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From Fermat to Euler. It is said that P. Fermat (1607-1665) got hooked on number theory
after picking up a newly published Latin translation of the ancient Greek work of Diophantus
- the moment A. Weil ([Wei07, p.1]) calls the birth of modern number theory. Fermat studied
questions which can be formulated very easily: Which forms can primes have? What are the
integral solutions for x and y of Diophantine equations like x2−Ny2 = ±1? Are there non-trivial
integral solutions to the equation xn + yn = zn for n ≥ 3? Regarding the latter, he claimed that
he can prove that there are none. However, his contemporaries did not share his enthusiasm
and it seems that nobody wanted to pick up the baton. So one had to wait until 1729 when
C. Goldbach (1690-1764) wrote to his friend L. Euler (1707-1783) about Fermat's assertion that
all integers of the form 22n + 1 are primes. This assertion, which Euler later showed to be wrong
through proving that 225 + 1 is not a prime, lured Euler to thinking about number theoretical
questions.

The Basler Problem. One of these questions Euler considered is called the Basler Problem:
When ζ(s) :=

∑∞
n=1

1
ns , what is the value of ζ(2)?1 In 1735 he succeeded by proving that

ζ(2) = π2

6 and in another proof of this assertion he showed that there is an (Euler) product
expansion for ζ(s). This means ζ(s) =

∏
p(1−p−s)−1, where the product ranges over all rational

primes. In 1739, he even showed that

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k, (1)

where B2k are the Bernoulli numbers and k ≥ 1, and from that formula it is easy to obtain

ζ(2k)π−2k ∈ Q. (2)

We remark here that (2) is an archetypical example of a phenomenon we will concern ourselves
with further below.

Magnum opus of Gauss. Euler still felt the need to justify his e�orts in number theory,
which led him to announce that they will be to 'the whole bene�t of analysis'. But then things
changed quickly for number theory, so that several decades later C.F. Gauss (1777-1855) already
proclaimed that 'mathematics is the queen of science and arithmetic is the queen of mathematics'.
He himself contributed a lot to this new standing of number theory. In his famous Disquisitiones
Arithmeticae - abbreviated by D.A. - he summarised the number theory known then and included
several of his own results. One of these was a proof of the quadratic reciprocity law, a vital source
of motivation for Gauss for studying number theory. Among the many topics contained in this

1As one sees here for the �rst time exempli�ed, we will use modern notation and de�nitions throughout this
overview which were, most of the time, not known to the mathematicians we are talking about.
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monumental work we want to pick up the topic of binary quadratic forms, which is contained
in Chapter 5 of D.A. There he developed a notion of when two such forms are equivalent and
counted the number of equivalence classes corresponding to a �xed discriminant D, the so-called
class number h(D). For example, Gauss gave a list of negative discriminants with class number
one and claimed that this list is complete.

A connection between two worlds. In 1837, G.L. Dirichlet (1805-1859) picked up a conjec-
ture which Euler stated in 1783, namely that there are in�nitely many primes in an arithmetic
progression, i.e. for two coprime numbers a and m there are in�nitely many prime numbers con-
tained in the sequence (a+n ·m)n∈N. From a modern point of view the result is still interesting,
but what really made head-waves were the tools Dirichlet developed because in order to prove
the theorem he introduced Dirichlet characters and the Dirichlet L-function.

A question we have not asked yet is: What are the analytic properties of ζ(s) and where
can it be de�ned? In his only number-theoretic paper [Rie60] B. Riemann (1826-1866) showed
that ζ(s) has a meromorphic continuation to C with a simple pole at s = 1 and that there is
a functional equation.2 In analogy of the ζ-function R. Dedekind (1831-1916) de�ned a similar
function for a general number �eld K and showed that this function also has an Euler product
expansion,

ζK(s) =
∑
a

1

N (a)s
=

∏
p

(1−N (p)−s)−1, (3)

where N denotes the ideal norm, the sum ranges over all the non-zero integral ideals of the ring
of integers OK of K and the product over all the prime ideals p of OK . Dedekind also showed
that this function has a simple pole at s = 1 and that it converges absolutely for Re(s) > 1. The
pinnacle of Dedekind's work in this direction was that he succeeded in proving the analytic class
number formula in the 1870's:

lim
s→1

(s− 1)−1ζK(s) = hKRK
2r1(2π)r2

wK |dK |1/2
, (4)

where RK is the regulator, wK the number of roots of unity, dK the discriminant and r1 and r2

the number of real and complex places of K, respectively.

Prehistory of cyclotomic �elds. A classic problem going back to at least the ancient Greeks
is the possibility of the construction of a regular n-polygon solely with ruler and compass. In
1796, younger than 20 by then, Gauss showed this to be possible for n = 17. In D.A. he even
showed a su�cient condition for a general n: the odd prime factors of n are distinct Fermat
primes3. Although this is certainly an impressive result, the methods he used had even greater
impact. Gauss considered in Chapter 7 of D.A. what we nowadays would denote by Q(ζn), where
ζn is a root of the equation xn − 1 = 0, and call a cyclotomic �eld. He also showed that every
quadratic number �eld lies in such a cyclotomic �eld and also remarked that the cyclotomic
theory should have an analogue using the lemniscate and other transcendental functions.

In�ux of analysis. Going beyond the results of Gauss, L. Kronecker (1823-1891) claimed in
1853 that every abelian extension of Q is contained in a cyclotomic �eld, an assertion nowa-
days called Theorem of Kronecker-Weber. Over the next years Kronecker obtained some re-
sults connecting complex multiplication of elliptic functions with abelian extensions of imaginary

2A side note in the paper was that the zeroes of this ζ-function should be at negative even integers and complex
numbers that have real part 1/2.

3i.e. primes of the form 22
m

+ 1
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quadratic number �elds. This culminated in a letter to Dedekind in 1880 where he admitted that
it is his 'liebster Jugendtraum' to prove that all abelian equations with coe�cients in imaginary
quadratic number �elds are exhausted by those which come from the theory of elliptic functions.

And there was hope for such a project because on the analytic side of the problem were also
major developments happening. Going back to 1847, G. Eisenstein (1823-1852) proved several
properties of the ∆-, φ- and j-functions and started what we today would call the theory of
Eisenstein series. In 1862, K. Weierstrass (1815-1897) de�ned his ℘-, ζ- and σ-functions and
expressed the ℘-function in terms of Eisenstein series. In 1877, Dedekind introduced his η-
function and proved a transformation formula for it. Also in an article about elliptic functions,
Kronecker discovered a limit formula: For τ = x+ y · i with y > 0 and s ∈ C we have4∑

(m,n)6=(0,0)∈Z2

ys

|mτ + n|2s
=

π

s− 1
+ 2π(γ − log(2)− log(

√
y|η(τ)|2)) +O(s− 1), (5)

where γ is the Euler constant and η(τ) is the value of the Dedekind eta function. This formula
is called Kronecker's �rst limit formula.

Hilbert's summary and predictions. In 1896, D. Hilbert (1862-1943) carefully studied the
known instances of algebraic number theory and wrote an exposition of almost all known results
of number theory in his own formulation. This exposition is known as 'Zahlbericht'. In this
work, led by analogies to Riemann surfaces, he conjectured that for any number �eld K there
is a unique extension L over K such that the Galois group of L/K is isomorphic to the class
group of K, L/K is unrami�ed at all places, every abelian extension of K with this property is
a sub�eld of L, for any prime p of K, the residue �eld degree at p is the order of [p] in the class
group of K and every ideal of K is principal in L. A number �eld satisfying these properties is
now called a Hilbert class �eld.

Another consolidating e�ort of Hilbert was his list of 23 problems presented at the occasion
of the International Congress of Mathematicians in 1900. His 12th problem is concerned with
the explicit construction of an abelian extension of a number �eld, citing the model cases of Q
and imaginary quadratic number �elds, but only one of these cases was proven at the time he
stated this problem.

Then the last two developments got entangled because after studying Hilbert's 'Zahlbericht'
T. Takagi (1875-1960) decided that he wanted to do algebraic number theory. He started work-
ing on 'Kronecker's Jugendtraum' and accomplished some partial results in 1903 essentially
solving the case Q(i). In this direction R. Fueter (1880-1950) in [Fue14] proved 'Kronecker's Ju-
gendtraum' for abelian extensions of imaginary quadratic number �elds of odd degree. Closely
connected to these results is a result of Fueter from 1910 in [Fue10], where he uses methods of
Dedekind and limit formulas like Kronecker's in (5) to obtain class number formulas for abelian
extensions of imaginary quadratic number �elds.

Takagi revolutionizes class �eld theory. Takagi also started thinking about generalizing
the properties of Hilbert class �elds and even dared to contemplate that maybe every abelian
extension is a class �eld, which was originally only considered for imaginary quadratic base �elds.
In giving a new de�nition of a class �eld using norms of ideals instead of splitting laws and also
incorporating in�nite places into the modulus he was able to show this vast generalization of the
known ideas by then. Indeed, the main results of his work published in [Tak20] were his Existence
Theorem (which asserts that for an ideal group H there is a class �eld over K), the Isomorphism

4at �rst for Re(s) > 1 and then analytically continued to C

3



Theorem (which says that if H is an ideal group with modulus m and class �eld L, and IK(m)
the group of all ideals coprime to m then there is an isomorphism Gal(L/K) ∼= IK(m)/H) and
the Completeness Theorem (which says that any �nite abelian extension of K is a class �eld).
As if this had not been enough, Takagi ful�lled 'Kronecker's Jugendtraum' in this momentous
work as well. This was obviously a big breakthrough but not yet utterly satisfying. Takagi had
proved the Isomorphism Theorem by reducing the problem to the cyclic case and using the fact
that two cyclic groups of equal order are isomorphic, so there was no explicit isomorphism given.

Artin L-function. At about the same time E. Hecke (1887-1947) in [Hec17] showed that the
Dedekind ζ-function for a number �eld K has a meromorphic continuation to C, satis�es a
functional equation and has a simple pole at s = 1. So for an extension L/K the quotient ζL/ζK
is meromorphic on C. If the extension is abelian, one already knew that this quotient is even an
entire function, because it was possible to express it in terms of Weber5 L-functions of non-trivial
characters. But E. Artin (1898-1962) wanted to know if the same thing was true for non-abelian
extensions. On his path to discover L-functions of not necessarily abelian representations of
Galois groups he made a de�nition which was also helpful in the abelian case. In [Art24] he
de�ned an L-function for a �nite abelian extension L/K with Galois group G: For χ ∈ Ĝ and
Re(s) > 1, de�ne L(s, χ) =

∏
p(1− χ(Frp)N (p)−s)−1, where Frp is the Frobenius element and

the product ranges over all prime ideals p of K which are unrami�ed in L. But now one has two
L-functions, from Weber and Artin, which are de�ned on characters of isomorphic groups, so it is
natural to ask for an explicit isomorphism which identi�es possibly these L-functions. The �rst
thing that comes to one's mind is the map p 7→ Frp. For this map, extended multiplicatively,
Artin in [Art27] was able to show that it gives an explicit isomorphism in the Isomorphism
Theorem. This theorem is called Artin reciprocity law because it also subsumes all the classical
reciprocity laws.

In [Art30], Artin gave a de�nition of a more general L-function: Let L/K be a Galois
extension of number �elds with Galois group G and let (ρ, V ) be a representation of G. Then
we set

LL/K(ρ, s) =
∏
p

(det(1− FrPN (p)−s;V IP))−1, (6)

where the product ranges over all prime ideals of K, P is a prime ideal of L above p, FrP the
corresponding Frobenius element and IP the inertia group.6 Nowadays we call this an Artin
L-function.

On the shoulders of Hensel and Kummer. In the mathematical world of Dedekind and
Hilbert number theory had been the study of algebraic number �elds and Hilbert's 'Zahlbericht'
was a manifestation thereof. The ideas of E. Kummer (1810-1893) and Kronecker were somehow
eclipsed by the glory and success of the Dedekind-Hilbert approach to number theory. Though
there remained results and methods of Kummer that were not well-embedded in the existing
theories, as for example his famous Kummer's Congruence: For p prime and l, k ∈ 2Z+ with
(p− 1) - l or (p− 1) - k we have

Bl/l ≡ Bk/k mod p if l ≡ k mod (p− 1), (7)

where Bi are again Bernoulli numbers. Or also the fact that a prime p is irregular, i.e. p does
not divide h(Q(ζp)), if and only if p divides one of the numerators of ζ(−1), . . . , ζ(4− p). Even

5H. Weber (1842-1913)
6One can show that this is well-de�ned and it only depends on the character.
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more generally, one can de�ne generalized Bernoulli numbers Bm
χ and show that they occur as

values of Dirichlet L-functions L(s, χ) at odd negative integers:

L(1−m,χ) = −
Bm
χ

m
. (8)

For any prime p the generalized Bernoulli numbers satisfy certain p-adic congruences which are
called generalized Kummer congruences. T. Kubota and H.-W. Leopoldt (1927-2011) in [KL64]

observed that those congruences can be interpreted in such a way that the
Bmχ
m are in a sense

p-adically continuous functions on m. More precisely: There is one and only one p-adically
continuous function Lp(s, χ) de�ned on Zp such that (for χ even and p > 2):

Lp(1−m,χ) = −
Bm
χ

m
(1− χ(p)pm−1), (9)

for negative integers 1 − m with (p − 1) | m. These numbers 1 − m are dense in Zp. But it
turns out that Lp(s, χ) is holomorphic in a region larger than Zp, at least if χ 6= 1, whereas for
χ = 1 there is one pole for s = 1. Based on these p-adic L-functions Leopoldt considered for any
abelian number �eld K the corresponding p-adic zeta function ζK,p(s) as a product of Lp(s, χ)
over all characters. He arrived at the p-adic class number formula which is an analogue of the
analytic class number formula given in (4).

One related problem is also to prove the non-vanishing of the p-adic regulator of a number
�eld K which appears in the p-adic class number formula. This regulator RK,p is obtained if
one replaces the ordinary logarithms in the classical regulator with p-adic logarithms. The non-
vanishing of RK,p means that the p-adic rank of the topological closure of the image under a
suitable diagonal embedding of the group of units of K equals the ordinary rank - this is now
known as Leopoldt's conjecture. In [Bru67], A. Brumer with the help of a reduction of J. Ax
(1937-2006) in [Ax65] proved Leopoldt's conjecture for arbitrary abelian extensions of Q or an
imaginary quadratic base �eld.

Iwasawa's growth formula. One of the �rst number-theoretic results of K. Iwasawa (1917-
1998) is concerned with the growth of certain class numbers in [Iwa59a]. Indeed, let F be a �nite
extension of Q and �x, from now on, for simplicity an odd prime p. Then a Zp-extension is a Ga-
lois extension F∞ of F such that Γ := Gal(F∞/F ) ∼= Zp. Furthermore, we set Γn := Γp

n
as well

as Fn := FΓn
∞ and we easily see that Fn/F is a cyclic extension. Let now en be the largest natural

number such that pen | hFn , where hFn is the class number of Fn. Then Iwasawa proved the
existence of λ, µ, ν for su�ciently large n such that en = λn+µpn+ν. The main tool in the proof
is the usage of the compact Zp-module X = Gal(L∞/F∞), where Ln is the p-Hilbert class �eld
of Fn, i.e. the maximal abelian p-extension unrami�ed at all primes, and L∞ :=

⋃
n Ln. In 1959,

J. P. Serre realised that one can view X as a module over the ring Λ = Zp[[T ]] and then derived
the Iwasawa growth formula from the structure theorem for Λ-modules. The latter asserts that
for a �nitely-generated torsion Λ-module M there is a homomorphism M →

⊕t
i=1 Λ/(fi(T )ai),

where fi(T ) are irreducible elements of Λ, with �nite kernel and cokernel7. Then we can de�ne
the following invariants of M :

fM (T ) =

t∏
i=1

fi(T )ai , λ(M) = deg(fM (T )), µ(M) = max{m ∈ N0 : pm | fM (T )}, (10)

where fM (T ) is called characteristic polynomial. Now we have λ(X) = λ and µ(X) = µ, where
λ and µ are the same as in the growth formula above.

7The value of t, fi(T ) and ai are uniquely determined by M , up to the order. Moreover, fi(T ) can be chosen
as a polynomial.
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Herbrand's Theorem. Until now we have only encountered the cardinality of the class group,
but also the structure is interesting. J. Herbrand (1908-1931) proved in [Her32] that for Q(ζp),
2 ≤ i, j ≤ p− 2, i+ j ≡ 1 mod (p− 1) and i odd, we have that if Aω

i 6= 0, then p | Bj , where A
is the p-primary subgroup of Cl(Q(ζp)), Bj are the Bernoulli numbers and ω is de�ned below.

The Iwasawa Main Conjecture for cyclotomic �elds. 8 In [Iwa59b], Iwasawa contin-
ued by studying the extension F∞ := Q(ζp∞). He de�ned M∞ as the maximal abelian exten-
sion of F∞ which is pro-p and such that only the primes lying over p are rami�ed, and set
Y := Gal(M∞/F∞). Now Galois theory gives a natural decomposition Gal(F∞/Q) = ∆×Γ and
we can de�ne the Teichmüller character as ω : ∆→ µp−1 ⊂ Z×p given by the action of ∆ on µp∞ .
Moreover, for any Zp-module N on which ∆ acts we get a decomposition

N =

p−2⊕
k=0

Nωk with Nωk := {a ∈ N : δ(a) = ωk(δ)a ∀δ ∈ ∆}. (11)

Iwasawa showed that Xωi for odd i has no non-zero �nite Λ-submodules and that for all k, Y ωk

has no non-zero, �nite Λ-submodules.
Let now Q∞ be the unique sub�eld of Q(ζp∞) such that Gal(Q∞/Q) ∼= Zp. Then for any

number �eld F the extension F∞ := F ·Q∞ over F is called cyclotomic Zp-extension. Iwasawa
conjectured that for such extensions the µ-invariant is always zero9. This general conjecture
is still open, but B. Ferrero and L. Washington in [FW79] proved it for F/Q being an abelian
extension and later W. Sinnott in [Sin84] found another proof of this result by di�erent methods.

In [Iwa64], Iwasawa went on to study the structure of class groups of Fn := Q(ζpn). He
de�ned

θ(i)
n =

−1

pn+1

pn+1∑
a=1

aω−i(a) 〈σa〉−1 and θ(i) := lim←−
n

θ(i)
n ∈ Λ = Zp[[Γ]], (12)

where σa ∈ Gal(Fn/Q) is determined by σa(ζpn+1) = ζapn+1 , 〈σa〉 is the projection to Gal(Fn/F )

in the decomposition Gal(Fn/Q) = ∆×Gal(Fn/F ) and ω−i(a) is determined by the projection
of σa to ∆, regarding ω−i as character of that group. It follows from Stickelberger's theorem
that θ(i)

n annihilates Aω
i

n . Iwasawa proved, under a cyclicity hypothesis, that for i odd and
3 ≤ i ≤ p− 2, we have

Xωi ∼= Λ/(θ(i)) as Λ-modules. (13)

For the proof we identify Λ with Zp[[T ]] and therefore θ(i) with a power series gi(T ). Moreover, we
set fi(T ) := f

Xωi (T ). As θ(i) annihilates Xωi , we have gi(T ) ∈ (fi(T )). Now it remains to show
that fi(T )/gi(T ) ∈ Λ×, which Iwasawa did under the above-mentioned cyclicity hypothesis. With
the help of some computations with Iwasawa invariants one can reduce proving (fi(T )) = (gi(T ))
to show that gi(T ) | fi(T ) even without the cyclicity hypothesis, which Iwasawa did in Chapter 7
in [Iwa72].

Let κ be the restriction of the cyclotomic character to Γ and de�ne for s ∈ Zp a continuous
homomorphism κs by κ(γ)s for γ ∈ Γ and then extend it to a continuous Zp-algebra homomor-
phism ϕs : Λ→ Zp. Then Iwasawa proved in [Iwa69] that for j even with 2 ≤ j ≤ p− 3 we have
Lp(s, ω

j) = ϕs(θ
(i)) for all s ∈ Zp. Or, equivalently, gi(T ) satis�es the following interpolation

property:

gi(κ(γ0)1−m − 1) = −(1− pm−1)
1

m
Bm (14)

8This section is based on [Gre01] and we again assume that p is an odd prime.
9Meaning X corresponding to F∞/F has µ-invariant zero.
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for all m ≥ 1 such that m ≡ j mod (p − 1), where γ0 is a generator of Γ. We see that the
interpolation property determines gi(T ) uniquely. Now we can state a version of the Iwasawa
Main Conjecture, abbreviated by IMC, for cyclotomic �elds: For each i odd, 3 ≤ i ≤ p − 3 we
have

(fi(T )) = (gi(T )) as ideals of Λ. (15)

Let ġi(T ) := gi(κ(γ0)(1 + T )−1 − 1), Un denote the group of units in the completion (Fn)pn ,
where pn is the unique prime of Fn above p, and En resp. Cn the closure of the units En resp.
cyclotomic units10 Cn of Fn in Un. Then we can set X := lim←−En/Cn, Y := lim←−Un/Cn and

Z := lim←−Un/En and Iwasawa showed that there is an exact sequence

0→ X ωj → Yωj → Zωj → 0 (16)

of �nitely generated torsion Λ-modules and that for even j, 2 ≤ j ≤ p − 3, there is an Λ-
isomorphism

Yωj ∼= Λ/(ġi(T )), where i+ j ≡ 1 mod (p− 1). (17)

One can give another formulation of the IMC, namely that for even j, 2 ≤ j ≤ p − 3, the
characteristic ideals of Xωj and X ωj are equal.

Going beyond Iwasawa. The Iwasawa Main Conjecture can also be stated in a more general
setting where F is a �nite abelian extension of Q or a totally real �eld and F∞ = FQ∞.
The necessary p-adic L-functions were constructed by P. Deligne and K. Ribet in [DR80] using
Hilbert modular forms and by D. Barsky in [Bar78] and P. Cassou-Noguès in [CN79] using
explicit formulas of T. Shintani (1943-1980).

In 1976 [Rib76], Ribet proved the converse of Herbrand's theorem mentioned above, namely
that for 2 ≤ i, j ≤ p−2, i odd and i+j ≡ 1 mod (p−1) it holds: If p | Bj then Gal(L0/F0)ω

i 6= 0.
Building on ideas of the proof of Ribet the IMC for cyclotomic �elds was proven by B. Mazur
and A. Wiles in [MW84] and the IMC for totally real base �elds was proved by Wiles in [Wil90]
using the theory of modular forms.11

Elliptic curves and the conjecture of Birch and Swinnerton-Dyer. There is a point of
view of number-theoretic problems we have not mentioned yet: the geometric perspective. We
will mainly focus on elliptic curves here, which are implicitly already contained in the work of
Diophantus.

A modern de�nition of an elliptic curve over a number �eld K would read: E is a projective
curve of genus 1 with a speci�c base point on the curve. We denote by E(K) the set of points
over K. It turns out that this is an abelian group and H. Poincaré (1854-1912) in [Poi01] de�ned
the rank of E(K) as the minimal number of generators of E(Q), which was not known to be
�nite at that time. This was only shown 20 years later in [Mor22] by L. Mordell (1888-1972)
and then extended and simpli�ed by Weil: For an elliptic curve E over K, E(K) is a �nitely
generated abelian group, i.e. E(K) ∼= Zr⊕E(K)tors, where E(K)tors is a �nite abelian group.12

So we have a well-de�ned rank r of E.
Let ∆ be the discriminant of the elliptic curve and de�ne the integer ap by the equation

|E(Fp)| = p+ 1− ap, where E(Fp) is the number of solutions of the de�ning equation of E in Fp
10For n 6≡ 2 mod 4 let VQ(ζn) be the multiplicative group generated by {±ζn, 1− ζan : 1 ≤ a ≤ n− 1}, then the

cyclotomic units of Q(ζn) are CQ(ζn) := VQ(ζn) ∩ O×Q(ζn).
11The approach uses 2-dimensional p-adic representations associated to Hilbert modular forms.
12Weil extended this result also to abelian varieties.
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plus the origin. Then we can de�ne an incomplete Hasse-Weil L-function for an elliptic curve
E/Q by setting

L(E, s) :=
∏
p-2∆

(1− app−s + p1−2s)−1, (18)

where the product converges for the real part at least 3/2. H. Hasse (1898-1979) conjectured
that as a complex function in s it has a holomorphic continuation to C. This was only shown
as a consequence of the modularity theorem proved by C. Breuil, B. Conrad, F. Diamond and
R. Taylor in [BCDT01].13 Now the conjecture of B. Birch and P. Swinnerton-Dyer (BSD con-
jecture)14 based on [BSD63] and [BSD65] predicts that the Taylor expansion of L(E, s) at s = 1
has the form

L(E, s) = c(s− 1)r + higher order terms, with c 6= 0 and r = rank(E(Q)), (19)

which can be shortly stated as ords=1(L(E, s)) = rankZ(E(Q)). Now we can compare this to
the Dedekind ζ-function, where we have ords=0(ζK(s)) = rankZ(O×K). In [Tat68], J. Tate stated
the rank-BSD conjecture in the more general setting of abelian varieties over a number �eld
K, where it says that the rank of the group of K-rational points of an abelian variety A is the
order of the zero of an incomplete L-function at s = 1. This statement uses a generalization of
the Hasse-Weil L-function given by Serre [Ser65] or A. Grothendieck (1928-2014), where each of
them de�nes an L-function for arithmetic schemes15. We want to focus on the special case of an
elliptic curve over Q on a more re�ned conjecture given also in [Tat68].

In order to do that, one has to de�ne Euler product factors for so-called bad primes, which
are those dividing 2∆. Although we skip a description of them here, we assume that from now
on L(E, s) is a complete Hasse-Weil L-function over E/Q. As we have seen above, Dedekind was
not only able to compute the order of the zero at s = 0, but also gave a description of the leading
term of the Taylor expansion at s = 1 in terms of arithmetic invariants (cf. Equation (4)). Now
in our special case, Tate's conjecture mentioned above, which can be seen as a re�nement of the
BSD conjecture, predicts that the leading term L∗(E, 1) of the complete Hasse-Weil L-function
E/Q is:

L∗(E, 1) =
ΩE ·RE ·#(X(E/Q)) ·

∏
p|∆ cE,p

#(E(Q)tors)2
(20)

where ΩE is the period Ω =
∫
E(R)

dx
|2y+a1+a3| ∈ R for the normal form16 of E, cE,p are small

positive integers that measure the reduction of E at p, the regulator RE measures the complexity
of a minimal set of generators of E(Q), and X(E/Q) measures the failure of the Hasse principle.
In order to have a well-de�ned conjecture one has to assume that X(E/Q) is a �nite group.

We also want to de�ne an important class of elliptic curves: For an elliptic curve over C the
endomorphism ring End(E) can now either be isomorphic to Z or an order O in an imaginary
quadratic number �eld k. If End(E) ∼= O, we say that E has complex multiplication.

Why imaginary quadratic number �elds? It is not hard to understand why 19th century
mathematicians like Gauss, Kummer and Kronecker were drawn especially to the theory of
cyclotomic �elds. The beauty and simplicity of the results those mathematicians could obtain
for cyclotomic �elds is today as mesmerizing as it was then. But the theory served also as a

13For an important class of elliptic curves, the elliptic curves with complex multiplication, which we will discuss
below, this was already known beforehand.

14This is sometimes also called rank part of the BSD conjecture or weak BSD conjecture.
15 a scheme of �nite type over Z
16i.e. E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
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blueprint of what could be true in other situations. We have already mentioned that Gauss
foresaw the theory of complex multiplication by extrapolating from what he knew about the
cyclotomic theory and 'Kronecker's Jugendtraum' also falls in this category. These two instances
are evidence for the notion that looking at abelian extensions of imaginary quadratic number
�elds is the obvious next thing to do after proving a result for cyclotomic �elds. But one might
ask why. The most compelling reason is simply that it often works as we will see again below.

Elliptic units. So we want to look at another success story of this principle. There is the
classical result (e.g. Theorem 4.9 in [Was97]) that for an even non-trivial Dirichlet character χ
with conductor f we have

L(1, χ) =
−τ(χ)

f

f∑
a=1

χ(a) log |1− ζaf |, (21)

where τ(χ) is a Gauss sum. What is the corresponding result in the case of abelian extensions
of imaginary quadratic number �elds? After preliminary results of Fueter in [Fue10], a complete
answer was given by C. Meyer (1919-2011) in [Mey57], as he succeeded in expressing L(1, χ) for
primitive ray/ring class characters.17 The main ingredient in the computations are the Kronecker
limit formulas, of which one instance is already mentioned in (5).

Probably a better known reference for these results are the lecture notes of C.L. Siegel (1869-
1981) ([Sie65]), where he wanted to introduce the students to 'some of the important and beautiful
ideas which were developed by L. Kronecker and E. Hecke'. They contain an explicit description
of the value of L(1, χ) in the imaginary quadratic case as well as many other results, e.g. for
abelian extensions of real quadratic �elds, where Hecke did some pioneering work. Based on
the content of these lectures K. Ramachandra (1933-2011) in [Ram64] constructed what is now
called Ramachandra invariants, which he used to express also the value of L(1, χ) using again
Kronecker's limit formulas as main input in the proof. He did even more: he showed that his
invariants are algebraic, described when they are units and determined their Galois action. He
also used them to construct a subgroup of the global unit group of a class �eld with �nite index
which he could give explicitly in terms of the class numbers of the class �eld and the base �eld
and some other arithmetic invariants.

In [Rob73], G. Robert picked up the topic again and constructed, with the same classical
modular functions, the invariants for each element of the ray class group Cl(f), which he called
elliptic units. He showed their relation to the Ramachandra invariants and that they satisfy
similar properties. With these units he also constructed a subgroup of �nite index of O×k(f) and
computed this index.

BSD conjecture and elliptic units. Although these are certainly interesting results on their
own, they seem to help solving only a very particular problem. This changed when J. Coates and
Wiles in [CW77] established a link between the BSD conjecture and elliptic units as de�ned by
Robert. They showed that if an elliptic curve E/F has complex multiplication by Ok, where k is
imaginary quadratic with class number one, we have: E(F ) is in�nite implies that L(E/F, 1) = 0
if F = Q or F = k. The problem can be reduced to showing that a certain number L∗(1) (treated
as an 'elliptic Bernoulli number') is divisible by in�nitely many prime ideals p of k. In order to
do that they showed that L∗(1) is divisible by a prime of degree 1 if and only if p is irregular in
an appropriate sense. This notion of irregularity arises from local properties of the elliptic units
of Robert.

17Meyer also obtained similar results for abelian extensions of real quadratic number �elds in [Mey57].
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In giving analogues of theorems of Iwasawa theory in cyclotomic �elds elliptic units are also
recognized as being useful. In [CW78], Coates and Wiles gave an elliptic analogue of a result of
Iwasawa which described the quotient of local units modulo cyclotomic units in terms of p-adic
L-functions (cf. (17)): Let k be an imaginary quadratic number �eld with class number one,
and E an elliptic curve over k with CM by Ok, ψ a Gröÿencharacter of E over k, pOk = pp with
p 6= p and p is not anomalous for E and not in a certain set S. Then for (p− 1) - i we have

lim←−
n

(Un/Cn)(i) ∼= Zp[[T ]]/(Gi(T )), (22)

where we �rst have to introduce some notation in order to understand this theorem: Gi(T ) is a
power series related to the Hecke L-series for ψ. For the de�nition of Un we �x one of the prime
factors p, a uniformizer π coming from p via the Gröÿencharacter, let Eπn+1 be the kernel of the
endomorphism of πn+1 and set Fn := k(Eπn+1). Then p is totally rami�ed in Fn and we denote
the unique prime ideal above p by pn, so we can de�ne Un as the local units of the completion of
Fn at pn which are congruent to 1 mod pn. Cn is the closure of Robert's group of elliptic units
Cn in Un with respect to the pn-adic topology and (Un/Cn)(i) denotes the eigenspace of Un/Cn
on which Gal(F0/k) acts via χi, where χ is the canonical character of Gal(F0/k) on Eπ.

Prelude to Euler Systems. Usually the main desire of a mathematician is to prove new
results. But often �nding a di�erent proof of a known theorem can also induce striking develop-
ments. One instance of this is certainly the proof of F. Thaine [Tha88] of a result which could
also be deduced from the IMC for cyclotomic �elds proved by Mazur-Wiles in [MW84]. The
result we are talking about is the following: Let F be a real abelian extension of Q of degree
prime to p and G := Gal(F/Q). Let E be the group of global units of F , C be the subgroup
of cyclotomic units, and A be the p-Sylow subgroup of the ideal class group of F . If θ ∈ Z[G]
annihilates the p-Sylow subgroup of E/C, then 2θ annihilates A. The method of Thaine used
to prove this theorem was also independently found by V. Kolyvagin [Kol88], who applied it at
�rst when studying Selmer groups of modular elliptic curves using Heegner points.

Already in 1987 a paper of K. Rubin ([Rub87a]) was published which contained an extension
of the method of Thaine to the case of abelian extensions of imaginary quadratic number �elds.
Now cyclotomic units were replaced with elliptic units and there was the additional condition
that the abelian extension F of the imaginary quadratic number �eld k had to contain the Hilbert
class �eld of k. In fact, Rubin de�ned special units of F and used them to construct elements
of Z[Gal(F/K)] which annihilate certain subquotients of the ideal class group of F . Cyclotomic
units and elliptic units are examples of such special units.

Why do we care about the method of proof for these annihilation results? Because now an
almost magical thing happens: Most of the things discussed so far suddenly �t together. Rubin
in [Rub87b] used the techniques developed in [CW77] and [CW78] to obtain results for the BSD
conjecture and the ideal class annihilators arising from elliptic units to prove the following: For an
elliptic curve E over an imaginary quadratic number �eld k he proved that the Tate-Shafarevich
group under certain conditions is �nite or the p-part is trivial and that for an elliptic curve over
Q with CM it holds: If rankZ(E(Q)) ≥ 2, then ords=1L(E, s) ≥ 2.

One-variable main conjecture. At this point nobody will be surprised to �nd out that there
is also a generalization of the IMC for cyclotomic �elds to abelian extensions over an imaginary
quadratic number �eld k.18 Let M∞ be the maximal abelian p-extension of F∞ :=

⋃
n Fn which

is unrami�ed outside the primes above p and Y := Gal(M∞/F∞), with Y (i) the eigenspace of Y

18We resume here the notation of BSD conjecture and elliptic units.
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on which Gal(F0/k) acts via χi. For split primes in k it was already mentioned in [CW78] that
for (p− 1) - i the assertion

Y (i) and lim←−
n

(Un/Cn)(i) have the same characteristic ideal, (23)

could be true, later called one-variable main conjecture, and that the case i ≡ 1 mod (p − 1)
would 'have deep consequences for the study of the arithmetic of elliptic curves'. It is also worth
recalling (13) and (17) for cyclotomic �elds at this point. This conjecture, (23), was proved by
Rubin, under some hypotheses, in [Rub91] by controlling the size of certain class groups and
using the techniques described above. Also for non-split primes, a formulation of the conjecture
was given and proved under more restrictive hypotheses. These results again had applications
to the arithmetic of elliptic curves with CM, i.e. results surrounding the BSD conjecture.

Introduction of Euler Systems. So the main input to all these new results is the ability
to give an upper bound to the size of ideal classes of cyclotomic �elds and Selmer groups of
certain elliptic curves. An Euler system was then de�ned in [Kol90] as a collection of certain
Galois cohomology classes satisfying conditions like a norm compatibility. The cyclotomic units,
elliptic units and Heegner points mentioned above are all examples of such an Euler system.
After preliminary work of Kolyvagin in [Kol90], Rubin in [Rub00], as well as K. Kato and
B. Perrin-Riou independently developed then an abstract cohomological machinery which uses
an axiomatically de�ned Euler system as an input and produces upper bounds for the sizes of
appropriate Selmer groups as an output.

Coleman power series and applications. Picking up on a technique introduced in Theo-
rem 5 in [CW78] and [Wil78], Coleman showed in [Col79] the following: Let K be a local �eld
with local parameter π, H be a complete unrami�ed extension, F a Lubin-Tate formal group,Wn

the n-division values and Hn := H(Wn). Then for each α ∈ Hn there exists an fα ∈ OH((T ))×

such that ϕifα(ωn) = Nn,i(α), where ωn is a generator of Wn as an OK-module, Nn,i : Hn → Hi

the norm, and ϕ the Frobenius for H over K. Such a series for a norm-coherent sequence (αn)n
satis�es a uniqueness property and is called a Coleman power series.

In [dS87], E. deShalit generalized Lubin-Tate theory and the theory of Coleman power series
to relative extensions in the context of abelian extensions of an imaginary quadratic �eld. He
used these theories to construct p-adic L-functions and proved a functional equation and an
analogue of 'Kronecker's second limit formula' for these p-adic L-functions. Then he applied his
results to the one-variable main conjecture and the BSD conjecture.

Inspired by [Tha88], D. Solomon in [Sol92] constructed cyclotomic p-units and computed
their valuation using the theory of Coleman power series. He applied this result to a 'weak
analogue' of Stickelberger's theorem for real abelian �elds.

In the meantime there had also been some new developments in the basic theory of elliptic
units. Robert succeeded in constructing a function ψ that is a twelfth root of the function ϕ,
which is used to de�ne elliptic units. Now using elliptic units de�ned via this function ψ and
the theory of Coleman series for relative Lubin-Tate extensions W. Bley constructed in [Ble04]
elliptic p-units and computed their valuation in the situation for split primes, under certain
hypotheses, in analogy to the result of Solomon.

Stark's conjecture. As we have seen so far, Gauss's D.A. had a major in�uence on the
algebraic number theory of the 19th century. It was possible to embed large parts of his results
into a more general framework. One of the more elusive questions coming from D.A. was certainly
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the class number one problem, namely the question of how many quadratic number �elds have
class number one. For imaginary quadratic number �elds Gauss already suspected he had a
complete list of them.

In the 1960s H. Stark gave the �rst accepted proof ([Sta67]) of this fact and based on the
methods used he had the idea that it maybe was possible to evaluate a general Artin L-function
at s = 1. He later realized that looking at s = 0 is simpler and tried to �nd a theoretical
description of L′(0, χ) for an L-function with a �rst order zero at s = 0 with the help of numerical
computations. In 1970, he published his �rst 'very vague conjectures' which were later tersely
presented by Tate (in [Tat84]) giving a Galois-equivariant conjectural link between the values
at s = 0 of the �rst non-vanishing derivative of the S-imprimitive Artin L-function LK/k,S(s, χ)
associated to a Galois extension of number �eldsK/k and certain Q[Gal(K/k)]-module invariants
of the group US of S-units in K, where S is a set of places of K satisfying certain conditions.
Siegel and Ramachandra proved the instances of the conjecture for imaginary quadratic number
�elds via complex multiplication and the applications of the Kronecker limit formulas.

Now building on the work of Siegel and Ramachandra, Stark developed an integral re�nement
of his conjecture for abelian extensions K/k and abelian S-imprimitive L-functions with order
at most 1 at s = 0 and under additional hypothesis on S: There exists a special v-unit ε, called
Stark unit, such that

L′K/k,S(0, χ) =
−1

wK

∑
σ∈G

χ(σ) log |εσ|w for each character χ of G, (24)

where v is a prime which splits completely in K and w a place above v. Stark proved the cases
of k = Q or k imaginary quadratic in [Sta80]. It has to be noted that a proof of the integral
re�nement would have far reaching applications to Hilbert's 12th problem and already in the
1980's B. Gross ([Gro81], [Gro88]) developed a re�nement of Stark's integral conjecture.

Rubin-Stark conjecture and beyond. Finding Euler systems is generally a di�cult task,
so it is quite remarkable that Stark's integral conjecture is a source for them. Motivated by this
observation Rubin generalized Stark's integral conjecture to the case of abelian extensions of
number �eldsK/k and their S-imprimitive L-functions of order r ≥ 0 under certain conditions on
S. This conjecture is now called the Rubin-Stark conjecture. A conjectural Gross-type re�nement
of Rubin-Stark conjecture was also found by work of Tate, Gross, D. Burns, C. Greither and
C. Popescu. This has led to a Gross-Rubin-Stark conjecture, which implies the Rubin-Stark
conjecture and Gross conjectures and predicts a subtle link between special values of derivatives
of global and p-adic L-functions.

Inspired by work of Gross in [Gro88], H. Darmon in [Dar95] formulated a re�ned class num-
ber formula which relates cyclotomic units to certain algebraic regulators in a very particular
situation. After proving the non-2-part of this conjecture using Kolyvagin systems, which were
developed from Euler systems, in [MR16] Mazur and Rubin generalized Darmon's conjecture and
proved certain cases of it. The same conjecture was independently found by T. Sano and so is
known as Mazur-Rubin-Sano conjecture.

Deligne's and Beilinson's conjecture(s). One of the main themes so far is the interpretation
of values of L-series at integers by arithmetical objects. A conjecture of Deligne in [Del79] brings
some order to several results presented so far. He conjecturally describes the irrational part of
the L-values as determinants of a matrix whose coe�cients are up to factor of 2πi periods at a
'critical integer' for di�erent L-functions.
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In a more abstract setting Beilinson's conjectures ([Bei84]) link the leading coe�cients at
integral arguments of L-functions of algebraic varieties over number �elds to the global arith-
metical geometry of these varieties. In particular, the leading term should be equal to a value
related to a certain regulator up to a rational factor. This should be compared to the leading
term of the Dedekind zeta function at s = 0 and the covolume of the image of the Dirichlet
regulator map. Beilinson's conjectures also deal with the orders of vanishing of quite general
L-functions and regulators using the rank and the covolume of motivic cohomology in a very
abstract setting.

Tamagawa Number Conjecture and its equivariant re�nements. If one would have to
summarize most of the number theory presented so far, one way of doing it would be to say that
L-functions are related to arithmetic invariants. Prominent instances of the phenomenon we
have seen so far are the analytic class number formula (4), the re�nement of the BSD conjecture
(20) or the Iwasawa Main Conjecture (15).

Although we are far away from fully understanding all these results and conjectures there is
an incessant quest for a conjectural framework in a more general setting probably driven by a
popular view in mathematics that everything is as we expect it to be. We already encountered the
conjectures of Beilinson and Deligne which express the values at integer points of L-functions
of smooth projective varieties over number �elds in terms of periods and regulator integrals.
But these conjectures only determine the special values of the L-functions up to a non-zero
rational number. The logical next step was done by S. Bloch and Kato in [BK90], in which they
generalized the re�nement of the BSD conjecture to L-functions for arbitrary smooth projective
varieties over number �elds. They were therefore removing the Q× ambiguity, which culminated
in a conjecture now known as Tamagawa Number Conjecture (TNC) or Bloch-Kato conjecture
for special values of L-functions. It is rather unsurprising that the �rst partial results Bloch and
Kato showed concern the Riemann zeta function, e.g. they show the TNC up to a power of 2 for
the Tate motive Q(r) and r even as well as the elliptic curves with complex multiplication since
these are the classic test cases for conjectures in arithmetic geometry.

Kato in [Kat93a] re�ned the theory by de�ning for a variety X over a number �eld K
and a �nite abelian extension L/K the Gal(L/K) 3 σ-part of the corresponding L-function and
relating special values of such partial L-functions to the Gal(L/K)-module structure on the étale
cohomology of Spec(OL) with coe�cients in an étale sheaf coming from X. For the situation
K = Q, X = Q(r) and L being a cyclotomic extension of Q it can be shown that this conjecture
is equivalent to the IMC for cyclotomic �elds. So Bloch and Kato described the value at zero
of L-functions attached to motives with negative weight. By using perfect complexes and their
determinants Kato and, independently, J.M. Fontaine (1944-2019) and Perrin-Riou ([FPR94],
[Fon92]) also took into account the action of the variety under consideration. This approach via
perfect complexes was then used by Burns and M. Flach in [BF96] to de�ne invariants which
measure the Galois module structure of the various cohomology groups arising from a motive M
over a number �eld, which admits the action of a �nite abelian Galois group. At the end of the
1996 paper they gave a formulation of the equivariant Tamagawa Number Conjecture (eTNC)
with abelian coe�cients, which is Conjecture 4 in [BF96]. In [BF01] Burns and Flach also gave a
formulation of the eTNC with non-commutative coe�cients and the work of Kato from [Kat93b]
on p-adic zeta functions was also generalized, e.g. by T. Fukaya and Kato [FK06], who dealt
with the non-abelian situation, too.

The abelian number �elds case. So we now have surveyed a massive conjectural framework
but learned few about results so far except the testing cases around which the general conjectures
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are built. But there are some proven instances of the eTNC, the most prominent one being the
case of Tate motives of weight ≤ 0 for abelian extensions over Q, i.e. the cyclotomic case proved
by Burns and Greither in [BG03] (and independently by A. Huber/G. Kings in [HK03] plus
work of M. Witte in [Wit06]). This result can, in a way, be seen as a (probably tentative) peak
of the study of cyclotomic �elds initiated by Gauss in D.A. approximately 200 years ago. The
beauty of this result lies in the fact that it uses a lot of knowledge about cyclotomic �elds we
have collected over the years. First of all, one can use the Theorem of Kronecker-Weber to
reduce to cyclotomic �elds and Stark's conjecture for the rationality part of the conjecture. It
used the computation of the evaluation of the Dirichlet L-function at s = 1, and the functional
equation to get the leading term at s = 0. The conjecture for a cyclotomic Iwasawa tower is
then proved by using the IMC for cyclotomic �elds, the vanishing of the µ-invariant for abelian
extensions over Q and a reduction to the localization at height one prime ideals of an Iwasawa
algebra. From this result one descents to the �nite level of interest with techniques described by
J. Neková°. This descent procedure is quite delicate and uses the result of Solomon on cyclotomic
p-units mentioned above as well as a result of Ferrero and R. Greenberg ([FG79]) on the �rst
derivative of a p-adic L-function. Maybe the best way of describing the proof of this result is
due to Neková° who wrote at the end of his review of the paper: 'This is what Iwasawa theory
should look like in the new millennium!'.

eTNC implies ... What makes the eTNC such a grand conjecture is that it subsumes a lot
of independently developed conjectures in algebraic number theory. For the motive M = Q(r)
it implies or generalizes Stark's conjecture [Tat84], the Rubin-Stark conjecture [Rub96] and
its re�nements, Popescu's conjecture in [Pop02], the Mazur-Rubin-Sano conjecture of [MR16]
and [BKS16], the strong Stark conjecture of Chinburg from [Chi83], the 'Ω(3)' conjecture of
T. Chinburg from [Chi83] and [Chi85], the Lifted Root Number Conjecture of K. Gruenberg
(1928-2007), J. Ritter and A. Weiss [GRW99], and many more. Proofs for this implications can
be found in for example in [Bur10], [Bur07], [BKS16]. It certainly also generalizes the analytic
class number formula as alluded above and for M = h1(E)(1), the twisted motive associated
to an elliptic curve E, the eTNC (in fact already the TNC) implies the re�nement of the BSD
conjecture. A proof of this is given in [Kin11]. The list given is only focussing on results discussed
above or very near to them by plugging in two classical motives with abelian coe�cients. So one
may assume this is only the tip of the iceberg.
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