

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2018/19 25. November 2018

Prof. Dr. Werner Bley Martin Hofer

Algebra – Lösungsskizzen zu Übungsblatt 3

Aufgabe 1 (5 Punkte).

a) Wir wollen zeigen, dass gilt:

$$|\{x^2 \mid x \in \mathbb{F}_q\}| = \frac{q+1}{2}.$$

Dazu betrachten wir die Abbildung

$$\mathbb{F}_q^{\times} \longrightarrow \left(\mathbb{F}_q^{\times}\right)^2$$
$$x \longmapsto x^2.$$

Man kann schnell einsehen, dass diese Abbildung ein Epimorphismus mit Kern $\{\pm 1\}$ ist. Mit dem ersten Isomorphiesatz folgt dann $|\left(\mathbb{F}_q^{\times}\right)^2|=\frac{q-1}{2}$, also gilt

$$|\mathbb{F}_q^2| = \frac{q-1}{2} + 1 = \frac{q+1}{2}.$$

b) Sei $\alpha \in \mathbb{F}_q$. Wir wollen zeigen, dass es $x,y \in \mathbb{F}_q$ gibt, so dass $x^2 + y^2 = \alpha$ bzw. $x^2 = \alpha - y^2$. Mit Teilaufgabe a) sehen wir aber, dass

$$\{x^2 \mid x \in \mathbb{F}_q\} \cap \{\alpha - y^2 \mid y \in \mathbb{F}_q\} \neq \emptyset$$

gelten muss, also gibt es passende x und y in \mathbb{F}_q .

Aufgabe 2 (10 Punkte).

a)

$$G$$
 abelsch \Leftrightarrow $ab = ba \ \forall a, b \in G$
 \Leftrightarrow $aba^{-1}b^{-1} = 1 \ \forall a, b \in G$
 \Leftrightarrow $[a,b] = 1 \ \forall a, b \in G$
 \Leftrightarrow $G' = 1$

- b) Sei $G' \subset U \leq G$ und $u \in U$. Dann gilt: $gug^{-1} = gug^{-1}u^{-1}u = [g,u]u \in U$, wegen $[g,u] \in U$, da $G' \subset U$. Daher $gug^{-1} \in U$, $\forall u \in U$, $g \in G$. Also $U \leq G$.
- c) Sei $N \triangleleft G$.
 - i) " \Rightarrow ": G/N abelsch, daher $abN = aN \cdot bN = bN \cdot aN = baN \implies a^{-1}b^{-1}abN \subseteq N \implies a^{-1}b^{-1}ab \in N \implies G' \subseteq N$

- ii) " \Leftarrow ": $G' \subset N$: $aN \cdot bN = abN = ab[b^{-1}, a^{-1}]N = abb^{-1}a^{-1}baN = baN = bN \cdot aN$, daher G/N abelsch.
- d) Zuerst zeigen wir $S'_n = A_n$: Da $S_n/A_n \simeq \{\pm 1\}$ abelsch ist, folgt mit der vorigen Teilaufgabe $S'_n \subset A_n$. Umgekehrt wird die A_n durch Dreizyklen erzeugt. Sei $\sigma = (abc) = (ab)(bc) \in A_n$. Dann ist $\sigma^2 = (ab)(bc)(ab)(bc) \in S'_n$ und die Behauptung folgt aus $\sigma = \sigma^4 \in S'_n$.

Nun wollen wir A'_n berechnen für n=2,3 und 4. Für n=2,3 ist aber A_n offensichtlich abelsch (Ordnung 1 bzw. 3) und somit gilt ist der Kommutator trivial. Als letztes wollen wir zeigen, dass gilt $A'_4 = V_4$. Da der Kommutator A'_4 der kleinste Normalteiler in A_4 ist mit abelscher Faktorgruppe und da A_4/V_4 abelsch ist (Ordnung 3), muss gelten $A'_4 \subset V_4$. Anderseits hat man für paarweise verschiedene Elemente $x_1, \ldots, x_4 \in \{1, 2, 3, 4\}$ die Gleichung

$$(x_1, x_2)(x_3, x_4) = (x_1, x_2, x_3)(x_1, x_2, x_4)(x_1, x_2, x_3)^{-1}(x_1, x_2, x_4)^{-1},$$

welche besagt, dass $V_4 = \{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ in $[A_4, A_4]$ enthalten ist.

Aufgabe 3 (9 Punkte).

a) Wir wollen zeigen: $N_G(H) \le G$. Das neutrale Element e ist offensichtlich in $N_G(H)$. Wir nehmen nun ein $x \in N_G(H)$. Dann folgt, dass xH = Hx gilt, also $x^{-1}(xH) = x^{-1}(Hx)$. Damit bekommen wir $H = (x^{-1}H)x$ und somit $Hx^{-1} = x^{-1}H$. Seien $a, x \in N_H(G)$. Dann gilt:

$$(ax^{-1})H = a(x^{-1}H) = a(Hx^{-1}) = (aH)x^{-1} = Hax^{-1},$$

insgesamt ist $N_G(H)$ also eine Untergruppe von G.

- b) Es ist trivial zu sehen, dass H ein Normalteiler von $N_G(H)$ ist. Wenn man nun annimmt, es gibt ein $N_G(H) \subseteq U$ mit $H \triangleleft U$ sieht man aus den Definitionen, dass $N_G(H) = U$ gelten muss.
- c) Man kann zeigen, dass H genau dann ein Normalteiler von G ist, wenn $N_G(H)=G$ gilt. Jetzt kann man sich eine einfache Gruppe ansehen, zum Beispiel die A_5 und man sieht sofort, dass das Normalisator im Allgemeinen kein Normalteiler von G ist.
- d) Dazu betrachten wir die Wirkung von G auf die Menge der Untergruppen von G durch Konjugation. Dann sehen wir, dass eine Bahn für $U \leq G$ genau $\{gUg^{-1} \mid g \in G\}$ ist und der Stabilisator von U der Normalisator $N_G(U)$. Aus einem Resultat der Vorlesung erhalten wir nun, dass $G/N_G(U)$ in Bijektion zur Menge $\{gUg^{-1} \mid g \in G\}$ steht. Zudem gilt nach Voraussetzung $[G:U] < \infty$ und da auch $U \leq N_G(U) \leq G$ gilt, folgt, dass die Menge $\{gUg^{-1} \mid g \in G\}$ auch endlich sein muss.

Aufgabe 4 (5 Punkte).

a) Wir betrachten die Determinantenabbildung

$$Det: GL_n(K) \to K^{\times}$$
$$M \mapsto Det(M),$$

und wir wissen, dass dies ein Epiomorphismus ist. Zudem wissen wir das der Kern eines Homomorphimus ein Normalteiler ist und wir nennen ihn $SL_n(K)$. Mit dem ersten Isomorphisatz folgt nun, dass $GL_n(K)/SL_n(K) \cong K^{\times}$ und daraus folgt sofort die Aussage.

b) Wir zeigen dies indem wir zeigen, dass

$$\{id\} \triangleleft V_4 \triangleleft A_4 \triangleleft S_4$$

eine Normalreihe mit abelschen Faktoren ist. Untergruppen mit Index 2 sind immer Normalteiler und $\{id\} \triangleleft V_4$ ist klar. Zudem kann man nachrechnen, dass $V_4 \triangleleft A_4$ gilt. Alle Faktoren sind auch abelsch da nur die Ordnungen 2, 3 und 4 vorkommen. Somit ist S_4 auflösbar.