

MATHEMATISCHES INSTITUT

Sommersemester 2013 14. Juni 2013¹

Prof. Dr. Andreas Rosenschon Thomas Jahn

Höhere Algebra – Übungsblatt 9

Eine (bzgl. \leq) teilgeordnete Menge I ist *induktiv geordnet*, wenn es für jedes Paar i,j in I ein Element k mit $i \leq k$ und $j \leq k$ gibt. Sei A ein Ring, I eine induktiv geordnete Menge und $\{M_i\}_{i \in I}$ eine Familie von A-Moduln. Sei weiter für jedes Paar $i \leq j$ in I eine A-lineare Übergangsabbildung $\mu_{ij}: M_i \to M_j$ gegeben. Die Familie $\{M_i\}_{i \in I}$ zusammen mit den Abbildungen μ_{ij} heißt *induktives System*, wenn folgende Bedingungen erfüllt sind:

- a) Für alle *i* ist $\mu_{ii}: M_i \to M_i$ die Identitätsabbildung.
- b) Für alle $i \leq j \leq k$ ist $\mu_{ik} = \mu_{jk} \circ \mu_{ij}$.

Wir konstruieren aus einem solchen induktiven System $(\{M_i\}_{i\in I}, \{\mu_{ij}\}_{i\leq j})$ einen neuen A-Modul $\varinjlim M_i$, den sogenannten K (auch direkter Limes oder induktiver Limes) des induktiven Systems: Sei C die direkte Summe der M_i , D der A-Untermodul von C, der von allen Elementen der Form $x_i - \mu_{ij}(x_i)$ ($i \leq j$, $x_i \in M_i$) erzeugt wird. Der Kolimes $\varinjlim M_i$ ist dann definiert als der Quotient C/D; für jedes $i \in I$ gibt es zudem eine A-lineare Abbildung $\mu_i : M_i \to \lim M$; für $i \leq j$ gilt $\mu_i = \mu_j \circ \mu_{ij}$.

Aufgabe 1 (Eigenschaften des Kolimes).

Sei $M = \varinjlim M_i$. Zeige:

- (i) Ist $x \in M$, so ist $x = \mu_i(x_i)$ für ein geeignetes $i \in I$ und $x_i \in M_i$.
- (ii) Ist $\mu_i(x_i) = 0$, so gibt es ein $j \ge i$ mit $\mu_{ij}(x_i) = 0$.
- (iii) Zeigen Sie, dass der Kolimes bis auf Isomorphie durch folgende universelle Eigenschaft charakterisiert ist: Sei N ein A-Modul und sei für jedes $i \in I$ eine A-linear Abbildung $\alpha_i: M_i \to N$ gegeben, sodass $\alpha_i = \alpha_j \circ \mu_{ij}$ für alle $i \leq j$ gilt. Dann gibt es genau eine A-lineare Abbildung $\alpha: M \to N$, sodass $\alpha_i = \alpha \circ \mu_i$ für alle $i \in I$ gilt.

Aufgabe 2 (Beispiele von Kolimites).

(i) Sei $\{M_i\}_{i\in I}$ eine Familie von A-Untermoduln eines A-Moduls N, sodass es für jedes Paar i,j in I ein $k\in I$ mit $M_i+M_j\subseteq M_k$ gibt. Wir definieren eine Teilordnung auf I: Es gelte $i\leq j$ genau dann, wenn $M_i\subseteq M_j$. Mit den Einbettungsabbildungen

¹Korrektur von Aufgabe 3(ii) am 19. Juni: Wir schreiben die Gruppe G nun konsistent additiv.

 $\mu_{ij}: M_i \to M_j$ erhalten wir ein induktives System. Zeigen Sie:

$$\lim_{i \to I} M_i \cong \sum_{i \in I} M_i = \bigcup_{i \in I} M_i.$$

(ii) Für eine abelsche Gruppe G und eine natürliche Zahl n betrachten wir den Kern der Multiplikation mit n: $G_n = \ker(G \xrightarrow{\cdot n} G)$. Für eine Primzahl ℓ definieren wir die ℓ -primäre Torsionsgruppe $G(\ell) = \{a | \ell^n \cdot a = 0 \text{ für ein } n \geq 1\}$. Zeigen Sie, dass $G(\ell)$ der Kolimes $\varinjlim_n G_{\ell^n}$ über die Familie $\{G_{\ell^n}\}_{n \in \mathbb{N}}$ mit den offensichtlichen Abbildungen $\mu_{ij} : G_i \to G_j$ ist.

Aufgabe 3 (Triviale Lokalisierung).

Sei $S \subseteq A$ eine multiplikativ abgeschlossene Teilmenge eines Rings A und M ein A-Modul mit $S^{-1}M = 0$.

- (i) Zeigen Sie: Ist M endlich erzeugt, so gibt es ein $s \in S$ mit sM = 0.
- (ii) Gilt (i) auch, wenn M nicht endlich erzeugt ist?

Aufgabe 4 (Lokale Eigenschaften).

Sei A ein Ring.

- (i) Zeigen Sie: Ist für jedes Primideal $\mathfrak{p} \subseteq A$ der lokale Ring $A_{\mathfrak{p}}$ reduziert (d.h. das Nilradikal von $A_{\mathfrak{p}}$ ist trivial), so ist A reduziert.
- (ii) Sei für jedes Primideal $\mathfrak{p} \subseteq A$ der lokale Ring $A_{\mathfrak{p}}$ ein Integritätsbereich. Ist A ein Integritätsbereich?

Abgabe bis einschließlich 25. Juni 2013 im Übungskasten (in der Nähe der Bibliothek). Bitte geben Sie Ihren Namen gut lesbar an.