

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2018/19 25. Januar 2019

Prof. Dr. Werner Bley Martin Hofer

Algebra – Lösungsskizzen zum Ferienblatt

Aufgabe 1 (3 Punkte).

Sei p eine Primzahl, $|G| = p^n$, $N \triangleleft G$ und |N| = p.

Wir können folgenden Homomorphismus von Gruppen definieren:

$$\alpha: G \to \operatorname{Aut}(N)$$

 $g \mapsto (n \mapsto g^{-1}ng).$

Da |N| = p gilt, folgt $N \cong \mathbb{Z}/p\mathbb{Z}$, also auch $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ und somit $|\operatorname{Aut}(N)| = p - 1$.

Das Bild von α ist isomorph zu einem Quotienten von G also gilt $|\operatorname{im}(\alpha)| = p^m$; außerdem gilt $\operatorname{im}(\alpha) \leq \operatorname{Aut}(N)$. Also muss Bild von α trivial sein und α ist der triviale Gruppenhomomorphismus. Daraus folgt wieder um, dass für alle $g \in G$ und für alle $n \in N$ gilt gn = ng und somit gilt auch $N \subseteq Z(G)$, was zu zeigen war.

Aufgabe 2 (3 Punkte).

Aus den Sylowsätzen und den zugehörigen Korollaren wissen wir, dass für die Anzahl der 7-Sylowuntergruppen n_7 gilt: $n_7 \equiv 1 \pmod{7}$ und $n_7 \mid 24$. Daraus können wir folgern, dass $n_7 \in \{1,8\}$ gelten muss.

Der Fall $n_7 = 1$ ist aber nicht möglich, da die Gruppe in diesem Fall einen nicht-trivialen Normalteiler hätte (nämlich diese 7-Sylowgruppe), aber dies der Definition einer einfachen Gruppe widerspricht.

Also betrachten wir den Fall $n_7 = 8$. Jede 7-Sylowuntergruppe hat 6 Elemente der Ordnung 7 (zyklische Gruppe von Primordnung). Diese zyklischen Gruppen sind bis auf das neutrale Element disjunkt, denn ansonsten wären sie gleich. Also gibt es genau $8 \cdot 6 = 48$ Elemente der Ordnung 7.

Aufgabe 3 (3 Punkte).

- a) Eine Matrix ist genau dann invertierbar, wenn die Spaltenvektoren linear unabhängig sind. Für den ersten Vektor aus \mathbb{F}_p^2 haben wir p^2-1 Möglichkeiten (alle außer den Nullvektor). Der erste Vektor hat nun (p-1) nicht-triviale Vielfache. Das heißt für den zweiten Vektor gibt es $p^2-1-(p-1)=p^2-p$ Möglichkeiten. Also gibt es ingesamt $(p^2-1)(p^2-p)$ invertierbare 2×2 -Matrizen über \mathbb{F}_p .
- b) Die Menge der invertierbaren 2×2 -Matrizen $\mathfrak A$ mit Determinante t ist unabhängig von der Wahl der $t \in \mathbb F_p^{\times}$, da sie in 1-1 Beziehung mit der Menge der invertierbaren

 2×2 -Matrizen \mathfrak{B} mit Determinante 1 steht durch die Abbildung:

$$\mathfrak{B} o \mathfrak{A}$$

$$B \mapsto \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} B$$

$$\begin{pmatrix} t^{-1} & 0 \\ 0 & 1 \end{pmatrix} A \longleftrightarrow A.$$

Da aber $|\mathbb{F}_p^{\times}| = p-1$ gilt, gibt es $\frac{(p^2-1)(p^2-p)}{(p-1)}$ invertierbare 2×2 -Matrizen über \mathbb{F}_p mit Determinante $t \in \mathbb{F}_p^{\times}$.

Aufgabe 4 (3 Punkte).

Wir betrachten den nicht-trivialen Gruppenhomomorphismus $\varphi: A_n \to H$, wobei $n \geq 5$ und A_n die alternierende Gruppe ist. Es gilt also $\ker(\varphi) \lhd A_n$ und da wir aus der Vorlesung wissen, dass A_n für $n \geq 5$ einfach ist und der Homomorphismus nicht-trivial ist, folgt dass $\ker(\varphi) = \{0\}$ gilt, φ also injektiv ist. Somit gilt $|A_n| \mid |H|$. Die Ordnung von A_n ist aber n!/2, also $n \mid |A_n|$. Daraus folgt aber sofort $n \mid |H|$.

Aufgabe 5 (3 Punkte).

Wir wollen zeigen, dass alle Gruppen G der Ordnung $|G|=242=2\cdot 11^2$ auflösbar sind. Aus der Vorlesung wissen wir, dass für die Anzahl der 11-Sylowuntergruppen gilt: $n_{11}\equiv 1 \mod 11$ und $n_{11}\mid 2$. Also kann es nur eine 11-Sylowuntergruppe geben und diese ist somit ein Normalteiler. Da [G:N]=2, ist G/N abelsch und somit auch auflösbar. Andererseits ist auch N auflösbar, da $|N|=11^2$ und somit eine p-Gruppe ist. Also folgt mit Satz 1.6.2, dass G auflösbar ist.

Aufgabe 6 (2 Punkte).

Da 2 in $\mathbb Q$ eine Einheit ist, reicht es zu zeigen, dass $g:=x^4+3x^3+5x^2+7x+9$ irreduzibel über $\mathbb Q[x]$ ist. Wir reduzieren modulo 2 und erhalten $\bar g=x^4+x^3+x^2+x+1\in\mathbb F_2[x]$. Dies ist das Minimalpolynom der 5-ten Einheitswurzel also wissen wir aus der Vorlesung (5 ist eine Primzahl), dass dieses irreduzibel ist, also auch über $\mathbb F_2$. Somit ist g irreduzibel über $\mathbb Z[x]$ ist und da g zudem primitiv ist, auch über $\mathbb Q[x]$, was zu zeigen war.

Aufgabe 7 (2 Punkte).

Wir wissen aus der Angabe, dass für alle $a \in R$ ein n > 1 existiert, mit $a^n = a$. Wir nehmen uns ein Primideal $\mathfrak{p} \lhd R$. Sei \mathfrak{b} nun ein Ideal von R das echt über \mathfrak{p} liegt, i.e. $\mathfrak{p} \subsetneq \mathfrak{b}$ und sei $a \in \mathfrak{b} \setminus \mathfrak{p}$. Es gilt dann

$$0=a^n-a=a(a^{n-1}-1)\in\mathfrak{p}.$$

Aus der Primidealeigenschaft folgt, dass $a \in \mathfrak{p}$ oder $a^{n-1} - 1 \in \mathfrak{p} \subset \mathfrak{b}$ und somit $1 \in \mathfrak{b}$. Jedes Ideal das echt über einen Primideal \mathfrak{p} liegt ist also schon der gesamte Ring R, also ist \mathfrak{p} ein maximales Ideal.

Aufgabe 8 (4 Punkte).

a) Wir erinnern uns, dass ein Primkörper P von K der Durchschnitt aller Teilkörper von K ist und somit der kleinste Teilkörper von K. Des weiteren wissen wir, dass wenn die Charakteristik eine Primzahl p ist, dass dann der Primkörper P von K isomorph zu \mathbb{F}_p ist.

Sei K ein endlicher Körper mit Charakteristik p, also gilt für den Primkörper $P \cong \mathbb{F}_p$. Der Körper K ist eine Erweiterung seines Primkörpers P. Da K endlich ist, kann es nur endlich viele über P linear unabhängige Element geben; also ist $[K:P] = n \in \mathbb{N}$. Ist (b_1, \ldots, b_n) eine Basis von K über P, so lässt sich jedes $a \in K$ eindeutig darstellen als $a = \lambda_1 b_1 + \ldots + \lambda_n b_n$ mit $\lambda_1, \ldots, \lambda_n \in P$, und es ist $a \mapsto (\lambda_1, \ldots, \lambda_n)$ ein P-Vektorraumisomorphismus von K nach P^n . Also gilt $|K| = |P^n| = |P|^n = p^n$.

b) Sei K ein Körper der Charakterisitik p. Die Körper E und K haben den gleichen Primkörper P. Wir können also die Körpergrade [E:P] und [K:P] betrachten. Nun gilt [K:P]=n für ein $n\in\mathbb{N}$. Mit der Gradformel erhalten wir [E:P]=mn und mit Teilaufgabe a) $|E|=p^{mn}$ sowie $|K|=p^n$, was zu zeigen war.

Aufgabe 9 (3 Punkte).

Sei E/K eine Erweiterung von Grad 2 und $\alpha \in E \setminus K$ ein beliebiges Element. Dann ist $K(\alpha)$ ein Zwischenkörper von E/K und aufgrund der Gradformel $[E:K(\alpha)] \cdot [K(\alpha):K] = [E:K] = 2$. Wegen $\alpha \notin K$ ist $K(\alpha) \neq K$ und somit $[K(\alpha):K] > 1$. Weil $[K(\alpha):K]$ zugleich Teiler von 2 ist, muss $[K(\alpha):K] = 2$ und $[E:K(\alpha)] = 1$, also $E=K(\alpha)$ gelten.

Sei f das Minimalpolynom von α über K. Wegen $\deg(f)=2$ gibt es $p,q\in K$ mit $f=X^2+pX+q$. Wegen $\operatorname{char}(K)\neq 2$ exisitert ein multiplikatives Inverses der 2 im Körper das wir mit $\frac{1}{2}$ bezeichnen. Ebenso schreiben wir $\frac{1}{4}$ für $\frac{1}{2}\cdot\frac{1}{2}$. Es gilt nun

$$f(\alpha) = 0 \Leftrightarrow \alpha^2 + p\alpha + q = 0 \Leftrightarrow \alpha^2 + p\alpha + \frac{1}{4}p^2 = \frac{1}{4}p^2 - q \Leftrightarrow (\alpha + \frac{1}{2}p)^2 = \frac{1}{4}d$$

wobei $d=p^2-4q$. Setzen wir nun $\beta=\alpha+\frac{1}{2}p$, dann gilt $K(\alpha)=K(\beta)$, denn offenbar ist $\beta=\alpha+\frac{1}{2}p\in K(\alpha)$ und $\alpha=\beta-\frac{1}{2}p\in K(\beta)$. Daraus folgt $E=K(\beta)$. Außerdem gilt $\beta^2=\frac{1}{4}d\in K$.

Sei andererseits $\alpha \in E \setminus K$ und $\alpha^2 \in K$. Sei $\alpha^2 = \lambda \in K$. Es gilt dann $[K(\alpha) : K] = 2$, da $X^2 - \lambda$ wegen den Voraussetzungen irreduzibel ist $(\operatorname{char}(K) \neq 2 \text{ und } \alpha \notin K)$ und somit das Minimalpolynom der Erweiterung.

Aufgabe 10 (4 Punkte).

- a) Wir bezeichnen mit U die Vereinigung von allen endlichen Körpererweiterungen von K in E. Wir wollen nun zeigen, dass $K^c = U$ gilt. Sei $\alpha \in K^c$, dann ist α per Definition algebraisch und mit einem Satz aus der Vorlesung erhalten wir, dass $K(\alpha)/K$ eine endliche Körpererweiterung von K in E ist und somit gilt $\alpha \in U$.
 - Andererseits, sei $\alpha \in U$. Also liegt α in einem Körper F der eine endliche Körpererweiterung von K ist. Ein Satz der Vorlesung sagt nun, dass jede endliche Körpererweiterung algebraisch ist, insbesondere gilt also $\alpha \in K^c$.
- b) Wiederum bezeichnen wir die in der Angabe definierte Vereinigung mit U. Wir nehmen zuerst an E/K ist algebraisch. Sei $\alpha \in E$. Mit einem Satz aus der Vorlesung folgt $K(\alpha)/K$ ist endlich und somit gilt $E \subseteq U$. Die andere Inklusion ist klar. Wir nehmen nun an E = U. Sei $\alpha \in E$. Nach Annahme ist dann aber auch $\alpha \in U$ und α ist somit in einer endlichen Erweiterung enthalten. Mit einem Satz der Vorlesung wissen wir, dass diese Erweiterung algebraisch ist, also ist auch α algebraisch und somit E/K eine algebraische Erweiterung.