypothesis is: if
the sequence r, r1, . . . , rm+1 solves S(m + 1, r), then its subsequence
r1, . . . , rm+1 breaks in turn uniquely into r subsequences s j,0, . . . , s j,n j ,
the j-th of which solves S(n j, s j,0), for n j ≤ m, s j,0 ≤ r and j = 1, . . . , r.

– For r0 + 1 the system S(m + 1, r0 + 1) reads

(r0 + 1) + r1 + · · · + rm+1 = m + 1 ,
m

∀
i=0

(r0 + 1) + r1 + · · · + ri > i .

Since all initial partial sums add up to something less or equal to
m + 1 (all arities are nonnegative), the inequality for i := m gives

(r0 + 1) + r1 + · · · + rm = m + 1 ;

by the equality, it follows that rm+1 = 0. But then S(m + 1, r0 + 1)
reduces to S(m, r0):

r0 + r1 + · · · + rm = m ,

m−1

∀
i=0

r0 + r1 + · · · + ri > i .

The two induction hypotheses yield that the sequence r1, . . . , rm
breaks up into r0 terms, and since rm+1 = 0 also corresponds to a
term, we have r0 + 1 terms in total, and we are done.

�

So the solution to the recognition problem of K for an arbitrary a ∈ S(K)
is the following: for i = 1, . . . , |a| − 1, check if tr (ai) > 0, where ai is the initial
segment of a with |ai| = i; then check if tr (a) = 0; the string is a well-formed
term exactly when all checks turn positive. Observe that the complexity of the
procedure is linear: for an n-letter string a, in the worst case (which is when we
indeed have a valid term), we have to calculate n tree ranks, namely, the ranks
of a’s prefixes.

4

Example. Consider again the strings of page 1.The tree rank of ε is 1 by defini-
tion, and it is of course no term. The rank of 1 is 0 (we silently omit checking ε
although it is strictly speaking a proper prefix), so it is a term. For 0S we have
tr (0) = 0, so we stop already and announce that the string is no term. Similarly,
for S10, the algorithm halts at the prefix S1 and announces “no”. For SB∗1, we
successively have:

tr (S) = 1 > 0 , tr (SB) = 2 > 0 , tr (SB∗) = 1 > 0 , tr (SB ∗ 1) = 0 ,

so we have a valid term. For BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0SB1∗we have:

tr (B) = 2 > 0 ,

tr (BB) = 3 > 0 ,

tr (BBB) = 4 > 0 ,

tr (BBBB) = 5 > 0 ,

tr (BBBBB) = 6 > 0 ,

tr (BBBBBB) = 7 > 0 ,

tr (BBBBBBB) = 8 > 0 ,

tr (BBBBBBBB) = 9 > 0 ,

tr (BBBBBBBBB) = 10 > 0 ,

tr (BBBBBBBBBB) = 11 > 0 ,

tr (BBBBBBBBBB∗) = 10 > 0 ,

tr (BBBBBBBBBB ∗ ∗) = 9 > 0 ,

tr (BBBBBBBBBB ∗ ∗∗) = 8 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗) = 7 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗∗) = 6 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗) = 5 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗∗) = 4 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) = 3 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗) = 2 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S) = 2 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0) = 1 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0S) = 1 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0SB) = 2 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0SB1) = 1 > 0 ,

tr (BBBBBBBBBB ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S0SB1∗) = 0 ,

so we again have a valid term. �

3 Language-theoretic considerations

The notion of a free algebra, as given in the first section, is found in the literature
of algebraic semantics as the initial algebra over {Ci

| i = 1, . . . , k} (see [9], [10]).
Indeed, the recognition problem—in this context also known as word problem—
rightfully belongs to the realm of algebraic semantics; having a free algebra
given by constructors, the first thing to do towards implementation is to build

5

a parser, and this in turn needs a recognizer—in fact, recognizers and parsers
are often identified and sometimes confused in nonexpert everyday parlance1.

A standard way to go about this—described in classics like [3] or lecture
notes like [4] or even relevant Wikipedia articles—is as follows. Let K be a
signature, for example the one that we had in the first section. Firstly, determine
the grammar G(K) that generates the language of K, that is, that generates
T(K). Secondly, build the corresponding automaton M(K) that recognizes the
elements of T(K).

Concerning the grammar, in our case we would necessarily have one non-
terminal (also called “axiom”) A, and all constructors would be terminals: ∗,
0, 1, S, B; as for the production rules of the grammar, we would have one per
constructor:

A→ ∗ , A→ 0 , A→ 1 , A→ SA , A→ BAA ;

Following the standard nomenclature of formal language theory, we first notice
that the grammar is context-free. It is also unambiguous (every string has a unique
leftmost derivation)—the term BB01S∗ for example is produced in the following
left-first steps:

A⇒ BAA⇒ BBAAA⇒ BB0AA⇒ BB01A⇒ BB01SA⇒ BB01S ∗ .

Then, the grammar is not linear (because of the rule for B), so it cannot be regular.
Furthermore, concerning determinism, one has to look at pushdown au-

tomata. The default non-deterministic automaton M(K) that corresponds to the
grammar has one state q, its inputs are the constructors (terminals) ∗, 0, 1, S, B,
together with the empty input εi, and its stacks are the “axiom” A together with
the empty stack εs. Finally, its behavior δ consists of two kinds of quintuples,
one push for each production rule:

(q, εi,A, q, ∗), (q, εi,A, q, 0), (q, εi,A, q, 1), (q, εi,A, q,SA), (q, εi,A, q,BAA),

and one pop for each constructor input:

(q, ∗, ∗, q, εs), (q, 0, 0, q, εs), (q, 1, 1, q, εs), (q,S,S, q, εs), (q,B,B, q, εs).

The automaton is non-deterministic, since the initial triple (q, εi,A) is present
in more than one quintuples.

To sum it up, the grammar that we get following the standard textbook
procedure up to this point is an unambiguous non-deterministic context-free
grammar, and for such grammars, by Earley’s algorithm [2], we know that the
recognition problem is of quadratic complexity. But by the algorithm that we
gave in section 2, we know we can achieve linear time; indeed, one can devise a
deterministic pushdown automaton Md(K) that recognizes our language, hence
certifying the grammar to be deterministic as well.

Here is an appropriate definition of Md(K) due to Fredrik Nordvall Forsberg.
In addition to the state q, we employ two more states, a starting state q0 and an
error state q∞. We allow here only nonempty inputs that is, the constructors ∗,

1The following post on the Theoretical Computer Science forum of StackExchange
is relevant, though not nonexpert: http://cstheory.stackexchange.com/questions/6411/
formal-definition-of-parser?.

6

input action stack status
— — εs

BB01S∗ push BAA BAA
pop B AA

B01S∗ push BAA BAAA
pop B AAA

01S∗ push 0 0AA
pop 0 AA

1S∗ push 1 1A
pop 1 A

S∗ push SA SA
pop S A

∗ push ∗ ∗

pop ∗ εs

εi halt εs

input action stack status
— — εs

∗S push ∗ ∗

pop ∗ εs

S push SA SA
pop S A

εi halt A

Figure 1: The automaton M(K) processing the inputs BB01S∗ (left) and ∗S (right). In the
first case it halts with an empty stack while in the second one not.

0, 1, S, B, while we preserve the stacks A and εs. The behavior will consist of
different kinds of quintuples for each constructor input: one start,

(q0, ∗, ε
s, q, εs), (q0, 0, εs, q, εs), (q0, 1, εs, q, εs), (q0,S, εs, q,A), (q0,B, εs, q,AA),

and one process,

(q, ∗,A, q, εs), (q, 0,A, q, εs), (q, 1,A, q, εs), (q,S,A, q,A), (q,B,A, q,AA),

as well as abort quintuples

(q,C, εs, q∞, εs) and (q∞,C, εs, q∞, εs) ,

for each constructor C; here, the process rules combine the corresponding push
and pop rules of M(K), by simultaneously refering to both constructor inputs
and their corresponding production rules in the grammar.

It is interesting to notice that the automaton Md(K), by the definition above,
operates in close correspondence to the tree rank criterion of page 3: the tree
rank of the accessed input essentially corresponds to the stack memory of the
machine at each step. In other words, the stack memory measures (in a unary
notation) the tree rank of the accessed input up to that point—or prompts to
the abort state when the tree rank drops too soon below one (see Figure 2).

Endnote

The arithmetical parsing technique described in this note stems from an (unfin-
ished) attempt to code the structure of coherent Scott information systems induced
by finitary algebras, as in [6], into Wolfram’s Mathematica system2—which has
yet to notice the interactive theorem proving boom of the recent decades, and

2See http://www.wolfram.com/mathematica/.

7

input action state stack status
— — q0 εs

BB01S∗ start with B q AA
B01S∗ process B q AAA
01S∗ process 0 q AA
1S∗ process 1 q A
S∗ process S q A
∗ process ∗ q εs

εi halt q εs

input action state stack status
— — q0 εs

∗S start with ∗ q εs

S abort on S q∞ εs

εi halt q∞ A

Figure 2: The automaton Md(K) processing the inputs BB01S∗ (up) and ∗S (down). In
the first case the word is accepted, since we halt with an empty stack while in the second
one not, since we end up in the abort state. One can see how at every step no interaction
is involved, that is, no non-deterministic choices.

consequently lacks a lot of basic relevant tools, the least of which is the matter
of recognition in user-defined algebras.

Regarding parsing itself there is a vast literature out there. One could begin
scratching the surface with the early account of [1] or the later [5] and [8, 7].

PS – Thanks to Rhea, Brent and Fredrik for the fun I had discussing the issue with them.

References
[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compiling. Vol. I:

Parsing. Prentice-Hall Inc., Englewood Cliffs, N. J., 1972. Prentice-Hall Series in Automatic
Computation.

[2] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102, 1970.

[3] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[4] Juhani Karhumäki. Automata and formal languages. Retrieved in September 2012 from
http://www.math.utu.fi/en/home/karhumak/, 2005.

[5] Anton Nijholt. Context-free grammars: covers, normal forms, and parsing, volume 93 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[6] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and computations. Perspectives in Logic.
Cambridge University Press, Cambridge, 2012.

[7] Seppo Sippu and Eljas Soisalon-Soininen. Parsing theory. Vol. I, volume 15 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Berlin, 1988. Languages and parsing.

[8] Seppo Sippu and Eljas Soisalon-Soininen. Parsing theory. Vol. II, volume 20 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Berlin, 1990. LR(k) and LL(k) parsing.

[9] TeReSe, editor. Term rewriting systems. Cambridge University Press, Cambridge, 2003. Cam-
bridge Tracts in Theoretical Computer Science, Vol. 55.

[10] Wolfgang Wechler. Universal algebra for computer scientists, volume 25 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, Berlin, 1992.

8

