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Catenaria Vera - The True Catenary
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Invenire, quam curvam referat funis lazus & inter duo puncta fiza libere sus-
pensus. James Bernoulli (Acta Eruditorum, 1690)

Abstract

We give an explicit solution of the catenary problem in a —1/r potential, in-
cluding full discussion of the boundary value problem arising and of the existence
question (which is more delicate than in other classical variational problems and
is therefore somewhat neglected in the textbooks even for the classical catenary).
Numerical examples illustrate the results. While reviewing some history, we also at-
tempt a style that makes the discussion feasible for teaching purposes, in particular
by bridging the gap between classical textbooks and the more modern tools. The
appearance of the logarithmic spiral as a solution is a nice surprise in addition. Our
existence proof by direct methods, enhanced with a priori estimates, generalizes to
other central potentials.

0 The problem and its history

When James Bernoulli put forward the challenge of finding the curve describing the shape
of a(n idealized) chain consisting of equal (infinitesimal) links, fixed at both ends and
hanging under the sole influence of gravitation, most scientists believed in the parabola
as the appropriate model. They could rely on the authority of Galilei, who in Dialogo
Secondo of his Discorsi ... (1638) [6, p. 146] held the position that questa catenella si
piega in figura Parabolica. ’

Let us, for the moment, assume the chain to be fixed in a cartesian system with
horizontal z-axis and vertical y-axis in two points of equal height h > 0 above the z-axis
at a distance 2d (d > 0 is called the dimension of the chain) from each other, i.e. in
the points (—d, h) and (d, h), say. The length 2! of the chain necessarily fulfils | > d
(cf. Figure 1).

For the Galileian parabola we then have with a parameter g > 0:

Vr € [~d,d] : y(z) = h — g{d® - z?),
whence with v := 2dg:

y(iz) h ~ z
Vxe[—d,d]:—%—=z—5(1—(2)2), 1)
0723-0869/99/020117-26$6.70
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Figure 1: Chain in cartesian coordinates

and v > 0 is uniquely determined by ! through

d Y
=3, VI [T = T i)
0 Y Jo v

(By looking at the last but one expression we see that the r.h.s. is strictly monotone
increasing and goes to 2 as v — 0, so that all admissible lengths are covered.)

In a passage of Dialogo Quarto* of the Discorsi [6, p. 284], Galilei considers the
parabola as an approximation to the shape of a hanging chain (... le quali assai si auuici-
nano alle paraboliche . .. ), which is better (... la catenella camina quasi ad unguem sopra
la parabola.) if the chain is flat, i.e. the tension is high. In fact, a few years later, in 1646,
in a letter to the French mathematician Marin Mersenne, the 17-years-old Christiaan
Huygens comes to the conclusion [7, p. 37]

Nulla ergo catena pendet secundum lineam parabolicam.

(Therefore, no chain hangs according to the parabolic line.) However, he is not able to
determine the true shape of the curve. But once infinitesimal methods in analysis were
available, James Bernoulli’s question was immediately taken up in the following issue
of Acta Eruditorum (1691), by his brother John Bernoulli, Leibniz, and, now aged 62,
Huygens. Leibniz, for instance, observes (Figure 2, cf. [10, Tab. VII ad p. 278]) that

BC = Arsh(AC), leading to y(z) = cosh(z) under the further assumption OA = 1.

More generally we have in our notation

Vz € [—d,d] : y(d) Z ; (cosh(ﬂ) — cosh(8= )) (2)

and the parameter 8 > 0 is uniquely determined by

{ .
= sinch(g3),

*We adhere to the orthography of the source, throughout.
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Figure 2: Linea catenaria of Leibniz (Photo: Deutsches Museum, Miinchen)

where the function sinch (for sinus cardinalis hyperbolicus, a designation adopted in anal-
ogy to the sinc-function; cf. [16, p. 41]) is defined by

o0 2n .n
VA ER:sinch(f) = Y (2nﬂ+ i (= 2 };(ﬂ)) . (3)

n=0

(Note that this function is 1 for 8 = 0 and tends to 0o as 8 — oo; its derivative is 0 if and
only if § = 0.) Leibniz therefore calls the hyperbolic cosine Linea catenaria, the catenary.

It is obvious that the shape of the curve as given by J is determined already by
the quotient of the geometric quantities ! and d, the height h just leading to a shift in
direction of the y-axis. In particular, no physical quantities like the linear mass density
of the chain or the value of gravitational force enter into the formula. This force was
assumed constant and in the direction of the negative y-axis. If, however, we consider
a variable gravitational field centered in 0, the chain cannot cross the line between a
suspension point and the origin, a fact which becomes obvious if we rotate this line to an
upright position. (Cf. the problem of astronauts who wanted to erect the U.S. flag on the
moon; see below for a more serious argument.) Since (from (2))

y'(z) = sinh(ﬂ%) )

y(0) = h — g(cosh(ﬁ) — 1) is a minimum and y'(d) = %, whence y(0) < 0 or y/(d) > 2
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for h sufficiently small, so that the curve would leave the admissible region. We therefore
may state:

Nulla ergo catena pendet secundum lineam catenariam.

But what is the Catenaria vera, the true catenary? John Bernoulli dealt with this problem
in his Solutio problematis catenarii generaliter concepti (Opus CLXXIII), but he left a
crucial parameter undetermined (see [2, p. 234-241]; cf. also [8, p. 155-162]). We will
give a complete answer to the question in the following, together with a comprehensive
study of the corresponding upright arches, in the course of which we will not only show
that the statement of Robert Hooke (1675) (cf. [15, p. xxi]),

Ut pendet continuum flexile, sic stabit contiguum rigidum inuersum.

(Just like the flexible line is hanging, so stands inverted the rigid arch.) is not quite
correct, but also that arches exhibit some surprising special cases.

1 The model

The mathematical model of an ideal homogeneous chain fixed at its ends in two suspen-
sion points P, and P, and subject only to a gravitational force centered at the origin 0 is
a rectifiable curve of prescribed length 2! from P, to P, minimizing potential energy (or
in other words possessing the lowest center of gravity, as James Bernoulli pointed out;
this is known as Bernoulli’s principle). This is because otherwise the exceeding potential
energy could be converted into kinetic energy, leading to a deformation of the chain. First
of all we have to convince ourselves that such a curve ¢t — (¢) automatically lies in the
plane spanned by P, P, and 0, and that the distance r = |y(t)| of its points from the
origin is a function of the angle ¢ at 0. This will allow us to write the potential en-
ergy — ft? il ¥(®)] dt as the functional r — — [ —51/r(p)2 + 7(p)? dp. (Derivatives
w.r.t. angles are denoted by dots.) We give a sketch of the argument.

For a minimizing curve 7 : ¢t — ~(t) € R®, the function ¢ — |y(t)| is either monotonic
or else has a single minimum. For otherwise, there exist {; < ¢, such that |y(t;)] =
[v(t2)] < |y(8)| for all ¢ € [t1,8). Let II be the plane through ~(¢;) and ~y(¢;) whose
normal lies in the span of y(t;) and 7(t;). Reflecting 7|, s, with respect to II yields a
curve of the same length, but of lower potential energy.

Given any rectifiable curve in R® between P, and P, and satisfying the monotonicity
property just established, we construct a curve 4 between P, and P, with the same length,
but lying in the plane spanned by P;, P, and 0, and with strictly smaller potential energy
than « (except if 7 lay already in that plane, in which case ¥ = 7). Indeed, let 4" be
the projection of vy into that plane, and attach a vertical piece of the appropriate length
(and to be traversed back and forth) to the lowest point of 4. This results in the curve ¥
with the promised properties (first picture in Figure 3). This shows that we may restrict
ourselves to planar curves from the beginning.
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. space curve
4': its projection
% planar curve

Figure 3: Reducing the potential energy of a chain

We next show that minimizing planar curves t — ~v(t) = (r(t), »(t)) have to be graphs
of a function ¢ — r(p). Firstly, t — ¢(t) has to be monotonic, because otherwise a similar
modification from ~ to 4 would again lower the potential energy. (In the second picture of

Figure 3, replace the arc AB by the segments AC and CB.) Secondly, a minimizing curve
~ must be convex, because otherwise a reflection would lower the energy (third picture).
These two properties already make v a graph of a function ¢ — r(y) except that vertical
pieces may be attached to the ends, as in the fourth picture.

If such pieces actually occur, the angles ay/, are defined because the curve is convex.
If, say a; < 7, we show that the curve can be changed in an e-neighbourhood of P, such as
to decrease the potential energy. The linear approximation within this neighbourhood is
sufficient, and it consists of two straight segments in a force field which can be considered
to be constant. Letting the corner point joining these segments vary on the appropriate
ellipse, it is a simple calculus exercise to see that the derivative of the potential energy in
the direction of constant length does not vanish. This shows that no corners can occur at
Pyja, or elsewhere, for that matter.

Now if the curve v minimizes potential energy from P to P,, then so does its segment
between P, and P, within its class of competitors. We will show below that minimizing
curves of the form (p,7()) do not have vertical tangents. Therefore no vertical pieces
could have been attached in a minimizing curve, because this would result in corners.

So we may consider polar coordinates (r, @) €10,00[ x [1, 2] given by =7 sin(y)
and y = rcos(p). (The slight deviation from convention is motivated by our experience
that gravitational attraction comes from below.) Then P, = (r1, 1), Py = (r2,92), and
the length 2! are given (see Figure 4), and we have the geometric restriction

Y2 — 91
2

0<®:= <g (4)
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Figure 4: Chain in polar coordinates

as well as the physical restriction

Teo—T 2 ro+71 2
(*22 1) + riresin(®)? < 12 < (—22 1) . (5)

(Equality on the Lh.s. corresponds to the taut chain by virtue of the cosine rule; the right
inequality keeps the chain off the gravitational center.) The original quantities d and h
of Section 0 are therefore to be replaced by ® = arctan(£) and r; = ry = rp 1= r(®) =
VIR

To represent the potential energy of the hanging chain, we sum over arbitrarily small
links between 1, and v,41, 7 € {0,.. — 1} with ¥y = ¢1,%~ = @2, N € N, such that
with p(y) := (r(¢)sin(y), r(y )cos(z/))) we get for the inverse square gravitational law of
Hooke and Newton (G is the universal gravitational constant, M the mass of the central
body, 4 the linear mass density of the chain):

. 1l’n+l ("/}n)l
,3520( ZGM —W‘_)

N-1
= —GM/.L A}I_I.noo (Z (1]/.)") ((P1(¢n+1) pl(wn))2 + (p2(¢n+l) - Pz(wn))2)

N-1 1

=-GMyp lim (Z (w \/pl (¥n1)? + Pa(tna)? (¢n+1_¢n))
- _GM N/ Ty VTP H (e do,

where ¥, < ¥n1, ¥ < Yoy, by the mean value theorem.
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More general, with a strictly increasing function V : ]0, 00[ — R we have to minimize

the functional
Flrl:= | V({(e)vr(p)? +7(p)?de (6)

¥1

among all sufficiently regular functions r : [1, @] = 10, 0o[ with r(¢1) = 1 and r(p2) =
79, satisfying the side condition

Llr]:= / " P TR dp =21, @

2 The solution

The Euler-Lagrange equation for the isoperimetric variational problem as given by (6)
and (7) reads

INER: f(r,F) = %f;(r, ), (8)

where f(r,#) = (A + V(r))V/r2+72. It is a necessary condition for minimizers in C?,
a regularity property which will be established in the course of the existence proof in
Section 5. Equation (8) is equivalent to

V'(r)
Vre 472
where « is the curvature (i.e., derivative of the directional angle with respect to the
arclength):

KA+ V (1)), 9)

_ri—r?-27?
FE e

where the sign has been chosen to be positive for the graphs of convex functions.

(10)

On the other hand, since f does not depend on ¢ explicitly, we have
L (f =) = #fy =t = F1i0)
d(p r - T rr rr/

such that we can immediately integrate the Euler-Lagrange equation, with the result that
(8) is equivalent to

r2

verr )

except possibly for some artificially introduced constant solutions. We appear to have
omitted the case o = oo, where the constant of integration equals 0. Contrary to the
first impression, this limiting case does not correspond to V(r) + A = 0, r a constant.
Indeed, by (9), (10) and V' > 0, we conclude from 7 = 0 that V(r) + A < 0. We will see
later that ja| — oo corresponds to || — co.

3AeR3a€R\{0}:é=(A+V(r))
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Since V is strictly increasing, (9) and (11) show that for any solution of (8) the
curvature does not change sign. Those with positive curvature we will call chains (a > 0)
and those with negative curvature arches (a < 0). The special case of the taut chain

“a = 0") is not a solution of (8), since it corresponds to the case where there is only
one admissible function, such that the method of Lagrange multipliers does not apply.
It is no physical solution either, as the tension becomes infinite. It is possible to deduce
some more information about the qualitative behavior of solutions, but we will now solve
the problem explicitly for V(r) = —1 (it is clear that the values of G, M and p do not
affect potential minimizers of (6) as long as their product is positive), in which case (11)

reduces to ;
1 ) .
aro1= YT ET (12)
a r
It is obvious that the case A = 0 is associated with & < —1 and satisfies r(p) =
pexp(xva? — 1¢) with some p > 0; we will call it the logarithmic case, because the
corresponding curve is a logarithmic spiral. Otherwise the substitution A\r = %, M= -5,
transforms (12) into
a{l — s) = sign(A)V's? + 2. (13)
Squaring and taking the derivative, we obtain —a%(1 — s)$ = (s + §)$. Cancelling 3, we
get
§+(1-a)s=—a? (14)
on the complement of {y | $(¢) = 0}, i.e. everywhere, by continuity, since $ cannot vanish
on an open interval, because otherwise (10) would imply r = ~1/« on this interval, and
then A = 0 from (9). So we are left with solving (14), which is easy, but the solutions
need to be checked by substitution into (13). Chains will always have a unique minimum

wo by convexity, so 5(pg) = 0 = (). Therefore we can and will express the solutions
for chains in terms of cos or cosh, without sin or sinh, viz

5(0) = sa(v — @0), (15)

where the cocatenary functions s, for a # —1 are given by

sa(¥) = @ ( - i ("‘2“—1)"—11/,2") _ e — cosh(via? — 19)) ‘

_— 16
a+l (2n)! a?-1 (16)

Note that we can include the arches (a < 0}, if we replace a by —a for the case where
a £ —1 and A < 0, which will be called the hyperbolic case, since it leads to a kind of
hyperbolic spirals (& = —1 and A > 0 cannot occur together by virtue of (13)). We will,
however, concentrate on the standard case, where & > —1 or A > 0, and postpone the
justification and interpretation of the formula for & < 0 until Section 3. We will then also
explain the apparent discontinuities and ambiguities for the logarithmic and hyperbolic
cases.

We now consider the symmetric boundary value problem of finding an appropriate
chain or arch of given length 2! satisfying r(—®) = r¢ = r(®). Any curve obeying these
boundary conditions will have some point where 7 = 0, and therefore by symmetry of s,,
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o = 0. Moreover the hyperbolic case does not occur, since then r(0) would be negative;
for A =0, & has to be —1 by (12) evaluated at @y = 0.

Figure 5 shows &, in dependence on a, where )y — ®,, o + P,[ is the maximal
symmetric interval where s is positive, i.e. the largest interval of existence of solutions to
(12) with initial conditions r{ypg) = rg, 7(x0) = 0.

: ®a
! A
1 rch(a), a>1
1 al —1
! 1, o=
: o = arccos(c) l<a<l
g g vi—-ao?’

5 5 0, a< -1

3 3

R ~  flat steep

Q
i

steep ! flat
arches

]
" 1
|
1
1
| .

_'1 >«

Figure 5: Length of the maximal domain of definition of extremals

To find the shape parameter o from the given length, we may disregard the case
a = ~1 (where r(p) = 79 and | = Prg) and using (12) again, we get
A(Ar = )7 A(Ar = )7
di (Ar—12-a2= (Ar 2)T = = (2T_2 Y
0 VOr-12-a \/ra+rr -4

= A(Ar — 1)ar sign(ar/r) = AVr? + 72 sign(or/7)

on )0, ®].

Therefore,

| = ‘/Oq, 'r(‘p)2 +’I'”(V))2d(p= M [ (/\T— 1)2 — a_2]7=ro _ l@,

r=rp N A Tel
from which we get with n:= va? — 1&:

I @) —3(9) . |
e~ TaE(@F = a® sinch(n) . (17)
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Here sinch is defined as in (3) on iR as well. By virtue of (5), the Lh.s. of (17) runs from
%ﬂ to %, so that by the properties of the function sinch, (17) can uniquely be solved
for |a|. For arches, the upper limit on [ is not necessary, and (17) can be solved uniquely
for o < 0 as the Lh.s. runs from 9’%21 to 0o. Note that sinch(n) =1 for p = 0, i.e. for

la| =1, such that the circular arc r(y) = re is again included.

The evaluation of a in terms according to (17} is depicted in Figure 6.

ﬁsinch(n)

e T iin(0) /0

I
L
]
=¥

V1+172/22 = |aly

Figure 6: Determination of the shape parameter: given ®, determine 7 (real or imaginary)
from the upper curve, then determine |a| from the (®—dependent) lower curve

We have thus arrived at the following conclusion.

Theorem 1 Let ® € |0, 5[ and rg € ]0,00[. Forl € [rgsin(®),rs| the Catenaria vera of
length 21 fized in two points at a distence re from the origin with an angle of 2@ is given
by the function v : [—-®, 8] — |0, 0o[ defined by
s(®)
Yo € [-®,0] : r{p) = re—=
pel ] :7(p) =re s(o)

Vva?—1yp)

-1

with

s(p) = a- cosl;(

where o 2> 0 is uniquely determined by

L sinch(va? — 19).
(I)T@



Catenaria Vera - The True Catenary 127

If the last relation with | € Jre sin(®), oo| is solved for a < 0, then r describes an upright
arch of length 21.

It is remarkable that the hyperbolic cosine actually reappears in the explicit formula
for the true catenary!

In order to complete the proof of Theorem 1 it is necessary to show sufficiency, i.e.
actual minimality of potential energy for the solutions of the Euler-Lagrange equation.
We will approach this task by two different methods in Sections 5 and 6 respectively.

Another formidable task is to compare the true and classical catenaries for physical
chains, since for all practical purposes and (to date) existing chains the difference is
minute. For instance, the value ¢ = % for a chain spanning 50km, i.e. of dimension
d = 25km, hanging down = 1lkm close to the Earth’s surface (rs ~ 6375km), such that
a = 20.4, will lead to a difference between ry and y(0), i.e. a difference in drop, of = 2.7cm!
However, huge chains can be simulated on a computer. The corresponding formulas for
the parabola and the hyperbolic cosine are (with d = rg sin(®)):

2 )~ 3(1- )

y(z) _ 1 _ z
i cot(P) 3 (cosh(ﬂ) cosh(ﬂd)),
respectively (cf. (1) and (2)). In Figure 7 we represent the true catenary, the classical
catenary and Galilei’s parabola for the parameters ® = 0.5, 1 = 1.5,d =1 (ie. r¢ =~
2.086).

Figure 7: Galilei’s parabola (dotted), the hyperbolic cosine (dashed), and the true cate-
nary

A comparison of the numerical values for the potential energies, obtained from the
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e 14 y2¢2
2 \/ Ty feot(@) - J1 - X

formulas

for the parabola,

! cosh(B¢)
-2 d£7
/0 \/ €2 + [cot(®) — 5(cosh(B) — cosh(B¢))]2

for the hyperbolic cosine, and

,—2/: ((a+1)r(Tf2—a) dy,

for the true catenary (cf. (13)), shows that in this case the parabola (with an energy
value = —2.4081) is closer to the true catenary (~ —2.4295) than the hyperbolic cosine
(= —2.3909)!

3 Asymmetric catenaries

In order to prove minimality of our solutions in Theorem 1 by means of the Weierstral
method, it will be essential to find unique solutions of the Euler-Lagrange equation for
all admissible sets of data, so we will turn now to the full discussion of the solutions (15)
for negative . We have seen that chains automatically have a minimum ¢g. For arches
with a € ]-1,0[, the differential equation (14) leads to trigonometric functions, so we
can always choose some ¢y such that $(po) = 0 and get a cosine expression again. Its
coefficient is determined from (13). The case @ = —1 in (14) is also straightforward; A < 0
is immediate from (13) in this case.

For oo < —1, (14) implies

(81

s(p) = i T + Acosh(vVe? ~ 1(p — o)) + Bsinh(Va? — 1(p — o))

ol
for any arbitrarily prescribed g, with constants of integration A, B. Writing (13) as
sign(A)a(l - s) — s = vs7+ 52 — 5 > 0, we see that s is bounded either below or above,
depending on the sign of A, therefore |B| < |4|. For |B| = [4], we get an exponential,
and letting ¢ — oo such that s — 0, § — 0, this implies A = 0. Therefore [B| < |4],
and we may assume B = 0 at the price of choosing ¢ appropriately. Exploiting (13) for
@ = (pp yields
A= —sign(A)——— .
sign(A) 5—
This shows that (15) comprises the complete solution of (13). The meaning of ¢, has
been clear beforehand for o > 0, but for a < 0, the existence of some o With ${pp) =0
has followed a posteriori. In this case, too, we let ry := 7(0), and the relation between r,
and A is given by ro = St in the standard case and by ry = 2=1 in the hyperbolic case.
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For a € ]-1,0] it follows from (13) that A < 0, and we have an arch, but r(y) has a
minimum, not a maximum, at ¢g. The arch is flatter than a circular arc. As a crosses
0 (from chains to arches through the taut chain), A changes its sign from positive to
negative by passing through oo.

For the hyperbolic case, we have r(gg) < 0, so these represent spirals defined on a
semi-infinite interval determined by the condition » > 0 (s < 0). There are two such
intervals, one for an incoming, one for an outgoing spiral. The segment r < 0 (s > 0)
between them can be interpreted as a chain at the antipodes by switching the sign of a.
Finally, for a < —1 and A > 0, r(yp) is a positive maximum, and we have steep arches.

We are now prepared to show that for any asymmetric boundary conditions r(¢;) =
i #12 = r(pe) (0 < 9o — i =20 <, cf. (4)) and any length 2! satisfying the
geometric constraints (5), the upper bound being omitted for arches, there is a unique
chain and a unique arch. To this end we assume w.l.o.g. that ¢; = 0, so that the given
data are r,73,1 € ]0,00[, ® € ]0, 5[ obeying (5); then p; = 2®. We try to determine one
of our symmetric solutions, where the chain or arch with these data lies on, that is, we
want to solve for a € R, g € R and 1y € ]0, 00, such that

a To

Vo €lpo — o, 00+ Ba[: T(0) = a+1salo—wo)

(18)

This will cover all but the logarithmic cases, provided we replace o by —a in the hyperbolic
case (and account for a different domain then).

Since r; = 7(0) and r, = 7(2®), and replacing g by o := @ — ® for symmetry, (18)
leads to (cf. (16)):

a — cosh(ve? — 1(® + ¢o)) O cosh(va? — 1(® — 1))

n a-—1 a—1 =0. (19)
The length condition reads (cf. (17)):
. 5 . 57— _
nsmh(\/a 1(® + 1)) + r2s1nh(\/a 1(® —4)) _ 9] (20)

Va2 -1 Va2 -1

To solve for e, |a| # 1 first, we introduce the new variable ¢ := tanh(vo? — 1%) €
]-1,1{ U 4R, such that cosh(va® — 1¢%) = 1% and sinh(vaZ — 1y)) = 1Z5. Note that
the cases t = +ico (for || < 1) cannot occur, because || < o < 7/V1 —a?. If we
insert this substitution into (19) and (20), we get

0={(a+b}t2—2ct+ (b-a)

0= (a+c)t? — 2bt + (c - @), (21)

where

a:=(rp—r)o b := (ry — r1) cosh(n)

=vVao2-—10.
a:=2va?-1 ¢ := (ry + 71) sinh(n) and " *



130 Jochen Denzler, Andreas M. Hinz

By Sylvester’s elimination method, the equations (21) do have a common root if and only
if their resultant vanishes (note that a+ ¢ # 0):

a+b —-2¢ b—a 0
0 a+d -2¢ b-a

a+c -2b c—a O
0 da4+c -2b c-a

This is equivalent to
0= (- b%)(c? — b + a® — &%)
whence a* — a® = ¢ — b? (the case ¢ = b?, but & # a? cannot occur, since then ¢ = +1,
as can be seen by adding or subtracting the equations in (21)). This in turn amounts to
2 (rz—rl )2 1/2

(—2—> = sinch(n) . (22)

’

@2’!‘17‘2

As in (17), the Lh.s runs from ’i—“((bﬂ to 3 (or oo for arches), and we may use Figure 6
again to determine || uniquely from the given data.

Note that by the same procedure we can find the corresponding parameters 3, r, and
h of a classical catenary
h 1 -
Vz € [z1,29] : @ =g- 5 (cosh(ﬂ) — cosh(ﬁx d$o)) ,
if the suspension points are (z1,31), (%2, 12) and the dimension is defined by d := 22z,
In fact, the equations corresponding to (19) and (20) are
Y2 —

ﬂ—dyl = cosh(3

Ty —Xp

d

Ty — Zo
7 )
Ty — %o
—q
and putting ¢ := tanh(%), a:=pBH g .= Zﬂé, b := cosh(8%) — cosh(B4), ¢ :=
sinh(3%) — sinh(8% ), we arrive at (21) again and get 3 from
l

v -y
(5= 22d -

) — cosh(

21 o T2 — Xo .
ﬁg = smh(ﬁ—d—) - sinh(A

)? = sinch(B)?

and then z4 from
L ye—y T+ 1
_— = sinh - .
snch(d) 2d -~ Smb (A5 - m)
(Due to the simpler structure of the solutions, there is an easier way to get these param-

eters for the classical catenary; cf. e.g. [11, p. 373-375).) However, the situation is not as
straightforward for the true catenary.

First of all, we left out the case |a| = 1 in the derivation of (22), so that there will
be a problem with the angle given by

12— (g;_r_;)z) 1/2

= (I>,, = ( P

(23)
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which we now have to account for. For a = £1 the cocatenary function is given by
s1() = 3(1 — ©?), so that (19) and (20) read

(1 = (@ +40)%) = ra(1 — (2 — %0)?),
(T; —_ Tl)'l/)o = (T1 + ’I"z)@ - 2l .

If ry = ry, this leads to the solution iy = 0; otherwise,

ning |
— 2
11’0 - r2—7] ‘
2

The second problem which is considerably more involved than in the case of the
classical catenary is to find g as soon as a # *1 is given, i.e. to guarantee that (21) has a
unique solution ¢t € ]—1, 1{UiR. We proceed by observing the sign of A := ¢*—b? = 4% —a?,
which is 0 if and only if :

lo| = ——==.
b (ay

The cases b = =c are equivalent to ¢t = +1 being a solution of (21} (signs never to be read
crosswise); furthermore, |o| > 1. The second solution of the second equation in (21) is
then t = -E%, which lies in ]—1,1], if and only if sign(r; — ;) = +1, and is a solution of
the first equation in (21), if and only if @ = %4, i.e. @ > 1. This is also the only case when
two simultaneous solutions of (21) exist. Otherwise t is unique, and we only have to make
sure that it lies in |—1,1[ if |a| > 1. Since t = #2%, where B := A + Gc — ab, we have
[t| <14 AB > 0. If A > 0, then ab < dc, whence B > A > 0 as well. Otherwise, since
(ac — ab)? > A? and |ab| > dc, we have to make sure that 0 < ab = a(r; — ri)? cosh(n),
i.e. a > 0. But this is obvious in the standard case and was forced in the hyperbolic case.

We are left with the logarithmic case where A = 0, i.e. 7{p) = rexp(va? — 1)
and o < —1. In particular, r, = r; exp(£2n), which is equivalent to b = %c, and the
length condition yields

o= ol (o _ gy (r2=r)(z)
+vaZ -1 +va?2 -1’

which is the same as @ = Fd. So this is just the case missing in the above discussion,

namely
a=q = N , ®=9,:= In(ra) - In(ry) V- Ty
12 — (r2zm)2 To—T1 2

Note that this angle is less than the ®, for the hyperbolic spiral given by (23) and that
they both tend to # for the symmetric case r; = 79 = 72, where a = —1 and the solutions
merge into the circular arc.

We summarize the results of this section in the following theorem.
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Theorem 2 Let 11,73 € |0,00], | € |57, 240 then &), from (23) satisfies @y € ]0,1].
If we let the parameter o run from —oo to 0o, we encounter the following cases for the
curve T of length 2l spanned between the points given by r(0) = r; and r(2®) = r3, where
® is uniquely determined by

sinch(vVa? — 19) = %’ :

for —oco < o < oy, ® runs from 0 to ®; and we have a steep arch as given by (18);

for a = a; and ® = ®; we have the logarithmic spiral

r(p) = r1exp (i\/—f;?_—‘lgo) :

for oy < a < =1, ® runs from ¥, to and including ®, and we have an arch on a
hyperbolic spiral as given by (18), but with o replaced by —a;

for =1 < a < 0, ® runs from ®, to arcsin(®,) and we have a flat arch as given by
(18);
for o = 0,® = arcsin(®;) we have the taut chain;

for 0 < o < 0o, ® runs back from arcsin(®;) to 0 and we have true chains as given
by (18).
{Note that @ = —0c0 and a = co appear as borderline cases with ® = 0 and represent the
Indian rope trick and the slack rope, respectively.)

4 An overview of methods for an existence proof

The proof that the classical catenary actually minimizes the corresponding functional is
hardly found in textbooks at all, even in those that do discuss both the catenary and the
tools for establishing minimality. An honorable exception is the rather recent textbook
by Troutman [14].

There are several strategies to establish that a solution of the Euler-Lagrange equa-
tions is actually a minimum of the functional under discussion. We will examine them in
turn.

4.1 Second variation

The most popular method among introductory calculus students (or rather their teachers)
is to examine the second derivative. In the calculus of variations setting, this approach
(via the second variation) poses some technical and conceptual difficulties and leads to
the discussion of conjugate points. By its very nature, a second derivative test can only
show that some given candidate is a relative (local) minimizer, as the test uses only local
information. It should be pointed out that even in the case of functions of two variables,
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a relative minimum that happens to be the only critical point need not be an absolute
minimum [12] (due to the possible presence of “saddle points at infinity”).

For the catenary, which has to be shown to be a minimizer under constraints, the
second variation approach is less feasible.

The method of fields of extremals is an enhancement of the method of the second
variation, which, if applicable, can also show a candidate to be an absolute minimizer. A
predecessor of the method, due to Weierstra8, can also be applied in the case of constraints
(i.e., the case with Lagrange multipliers). This has been done by Kneser [9] for the classical
catenary. Alas, this paper doesn’t seem to be well known, and we are grateful to H. Kalf
for pointing it out to us. This method will be exploited for the case of the catenaria vera
below in Section 6.

All methods referred to in this section were available in the 19th century and have
been developed mainly by Weierstra8, Jacobi, and Hilbert.

4.2 Direct methods

A modern approach is the one by direct methods: a lower semi-continuous function on
a compact set takes on a minimum. The tools to exploit this principle were not avail-
able to the founders of the calculus of variations. In practice, one has to work, say,
with Sobolev spaces and the weak topology therein in order to get a compromise be-
tween the compactness requirement (which needs a sufficiently weak topology) and the
semi-continuity requirement (which needs a sufficiently strong topology). These methods
have been worked out in a pre-Sobolev space version (which admits even more general
assumptions) by Tonelli [13]. In any case, Lebesgue’s theory of integration is required.

The particular nature of the functional for the catenary, namely the integrand’s failure
to have superlinear growth in the first derivative of the unknown function, makes it a
borderline case, where direct methods encounter difficulties. Nevertheless we will show
how an existence proof by direct methods works in this case. See Section 5 below.

By nature, direct methods show the existence of absolute minimizers. They do so
in a wider class of functions than what would be admissible for classical (C!) solutions
of the variational problem, let alone classically admissible for the Euler-Lagrange equa-
tions (C?). Unlike these latter, direct methods only depend on continuity, but not on
differentiability properties of the functional. Therefore one may have to face the following
inconveniences:

e Minimizers need not satisfy the Euler-Lagrange equations in any weak sense. (The
functional may lack differentiability, even if an attempt to evaluate d{-‘ OF[u +eyp)
£=

formally for nice variations ¢ may not exhibit any trouble.)
e Minimizers need not be smooth functions.

e The minimum over the broader class of functions possessing just as much regularity
for the functional to be defined may be strictly less than the infimum over smooth
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functions (Lavrentiev phenomenon).

All these things can actually turn up for quite unconspicuous functionals [1, 5], but in
classical examples with a physical background they can often be shown not to occur.

We will show below that the minimizer found by direct methods in our case is actually
a smooth function and coincides with the catenaria vera found as a candidate from the
Euler-Lagrange equations.

4.3 Convexity arguments

The method via convexity is less versatile in its range of applicability, but is actually the
most elementary one. If a functional is convex, then any critical point is automatically
an absolute minimum, and uniquely so in the case of strict convexity. This method,
if applicable, can be appended to the solution of the Euler-Lagrange equation without
much ado and replace the discussion of the second variation and fields of extremals,
occasionally even in the presence of Lagrange multipliers. This approach has been stressed
by Troutman, who handles the classical catenary that way [14].

The convexity argument is related to direct methods by the fact that convexity of the
functional in the highest derivative is sufficient for lower semi-continuity, and if a critical
point is found, convexity of the functional also guarantees regularity of the minimizer.

In the very short Section 7, we will see that Troutman’s approach does not generalize
to central potentials.

5 Direct methods

In this section, we show the existence of a minimizer for the functional F given in (6)
among all functions ¢ — r(p) lying in the Sobolev space W([ioy, @2]), i.e., the space
of absolutely continuous functions, and satisfying the boundary conditions r(p1) = ry,
r(p2) = ry and the length constraint (7). Then we will reason that such a minimizer
satisfies the Euler-Lagrange equation in some weak sense, and that this implies that the
minimizer is actually smooth and satisfies the Euler-Lagrange equation in the classical
sense. We will not discuss maximizers, and as arches cannot be minimizers (cf. the third
picture in Figure 3), we may restrict the discussion to chains.

Compared to an existence proof in the space W'? consisting of those absolutely
continuous functions whose derivatives are square integrable, an existence proof in W1
is less straightforward due to functional analytic complications. The logical scheme to
overcome this difficulty is as follows:

1. An a-priori estimate: If there exists a minimizer in W, then it is actually smooth,
satisfies the Euler-Lagrange equation, and its derivative can be bounded above in
terms of the boundary data and the length constraint.
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2. Therefore, any v that is not Lipschitz cannot be a minimizer, i.e., there must exist
some w € W' and some & > 0 such that F[w] < F[v] — 2¢. Using the facts that
Lipschitz functions are dense in W! and F is continuous with respect to the W1!
topology, we find a Lipschitz function w such that Flw] < Flv] —e.

3. We consider a sequence of functionals Fy such that for N; < N, it holds Fy, >

Fn, 2 F and such that Fy agrees with F on the set of Lipschitz functions with
Lipschitz constant N.

Unlike F, Fy will have the property that Fy = +oco on Wi\ W2 but Fy < oo
on W2, So we will carry out a straightforward existence proof of a minimizer ry
for Fy in the space W2, And more or less the same argument as in the a priori
estimate will show that ry is Lipschitz with some Lipschitz constant that remains
bounded as N — oco. We may extract a subsequence from ry that converges to
some 7.

4. Going to the limit in F[ry] = Fy[ry] < Fy[v] (Vv € W) yields that for any v,
F[r] < F[v], or else Fy[v] = co for all N. However, the latter case implies v is not
Lipschitz, and therefore there is some Lipschitz function @ satisfying F[w] < F[v].
But W belongs to the former case, and therefore F[r] < F{@] < F[v] again.

Let us now do the details. For the potential, we assume V € C'(]0,00[) and V' > 0.

Supposing 7 € W! minimizes F within the class given by L[r] = 2l, our choice of !
(longer than the straight line) guarantees that r is not a critical point of L, so we choose
two arbitrary Lipschitz functions v;, v, with zero boundary values, only subject to the
condition 0 # DL[rlu, = [(rvy+710,)/v/r? + 72, and we consider the family r+&,v, +€4v2,
upon which the length constraint L = 2] imposes a condition €5 = £5{¢1) by the implicit
function theorem in R2. It is then straitghforward to calculate

d

0= —
de

Flr + ev; + e2(e)ve) = DF[r]vy + ADL[r}uvy,
e=0

where A = —DF|[r]ua/DL[r]v,. In this argument, DF[rJv and DL[r]v need to be defined
only as directional derivatives in certain directions v € W*!, namely in the directions of
Lipschitz functions; in this sense they actually are defined. This gives the weak Euler-
Lagrange equation

/(alf(r, v+ B f(r,7)0)dp =0 (Yo € Wp'™)

without any extra regularity assumption; here, f(r,7) = (A+ V(r))v/r? + 72. Integrating
the term with v (not the one with 9 as is often done) by parts and using the fundamental
lemma (see, e.g., Chapter 9 of [3]) produces

#(V(r) + X) /"’ ( y —  r(V(r)+ /\)> _

—_— — VI(r)Vr2 + #2 + — === | dp = const.
N ) Nrr- 1

Therefore WL:F_T and hence 7 is continuous, wherever V(r) + A # 0. Note that it is the

strict convexity of f with respect to the # variable that allows the conclusion 7 € C°. This
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argumént can be repeated ro give 1 € C!, and then we get the classical Euler equations
(9)—(11) in any interval where V(r) + X # 0. By (11), this latter condition prevails on the
closure of such an interval as well, so it holds either everywhere or nowhere. As we have
seen in Section 2, right after (11), V(r) + A cannot vanish on any open interval, so we get
the Euler equations everywhere.

Now we show the a priori estimates. There exist constants a > 0 and b > 0 such
that any curve obeying the constraints will satisfy a < r < b. Moreover, there exists
(very trivially) a constant ¢ > 0 such that |p; — ¢1| > ¢. The a priori estimates to be
deduced will only depend on (a,b,c). If the lowest point (g, 7o) of the extremal lies on
the physical chain segment, we also have ryp > a. Otherwise that point lies above the
straight line joining the endpoints of the chain, and we still get the lower bound

rir2sin(pe — 1) a?sin(c)
(r1 + 73— 2rmy cos(<p2 — p1))1/2 26

Now use (9) and (10) in connection with (11) to obtain the Euler-Lagrange equation in
the form

L VO o o
TEVE Vi) + @) T T T2 alr—ro) + 1/(ar)

Integrating yields

7 > — log (14 arger(r — 19)),
whence

dr
\/log (1 + areei(r — 1))

2 frg—r
< [log (1 + argei(ry — o)) 1/2/ ,/—2———Odr
ro r—"o

Therefore, if @ — oo, we would conclude ¢, — ¢y — 0, and similarly for p,. But
|2 — 1| > ¢, and this gives an upper bound for ¢ depending on a, b, ¢ only. Now by (11),
A+ V(r) is bounded away from 0, and then by (9), « is bounded above. On the other
hand, we get an upper bound for A, because A —+ oo would imply £ — 0 uniformly on
the whole chain segment by (9), so the chain would come close to a taut chain, for which
|7} < C{a,b,c). So either we have, say |#| < 2C(a,b,c), or else we get a bound for A in
terms of a, b, c. In this latter case, the Euler-Lagrange equation in the form

_ Ve +4?) 2L V'(r)
STV a0 (V()

gives an upper bound for 7 and hence for 7. In either case, we have shown # < K(a,b,c)
for some function K.

260
|<Pz — o] <

+ %) Q2 (V(r) + A)?

Existence of a minimizer for the modified functional Fy[r] := F[r] + [ Wy(F)de,
where Wy = 0 on [-N, N}, Wy(#) = (|#| = N)? for |[f| > N + 1, and Wy convex, C?
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in between, is straightforward. The functional controls the W2 norm, and a minimiz-
ing sequence contains a weakly convergent subsequence, because W12 ig reflexive. The
functional is lower semi-continuous with respect to the weak topology. (As the modified
functional is no longer bounded above on W', a different approach would be needed for
maximizers.) The argument that minimizers of the modified problem satisfy the classical
Euler-Lagrange equations works just as before. We get

\%'_% = k(A + V() + W—Nf”—r (24)
and
,,.2

== (V) g + () = PWA().

Ve

We employ this existence result for N > Ny only. Here, Np is chosen large enough.
Firstly we want No > K(a,b,c/2). Moreover, we assume Ny > |r2 — m1|/(w2 — 1),
such that any C! curve connecting the endpoints must satisfy |#| < No on some open
set, as a consequence of the mean value theorem. We will call some arbitrary maximal
subinterval of the set |#| < N a core of the segment. On a core, the unmodified equations
hold, and we will also have x > 0, @ > 0, and V(r) + A > 0 there. Finally, we want
Ny > 2(1"2 + T1)/((P2 - (,01).

Extending the minimizing extremal for Fy to its maximal domain of definition as a
solution to an ODE, we claim that # > 0 everywhere. This is certainly true for a core,
which is delimited by points with # = +N, where even x > 0 holds (cf. (10)). On a
maximal interval containing the core and on which # > 0, we will still have A+ V(r) > 0
because of the monotonicity of V; in a boundary point of that interval, we would have
# = 0, and consequently x < 0, such that the right hand side of (24) would be negative,
whereas the left hand side is positive. Therefore no such boundary point exists, and 7 > 0
everywhere. In particular, our extremal for Fy consists of a (single) core, on which it
coincides with an extremal for F, and (possibly) of adjacent intervals where the extremal
satisfies # < —N and # > N, respectively. If the complement of the core within the full
extremal intersects [, @2] at all, it can do so in at most two intervals of compound length
M + 72 because |f| > N outside the core. By virtue of N > No > 2(ra+11)/ (w2 — 1), at
least half of the segment consists of the core part, and on this core part within the segment,
the a priori estimate guarantees |r| < K(a,b,c/2) < No. As |f| > N > No outside the
core, the points delimiting the core from the rest must lie outside the segment. For this
segment, 7y, we therefore have

Flrn] = Fn[rn] < Fylf]  (VF)

and letting N — oo shows that ry —: r (possibly on a subsequence) where r is a minimizer
for F. Of course, if minimizers are unique, as one may reasonably suspect in this case,
(rn) is an eventually constant sequence.

Having shown the existence of minimizers and their automatic regularity, we are now
sure that the unique solutions of the necessary conditions, which were found in Sections 2
and 3 under the assumption of existence and regularity, are indeed minimizers.
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6 Minimality proof for an extremal by Weierstraf’s
method

Usually, an extremal (i.e., a segment satisfying the Euler-Lagrange equations) is shown
to be a minimizer by embedding it into a field of extremals and discussing Weierstraf’s
¢-function:

For y to minimize F[y] := [ f(¢,y(¢),§(t)) dt (in the absence of constraints), it is
necessary that f;; > 0 along the extremal (Legendre’s condition). This is the second
derivative test applied (only) to variations supported on very short intervals. On the other
hand, two minimal segments cannot intersect twice in their interior, because otherwise
a minimal segment with corners could be patched together from them, whereas f;; > 0
prevents extremals with corners. The essence of Jacobi’s condition, dealing with C-
small variations (whose support may now be a large interval), is therefore to exclude
the existence of neighbouring extremals which intersect twice. Variations that are only
C%small, but not necessarily C!-small, are dealt with by Weierstraf’s condition. All this
is lucidly explained in Chapter 5 of [3] and leads naturally to sufficient conditions for
minimality with respect to the various types of variations. However, its generalization
to the case with isoperimetric constraints is not so clear, and it is hardly discussed in
textbooks. In [4], Sections 453-457, this question is discussed as a special case of the
more difficult situation of Lagrangian constraints (Sections 421-452), where the functions
must satisfy pointwise conditions rather than integral conditions.

We avoid these intricacies by resurrecting a less general predecessor of the theory
of extremal fields, due to Weierstra. For the classical catenary, the argument has been
carried out by Kneser [9]. It relies on our ability to construct a unique extremal segment
for arbitrary boundary and length data (subject to the obvious restrictions). We follow
Kneser, but in a modernized language.

In order to show that an extremal t — (t), t € [a,b] is actually a minimizer of
the functional y — Fly] := f: f(t,y(t),9(t)) dt we proceed as follows: given an arbitrary
comparison curve § satisfying the same boundary conditions as §, construct a homotopy
T = §; 1= §(-,7) from § to § and show L F(g,] < 0. To this end, let §, coincide with
g on the interval [7,b] and be extremal on the interval [a, 7]. We will have the equations
shown in Figure 8.

§(r 1) = §(7)
N\ J #(a,7) = §(a) = 7(a)
gy =g)
S5t T)e=rs = (1)
3e0(E T)le=r— = p(7)
Figure 8: Scheme of Weierstra8’s proof

Then a calculation given below yields
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9 Plon) = —e(r, (), 5(0), (), (25)
where

&(t,y,9,p) == f(t,y,0) — f(t, 9, 9) — fit, v, 9)(p — ).

It is known (cf. [3, Chapter 5|) that &(t,#(t),%(t),p) > 0 for all ¢,p is a necessary
condition for § to be a minimizer with respect to all competitors within a C° neighbour-
hood. If the above construction is possible, then it shows that a similar condition is also
sufficient, i.e., F[§] < F[§], provided &(t,§,%,p) > 0 for all t,p and for all pairs (§,%)
that are actually taken on for some t by the competitor §(-). However, the construction is
likely to fail whenever some points may be joined by different extremals. Then an attempt
to carry out the above construction may end up with a §(-,b) # g(-)-

Indeed, let us check equation (25).

Lrl= 2 [ 10,508+ 3 [ 16,50,50)d
=f(T,y7(T),yf( T = Fr g ) + [ 510,

Q>|Q>

where
(6, 3:0),5,(0) =
= (5= 25) (63:0.5.0) 530+ 5 (5(0.3:0.5.0) gm0

The first term vanishes due to the Euler-Lagrange equations, and the second term can
be integrated immediately. We get 2§, (t)[e=r— + &9 ()|t=r— = #(7) from differentiating
§-(7) = §(7). :

The very same approach applies when discussing minimization problems for F[y]

under the constraint L{y] = f: &(t,y(t),y(t)) dt = 21 = const. Then § will be assumed
to obey the constraint, and so will §j. for all 7. For each 7, §|j,- will satisfy the Euler-
Lagrange equations for f + A(7){, but the Lagrange multiplier A may depend on 7.

Evaluating 0 = £ L[§,] in the same way as 4 F[§,], we now get

2 ¥l = e 90500, 500 + [ (5= ph) (30001,5.0) grin(0re

and

0= L 1ig) = —edr o) 5500 + [ (6= 56 (13-006.00) G

and therefore, using the appropriate Lagrange multiplier A(7),

2 Plg.] = ~eparcon(r, 50,500, 57).
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We have seen in Section 3 that for all boundary and length data satisfying the obvious
geometric constraints, there is a unique chain connecting them. In the presence of our a
priori estimates (Section 5), uniqueness implies continuous dependence on 7: if 7, — 7, the
corresponding ¥, must have a point of accumulation, and each such point of accumulation
is a (i.e., the unique) solution for 7. For the —1/r-potential, our explicit calculations show
that the parameters (ro, o, A) depend smoothly on the data (1, s, 71,72,1), S0 T —> ¥,
is C* (W™, if § is. Therefore the construction in Figure 8 can be carried out, unless
the comparison candidate §j starts with a straight line segment. This exception can be

avoided by prolongating both § and 7 to the left with a piece of the extremal of which g
is a part.

For the given functionals we have

(o, r,p, ™) = (V(r) + X (\/ﬂ +72—\r2+p?— (7 —P)\/;z—p+-—p2) .

The second factor is positive because p — /12 + p? is strictly convex for any value of r,
and we have seen in (9) that V(r) + A is positive if r describes a chain. This completes
the sufficiency proof. The argument works for arbitrary central potentials, provided the
uniqueness part (and smooth dependence) can be carried over.

The argument could have been formulated in such a way that the comparison curve
may be a space curve [9], so this proof supersedes most of the reduction process in Figure 3.

7 An attempt at joint convexity in (r,7)

Whereas arguments involving the Weierstra$$ ¢-function typically exploit the convexity of
the integrand f(t,y,¥) with respect to the last variable , a simpler argument is available
in the much rarer situation of convexity with respect to both variables (y, ¢). This strategy
has been employed by Troutman to give a minimality proof for the classical catenary by
considering the vertical coordinate as a function of the arclength rather than as a function
of the horizontal coordinate. However, the corresponding approach does not work for any
of the more important rotationally symmetric potentials. (Of course, this does not exclude
the possibility that fancier coordinates could do the trick.) We now document the failure
of the method.

The general principle is as follows: if we have some solution y, to the Euler-Lagrange
equation corresponding to f := f + A, and if y — (F + AL)[y] is convex (for which it is
sufficient that (y, p) = (f+A£)(t, y, p) is convex for each t), then y, minimizes (F+AL)[y],
in particular it minimizes F'[y] among the smaller class of those functions y for which L[y
takes on some prescribed value; the convexity proof goes by checking the simpie sufficient
condition.

For the chain in a centrally symmetric potential V(r), with length 2!, one has

Flr) = / VW T dp = /0 Vi),
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where t is the arclength: dt = +/72 + #2dy. The constraint L[r] = 2! turns into
2
dp(t)
Y1 — Yo = / <p( / V 1—7'(t)2dt,
0

since Iy = @2 = 472 Therefore, f(t,r,p) = V(r) + \\/1 — p2/r in this case. Fixing r,
it is clear, that f (r,-) cannot be convex, unless A < 0. On the other hand, fixing p = 0,

and assuming V to be concave, for r — f(r,0) = V(r) + A/r to be convex, one would
necessarily need A > 0.

This argument includes in particular the potentials —1/7™ and log({r).

In the case of the classical catenary considered by Troutman, [14, p. 76ff], the corre-

sponding functional is f(y,%') = y + Ay/1 — %, and X is indeed negative for chains, so
the method works.
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