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Stimulated by the paper [15] and a conversation with Uroš Milutinović, I was led to

reconsider certain notions in connection with the Frame-Stewart numbers as defined in

[14, Definition 5.1 and p. 186].

Throughout we will use the variables q, ν, x ∈ N0 and h ∈ N.

0 Some Two-Dimensional Arrays

For every dimension q let the hypertetrahedral sequence ∆q be defined by

∆q,ν =

(
q + ν − 1

q

)
.

Viewed as a two-dimensional array, this is built up just like Pascal’s Arithmetical triangle

for
(
q+ν
q

)
, but with the 1s in the 0th column replaced by 0s.1 For instance,

∆0,ν = (ν ∈ N) (characteristic function of N) ,

∆1,ν = ν (natural numbers) ,

∆2,ν = ∆ν (triangular numbers) ,

∆3,ν = Tν (tetrahedral numbers) .

Then ∆q+1 = ∆q, Σ(∆q) = ∆q+1.

∗ c©A.M.Hinz 2015
1Pascal labelled rows and columns starting from 1.



q \ ν 0 1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 1 1 1 1 1 1

1 0 1 2 3 4 5 6 7 8 9 10

2 0 1 3 6 10 15 21 28 36 45 55

3 0 1 4 10 20 35 56 84 120 165 220

4 0 1 5 15 35 70 126 210 330 495 715

5 0 1 6 21 56 126 252 462 792 1287 2002

6 0 1 7 28 84 210 462 924 1716 3003 5005

7 0 1 8 36 120 330 792 1716 3432 6435 11440

8 0 1 9 45 165 495 1287 3003 6435 12870 24310

9 0 1 10 55 220 715 2002 5005 11440 24310 48620

Table 1: The hypertetrahedral array ∆q,ν

Next we define for each q the sequence Pq by

Pq,ν = (−1)q

(
1 +

q∑
k=1

(−1)k∆k,ν

)
.

q \ ν 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1

1 -1 0 1 2 3 4 5 6 7 8 9

2 1 1 2 4 7 11 16 22 29 37 46

3 -1 0 2 6 13 24 40 62 91 128 174

4 1 1 3 9 22 46 86 148 239 367 541

5 -1 0 3 12 34 80 166 314 553 920 1461

6 1 1 4 16 50 130 296 610 1163 2083 3544

7 -1 0 4 20 70 200 496 1106 2269 4352 7896

8 1 1 5 25 95 295 791 1897 4166 8518 16414

9 -1 0 5 30 125 420 1211 3108 7274 15792 32206

Table 2: The P -array Pq,ν
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We immediately see that Pq,0 = (−1)q, P0,ν = 1 and from

Ph,ν + Ph−1,ν = ∆h,ν (0)

that

P1,ν = ν − 1, P2,ν = ∆ν−1 + 1, P3,ν = Tν−1 + ν − 1 .

More avanced properties are

Pq+1,ν+1 = Pq+1,ν + Pq,ν+1 (1)

and (cf. [14, p. 280])

2Pq,ν+1 = Pq,ν + ∆q,ν+1 . (2)

Formula (1) shows that the construction of the array Pq,ν is as the previous one for ∆q,ν ,

but now the 0th column contains the alternating sign sequence (−1)q.

Proof of (1).

Pq+1,ν+1 − Pq+1,ν = (−1)q+1

(
q+1∑
k=1

(−1)k∆k,ν+1 −
q+1∑
k=1

(−1)k∆k,ν

)

= (−1)q+1

q+1∑
k=1

(−1)k∆k−1,ν+1

= (−1)q

(
1 +

q∑
k=1

(−1)k∆k,ν+1

)
= Pq,ν+1 . �

Proof of (2).

(−1)q · 2Pq,ν+1 = 2 +

q∑
k=1

(−1)k∆k,ν+1 +

q∑
k=1

(−1)k∆k,ν+1

= 2 +

q∑
k=1

(−1)k∆k,ν+1 +

q∑
k=1

(−1)k∆k,ν +

q∑
k=1

(−1)k∆k−1,ν+1

= 1 +

q∑
k=1

(−1)k∆k,ν + (−1)q∆q,ν+1

= (−1)q (Pq,ν + ∆q,ν+1) . �
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We also have

q∑
k=0

(−2)k
(
q + ν

q − k

)
= Pq,ν = 2−ν

(
(−1)q +

ν−1∑
k=0

2k∆q,k+1

)
.

This is so since the left and right terms are (−1)q for ν = 0 and fulfil the recurrence

relation in (2). For the left identity (anticipated by Brousseau [8, p. 176]) see [14, p. 187],

the right one also follows from (2) and [14, Lemma 2.18].

1 Dudeney’s Array

In [2, p. 367f], Henry Ernest Dudeney posed the problem to find a shortest solution for

the Tower of Hanoi with four pegs. He does not mention the Tower of Hanoi, though,

but dresses his question into the fantastic story of The Reve’s puzzle, in fact the first of

his collection of Canterbury puzzles. Here the pegs are replaced by stools and the discs

by “eight cheeses of graduating sizes”. The text was then verbally adopted for the book

[5, p. 1f] (with the inscrutable exception of “treat to” being replaced by “give”). The

challenge is to solve the problem “in the fewest possible moves, first with 8, then with

10, and afterwards with 21 cheeses”.

The solution given for n = 8 in [2, p. 480] (which has not been taken over for [5])

is an example of what has later been called Frame’s algorithm (see [7, p. 216f]; cf. also

[14, p. 175–177]).2 Dudeney mentions both possible partitions of the topmost 7 cheeses,

namely 4 | 3 and 5 |2 , leading to the conclusion that “[t]he least number of moves in

which the cheeses can be so removed is thirty and three.” However, no attempt has

been made to prove minimality! For the remaining cases n = 10 and n = 21 again the

claim of minimality of 49 and 321 moves, respectively, is made.3 It is also noted that the

partitions are unique, respectively.

The Reeve’s puzzle [sic!] was taken up again by Dudeney as puzzle no. 447 in [3],

citing several passages from [2]. Strangely enough, it is claimed that 6 cheeses “may all

2The respective partial move numbers contain a little clerical error.
3The minimality of the first two values, i.e. d4(08, 18) and d4(010, 110), where dp denotes the distance

in graphs Hn
p , was shown in [11] and of the third one, d4(021, 121), in [13].
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be removed . . . in sixty-three moves.”; this is in fact the value if only three stools

are used, i.e. d3(06, 16) = 63, for four stools d4(06, 16) = 17 moves are sufficient (and

necessary). The “half-guinea prize”4 was then offered for finding the “fewest moves in

which thirty-six cheeses may be so removed”, i.e. d4(036, 136).

Dudeney was quite surprised that he received the correct solution5 within the time

limit by one competitor only. This may have been the reason why he explains his own

solution in great detail. Assuming that the largest cheese is moved only once,6 he divides

the solution into the three steps to form two piles with all cheeses except the largest, to

move the latter and finally to reunite the others on top of it. He also observes that the

first of these steps is the crucial one, the last one being just its reversal. He then presents

“the curious point of the thing”, namely triangular numbers, for which he claims that the

formation of the two piles is unique, whereas there are two different ways otherwise. He

characterizes triangular numbers as those n for which 8n+ 1 is a square, i.e. n = ν(ν+1)
2

;

the partition of the n − 1 smaller discs is then given by ν(ν−1)
2
| ν − 1. He finds this

fact “[r]ather peculiar”. For n = 36, i.e. ν = 8, one now has to pile up the ∆7 = 28

smallest cheeses to one auxiliary stool in 769 moves, then the next 7 cheeses to the other

auxiliary stool in 127 moves, to accomplish the first step in altogether 896, so that the

whole solution takes 2 · 896 + 1 = 1793 moves.

The most remarkable feature of Dudeney’s exposition is a small table of three rows

and eight columns. The first row contains the powers of two 2ν for ν ∈ [8], the second

row are these numbers reduced by 1, i.e. the Mersenne numbers Mν , and for the third

row c Dudeney gives the formative rule 1 = c1, 2cν + Mν+1 = cν+1. He then deduces

that c8 = 1793 is the number of moves for the 8th triangular number 36. This, in fact,

anticipates Stewart’s algorithm (see [7, p. 217–219]; cf. also [14, p. 166]), provided that

the number of cheeses is a triangular number.

The sparse reaction to his puzzle no. 447 might also have caused Dudeney’s “intention

4This was the weekly prize awarded by the journal. A half-guinea was 10s6d or 10/6 as it can be seen

on The Hatter’s hat in Lewis Carroll’s “Alice’s Adventures in Wonderland”.
5again up to minimality which is still open!
6This assumption has been justified for the first time in [11, p. 119]; cf. [14, Proposition 5.8].
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to advance the subject one stage further.” This he did in puzzle no. 494 in [4] by proposing

“the case where there is one stool more and one cheese less”, i.e. five stools and 35

cheeses. Two weeks later he revealed the solution he had in mind, namely 351 moves,

but postponed the explanation to the next issue of the journal. This time ten readers

had submitted the desired number.

Dudeney’s justification starts with a table for ∆h,ν , with h ∈ [3] representing the

number of auxiliary stools and ν ∈ [7], but he stresses that this table could be extended

“to any required length”. It shows the figurate numbers of cheeses he considers for three

(h = 1), four (h = 2), and five (h = 3) stools, respectively. For the construction of this

table Dudeney says that the sequence in the second row is made up from the partial

sums of the first and similarly for the third row of tetrahedral numbers, which he calls

“pyramidal”. The first two rows of a second table repeat the last two rows of the table in

[3], i.e. Mν and cν , shortened to ν ∈ [7]. Again the third row of this new table is obtained

from the second as the latter is from the first. The claim is now that the entries in this

table yield the optimal number of moves for the respective number of stools and cheeses

from the first table. Since 35 is the fifth number in the third row of the first table, i.e. the

fifth tetrahedral number, the previously announced solution 351 can be found at the fifth

position of the third row in the second table.

We generalize these ideas and define the array a by (cf. Table 3)

aq,0 = 0, a0,ν = ∆0,ν , aq+1,ν+1 = 2aq+1,ν + aq,ν+1 . (3)

Dudeney’s claim is now that given the number p = h+ 2 of stools and a figurate number

n = ∆h,ν of cheeses, we can deduce the corresponding value for ν from Table 1 and

with this ν read the number of moves ah,ν for his algorithm from Table 3. Dudeney also

observes that ∆h,ν+1 cheeses on h + 2 stools have to be split successively into piles of

∆h,ν , ∆h−1,ν , . . . , ∆1,ν , and ∆0,ν = 1 discs from small to the largest. So it can be said

that Dudeney has provided an argument for the statement

dh+2

(
0∆h,ν , 1∆h,ν

)
≤ ah,ν . (4)

In the last column of [4], Dudeney deals with the problem of how to proceed if the
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q \ ν 0 1 2 3 4 5 6 7 8

0 0 1 1 1 1 1 1 1 1

1 0 1 3 7 15 31 63 127 255

2 0 1 5 17 49 129 321 769 1793

3 0 1 7 31 111 351 1023 2815 7423

4 0 1 9 49 209 769 2561 7937 23297

5 0 1 11 71 351 1471 5503 18943 61183

6 0 1 13 97 545 2561 10625 40193 141569

7 0 1 15 127 799 4159 18943 78079 297727

Table 3: Dudeney’s array aq,ν

number of cheeses is not tetrahedral in the case of five stools. He presents a “little

subsidiary table” of three rows and six columns. The first row contains ∆3,ν for ν ∈ [6],

the second has the powers of two 2ν−1, and for the third row s he gives the rule 0 = s1,

∆3,ν · 2ν−1 + sν = sν+1. He then presents, with two examples, his recipe to get the

(presumed) optimal number of moves d̃5(0n, 1n) for n cheeses, which amounts to

µ := min{ν ∈ N | ∆3,ν > n}, d̃5(0n, 1n) = n2µ−1 − sµ . (5)

Although Dudeney mentions that for non-tetrahedral cheese numbers there “will always

be more than one way in which the cheeses may be piled”, he does not say how.

This question, also for the case of non-triangular cheese numbers with four stools, is

left to “the reader to work out for himself” in the solutions section of [5, p. 131f], which

repeats the first two tables from the previous discussion, but not the subsidiary table

and its interpretation. Maybe the author had meanwhile realized that sµ = a4,µ−1, as

we will see below, such that all information is already contained in the two tables for

hypertetrahedral and Dudeney numbers. Even more remarkable is the fact that in his

final solution Dudeney is not addressing the question of optimality at all, but writes that

his “8 cheeses can be removed in 33 moves; 10 cheeses in 49 moves; and 21 cheeses in

321 moves.”
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We will now analyze properties of the Dudeney array. For instance,

ah,ν = Ph−1,ν · 2ν + (−1)h ; (6)

in particular (cf. (0)):

aq+1,ν + aq,ν = 2ν∆q,ν . (7)

and

a1,ν = 2ν − 1, a2,ν = (ν − 1)2ν + 1, a3,ν = (∆ν−1 + 1)2ν − 1, a4,ν = (Tν−1 + ν − 1)2ν + 1 .

Note that a2 is Dudeney’s original sequence c; it will be called the Dudeney sequence.

Proof of (6). Let the right-hand term in (6) be called ãh,ν . Then ãh,0 = 0, ã1,ν = 2ν − 1,

and with the aid of (1) we get

ãh+1,ν+1 = Ph,ν+1 · 2ν+1 + (−1)h+1

= Ph,ν · 2ν+1 + 2(−1)h+1 + Ph−1,ν+1 · 2ν+1 + (−1)h

= 2ãh+1,ν + ãh,ν+1 .

So ã fulfills the recurrence (3) starting at q = h = 1. �

Together with (2) we get

ah,ν+1 − ah,ν = Ph−1,ν+1 · 2ν+1 − Ph−1,ν · 2ν

= 2ν(2Ph−1,ν+1 − Ph−1,ν)

= 2ν∆h−1,ν+1 . (8)

With the aid of (8) (put h = 4 and ν = µ − 1) we can now perform the induction

step in the proof of the above mentioned identity sµ = a4,µ−1 for Dudeney’s subsidiary

sequence s.

Before we turn to the relation between the array a and the Frame-Stewart numbers, we

note an interesting alternative representation (cf. [14, Corollary 5.6], [15, Lemme 2.1] for

h = 2 and [12, Theorem 4.6] for the general case). We will make use of the hypertetrahedral

root ∇h,k of k ∈ N0, namely

∇h,k = max {µ ∈ N0 | ∆h,µ ≤ k} ;
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for instance, ∇1,k = k (trivial root) and ∇2,k =
⌊√

8k+1−1
2

⌋
(triangular root). (There is

no simple closed expression for the tetrahedral root ∇3 though; it behaves asymptotically

like 3
√

6k. In general, ∇h,k ∼ h
√
h!k.) From ∆h,µ ≤ ∆h+1,µ we get ∇h+1,k ≤ ∇h,k. The

sequence ∇h is (not strictly) increasing, and we have

∀x ∈ [∆h−1,ν+1]0 : ∇h,∆h,ν+x = ν ; (9)

in particular, ∇h,∆h,ν
= ν, but µ−∆h,∇h,µ ∈ [∆h−1,∇h,µ+1]0. It is interesting to note that

we have what Bousch calls a Galois correspondence in [15, p. 897]:

∆h,µ ≤ ν ⇔ µ ≤ ∇h,ν (or ν < ∆h,µ ⇔ ∇h,ν < µ) ,

i.e. ∆h and ∇h engender a Galois connection in N0.

The statement on a now reads as follows.

Proposition 1.

ah,ν =

∆h,ν−1∑
k=0

2∇h,k .

The proof is by induction on ν. The case ν = 0 is trivial. Making use of the induction

assumption, (9), (6), and (2), we get:

∆h,ν+1−1∑
k=0

2∇h,k =

∆h,ν−1∑
k=0

2∇h,k +

∆h,ν+1−1∑
k=∆h,ν

2∇h,k

= ah,ν + ∆h−1,ν+1 · 2ν

= Ph−1,ν · 2ν + (−1)h + ∆h−1,ν+1 · 2ν

= (Ph−1,ν + ∆h−1,ν+1)2ν + (−1)h

= Ph−1,ν+1 · 2ν+1 + (−1)h

= ah,ν+1 . �

2 The Frame-Stewart Numbers

So far everything could be formulated and proved without reference to the Frame-Stewart

numbers [6, 7] or to the Tower of Hanoi [1].
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Definition 1. ∀n ∈ N0 : FSn3 = 2n − 1 = Mn ,

∀ p ∈ N \ [3] : FS0
p = 0, ∀n ∈ N : FSnp = min{2FSmp + FSn−mp−1 | m ∈ [n]0} ,

∀n ∈ N0 : FS
n

p = 1
2
(FSn+1

p − 1) .

The following theorem, which establishes the interrelation between FS and a, is not

easy to prove. If we interpret h as the number of spare pegs in the ToH, i.e. those which

are neither the starting nor the goal peg, the case h = 1 is classical. For h = 2 it can

be found as [10, Theorem 1] and, more comprehensive, as [14, Theorem 5.4]; cf. also [15,

(1.2)]7. The general case is [14, Theorem 5.16] and goes back to [9, Theorem 3] and [12,

Theorem 3.1].

Theorem 1. ∀x ≤ ∆h−1,ν+1 : FS
∆h,ν+x

h+2 = ah,ν + x · 2ν .

From (7) we get, if we put n = ∆h,∇h,n + x:

Corollary 1. ∀n ∈ N0 : FSnh+2 = n · 2∇h,n − ah+1,∇h,n .

For h = 3, i.e. p = 5, this corresponds to Dudeney’s formula (5). The first few Frame-

Stewart numbers are presented in Table 4.

h \ n 0 1 2 3 4 5 6 7 8 9

1 0 1 3 7 15 31 63 127 255 511

2 0 1 3 5 9 13 17 25 33 41

3 0 1 3 5 7 11 15 19 23 27

4 0 1 3 5 7 9 13 17 21 25

Table 4: Frame-Stewart numbers FSnh+2

Another immediate consequence of Theorem 1, together with Proposition 1 and (9),

is:

Corollary 2. ∀ p ∈ N \ [2] ∀n ∈ N0 : FSnp =
n−1∑
k=0

2∇p−2,k , FS
n

p =
1

2

n∑
k=1

2∇p−2,k .

7On page 896 the author says that it can be shown by simple calculations; on page 897, however, he

admits that it is less easy to verify!
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In his attempt to prove the Frame-Stewart Conjecture, i.e. dp(0
n, 1n) = FSnp , for the

case p = 4, i.e. h = 2, or in other words to solve The Reve’s Puzzle, Bousch defines the

function, or rather integer sequence, Φ as the right-hand side of the identity in Corollary 2,

i.e.

∀n ∈ N0 : Φ(n) =
n−1∑
k=0

2∇2,k .

But instead of making use of the corollary to show that [15, (1.2)]

∀n ∈ N : Φ(n) = min
{

2Φ(m) + 2n−m − 1 | m ∈ [n]0
}
,

he uses only the weaker statement [15, (2.1)]

∀m,n ∈ N0 : Φ(m+ n) ≤ 2Φ(m) + 2n − 1 . (10)

We can give a direct argument for (10), which is the case q = 0, if we define more generally

∀ q ∈ N0 ∀n ∈ N0 : Φq(n) =
n−1∑
k=0

2∇q+1,k ,

of

Corollary 3. ∀ q,m, n ∈ N0 : Φq+1(m+ n) ≤ 2Φq+1(m) + Φq(n) .

Proof for q = 0.8 We show by double induction on m and n that

∀m,n ∈ N0 : Φ(m+ n) ≤ 2Φ(m) +Mn .

For m = 0 we have ∀n ∈ N0 : Φ(n) ≤ Mn, since ∇k := ∇2,k ≤ k. Now let m ∈ N0 and

assume that

∀n ∈ N0 : Φ(m+ n) ≤ 2Φ(m) +Mn . (11)

Then clearly Φ(m+ 1, 0) ≤ 2Φ(m+ 1) +M0 and we assume that for n ∈ N0,

Φ(m+ 1 + n) ≤ 2Φ(m+ 1) +Mn . (12)

8following Pascal Stucky
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Now, making use of (11),

Φ(m+ 1 + n+ 1) = Φ(m+ n+ 2)

≤ 2Φ(m) +Mn+2

= 2Φ(m) + 2n+1 +Mn+1

= 2 (Φ(m) + 2n) +Mn+1

≤ 2
(
Φ(m) + 2∇m

)
+Mn+1 = 2Φ(m+ 1) +Mn+1 ,

where the last inequality is only true if n ≤ ∇m. If this is not the case, then n > ∇m ⇒

∇∆n > ∇m ⇒ m < ∆n = ∆n+1 − n − 1 ⇒ ∆∇m+n+1 ≤ m + n + 1 < ∆n+1 ⇒ ∇m+n+1 <

n+ 1⇒ ∇m+n+1 ≤ n, so that with (12):

Φ(m+ 1 + n+ 1) = Φ(m+ 1 + n) + 2∇m+1+n

≤ 2Φ(m+ 1) +Mn + 2∇m+1+n

≤ 2Φ(m+ 1) +Mn + 2n = 2Φ(m+ 1) +Mn+1 . �

A direct proof for the general case of Corollary 3, i.e. independent of Theorem 1, is still

lacking.

Another immediate consequence of Corollary 2, Theorem 1 and (6) is

Lemma 1. ∀x ∈ [∆h−1,ν+1 + 1]0 :

Φh−1(∆h,ν + x) = ah,ν + x · 2ν = (Ph−1,ν + x)2ν + (−1)h .

We are now left with proving that

∀ t ∈ [h]n : dh+2(0n, t) ≥ Φh−1(n) ,

where Φq(n) =
1

2

n∑
k=1

2∇q+1,k .

3 The Reve’s Puzzle

We will now concentrate on the case of p = 4 pegs, i.e. h = 2. For brevety we put

d := d4. We already saw that ∆ν = ∆2,ν and and Φ = Φ1; we will also write Φ for Φ1.
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The numbering in this section is according to [15]. Our goal is to prove that

∀ t ∈ (Q \B)n : d(0n, t) ≥ Φ(n) . (13)

Lemma 1 translates to

Lemma 2.1. ∀x ∈ [ν + 2]0 : Φ(∆ν + x) = (ν − 1 + x)2ν + 1 .

Let 2N0
0 :=

{
N ∈ 2N0 | |N | <∞

}
and define for E ∈ 2N0

0 :

∀µ ∈ N0 : Ψµ(E) =
∑
k∈E

2min{∇k,µ} − cµ ,

where c is again Dudeney’s sequence, and

Ψ(E) = max
µ∈N0

Ψµ(E) (≥ Ψ0(E) = |E|) .

Lemma 2.2. Ψ[n] := Ψ ([n]0) = Φ(n) .

Proof. W.l.o.g. n ∈ N, i.e. n = ∆ν + x, x ∈ [ν + 1]0. Then

Ψµ+1[n]−Ψµ[n] =
n−1∑
k=0

(
2min{∇k,µ+1} − 2min{∇k,µ}

)
− (µ+ 1)2µ

= 2µ (|[n]0 \ [∆µ+1]0| − (µ+ 1))

= 2µ ((n−∆µ+1)(n > ∆µ+1)− (µ+ 1)) > 0

⇔ (n−∆µ+1)(n > ∆µ+1) > µ+ 1

⇔ n ≥ ∆µ+1 + µ+ 2 = ∆µ+2

⇔ ν = ∇n ≥ µ+ 2 ⇔ µ < ν − 1 .

Therefore, Ψµ[n] is maximal at µ = ν − 1, so that

Ψ[n] = Ψν−1([n]0) =
n−1∑
k=0

2min{∇k,ν−1} − cν−1

=
∆ν−1∑
k=0

2∇k +
n−1∑
k=∆ν

2ν−1 − cν−1

= Φ(∆ν) + (n−∆ν)2
ν−1 − cν−1

= (ν + x)2ν−1 = Φ(n) ,

the latter two equalities coming from Lemma 2.1. �
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It follows with (10) that ([15, (2.2)])

∀m,n ∈ N0 : Ψ[m+ n] ≤ 2Ψ[m] + 2n−1 . (14)

The subsequent Lemmas 2.3 to 2.8 on properties of Ψ are needed for the proof of

Theorem 2.9.

Lemma 2.3. Ψ[n+ 2] ≥ 2∇n+1 .

Lemma 2.4. ∀E ∈ 2N0
0 : |E| ≤ Ψ[|E|] ≤ Ψ(E) ≤ 2|E| − 1 .

Lemma 2.5. ∀A,B ∈ 2N0
0 : Ψ(A)−Ψ(B) ≤

∑
ν∈A\B

2∇ν .

Lemma 2.6. Let A ∈ 2N0
0 and s ∈ N0 with |A \ [∆s]0| ≤ s. Then

∀ a ∈ A : Ψ(A)−Ψ (A \ {a}) ≤ 2s−1 .

Lemma 2.7. Let s ∈ N, n ∈ N0 \ [∆s−1]0, and A ⊂ [n]0. Then

∀ b ∈ Ns
0 : Ψ(A ∪ b([s]))−Ψ(A) ≤ Ψ[n+ s]−Ψ[n] .

Lemma 2.8. ∀A,B ∈ 2N0
0 : Ψ(A) + Ψ(B) ≥ 1

4

(
Φ(|A ∪B|+ 2)− 3

)
.

Finally, Bousch announces his main result

Theorem 2.9. Let s ∈ Qn, t ∈ (Q \B)n. Then

d(s, t) ≥ Ψ ({k ∈ [n]0 | sk+1 = 0}) ;

this inequality is [15, (2.3)].

In view of (13) we can conclude:

Corollary 4.1. ∀n ∈ N0 : d4(0n, 1n) = FSn4 .
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