

Martin Hofer

MATHEMATISCHES INSTITUT

Wintersemester 2018/19 11. Januar 2019

Algebra Übungsblatt 10

Definition 1 Sei $f \in K[X]$ ein nicht-konstantes Polynom. Ein Erweiterungskörper L von K heißt Zerfällungskörper (über K) von f, wenn gilt:

- i) Das Polynom f zerfällt in L vollständig in Linearfaktoren.
- ii) Die Körpererweiterung L/K wird von den Nullstellen von f erzeugt.

Aufgabe 1 (6 Punkte).

Gegeben sei das Polynom $f = X^4 - 3 \in \mathbb{Q}[X]$.

- a) Beweisen Sie, dass $\mathbb{Q}(\sqrt[4]{3},i)$ der Zerfällungskörper von f ist.
- b) Bestimmen Sie den Grad der Körpererweiterung L über Q.
- c) Beweisen Sie: $a = \sqrt[4]{3} + i$ ist ein primitives Element von L über Q.

Aufgabe 2 (6 Punkte).

Sei K ein Körper und $f \in K[X]$ ein nichtkonstantes Polynom vom Grad n. Sei L ein Zerfällungskörper von f. Zeigen Sie:

- a) Der Grad [L:K] ist ein Teiler von n!.
- b) Gilt [L:K] = n!, so ist f irreduzibel.

Aufgabe 3 (6 Punkte).

Betrachten Sie $f(X) = X^6 - 7X^4 + 3X^2 + 3 \in K[X]$ mit

- a) $K = \mathbb{Q}$ bzw.
- b) $K = \mathbb{F}_{13}$.

Zerlegen Sie jeweils f in seine irreduziblen Faktoren und bestimmen Sie einen kleinsten Erweiterungskörper von K, über dem f vollständig in Linearfaktoren zerfällt (d.h. einen Zerfällungskörper von f).

Aufgabe 4 (6 Punkte).

Sei \overline{K} ein Körper und E_1 und E_2 zwei algebraisch abgeschlossene Erweiterungen von K. Sei \overline{K}_1 bzw. \overline{K}_2 der algebraische Abschluss von K in E_1 bzw. E_2 .

Sei $L \subseteq \overline{K}_1$ eine algebraische Erweiterung von K.

- a) Zeigen Sie, dass für jeden Körperhomomorphismus $\sigma:L\to E_1$ mit $\sigma_{|K}=\mathrm{id}_K$ (also ein K-Homomorphismus), das Bild $\sigma(L)$ in \overline{K}_1 enthalten ist.
- b) Zeigen Sie, dass die Anzahl der K-Körperhomomorphismen $\sigma:L\to E_1$ gleich der Anzahl der K-Körperhomomorphismen $\sigma:L\to E_2$ ist.