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Preface

These lecture notes focus on percolation on high-dimensional lattices. We give a gen-
eral introduction to percolation, stating the main results and defining the central objects.
We assume no prior knowledge about percolation. This text is aimed at graduate students
and researchers who wish to enter the wondrous world of high-dimensional percolation,
with the aim to demystify the lace-expansion methodology that has been the key tech-
nique in high dimensions. This text can be used for reading seminars or advanced courses
as well as for reference and individual study. The exposition is complemented with many
exercises, and we invite readers to try them out and gain deeper understanding of the
techniques presented here. Let us now summarize the content in more detail.

We describe mean-field results in high-dimensional percolation that make the intu-
ition that “faraway critical percolation clusters are close to being independent” precise.
We have two main purposes. The first main purpose is to give a self-contained proof
of mean-field behavior for high-dimensional percolation, by proving that percolation in
high dimensions has mean-field critical exponents β = γ = 1, δ = 2 and η = 0, as for
percolation on the tree. This proof is obtained by combining the Aizenman-Newman
and Barsky-Aizenman differential inequalities, that rely on the triangle condition, with
the lace-expansion proof of Hara and Slade of the infrared bound that, in turn, veri-
fies the triangle condition. While there exists expository texts discussing lace-expansion
methodology, such as Slade’s excellent Saint-Flour lecture notes, an introduction to high-
dimensional percolation did not yet exist.

Aside from these classical results, that are now over 25 years old, our second main
purpose is to discuss recent extensions and additions. We focus on (1) the recent proof
that mean-field critical behavior holds for percolation in d ≥ 11; (2) the proof of existence
of arm exponents; (3) results on finite-size scaling and percolation on high-dimensional tori
and their relationship to the Erdős-Rényi random graph; (4) extensions of these finite-
size scaling results to hypercube percolation; (5) the existence of the incipient infinite
cluster and its scaling properties, as well as the proof of the Alexander-Orbach conjecture
for random walks on the high-dimensional incipient infinite cluster; (6) the novel lace
expansion for the two-point function with a fixed number of pivotals; and (7) super-
process limits of critical percolation clusters. The text is enriched with numerous open
problems, which, we hope, will stimulate further research in the field.

This text is organised as follows. In Part 1, consisting of Chapters 1–3, we introduce
percolation and prove its main properties such as the sharpness of the phase transition. In
Part 2, consisting of Chapters 4–9, we discuss mean-field critical behavior by describing
the two main techniques used, namely, differential inequalities and the lace expansion. In
Parts 1 and 2, all results are proved, making this the first self-contained text discussing
high-dimensional percolation. In Part 3, consisting of Chapters 10–13, we describe recent
progress in high-dimensional percolation. We provide partial proofs and give substantial
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overview and heuristics about how the proofs are obtained. In many of these results,
the lace expansion and differential inequalities or their discrete analogues are central.
In Part 4, consisting of Chapters 14–16, we discuss related models and further open
problems. Here we only provide heuristics and few details of the proofs, thus focussing
on the overview and big picture.

This text could not have been written without help from many. We are grateful to
Kilian Matzke, Andrea Schmidbauer, Gordon Slade, Si Tang, Sebastian Ziesche, as well
as the reading groups in Geneva and Sapporo for valuable comments and pointing out
typos and omissions in an earlier version of the manuscript. Special thanks go to Robert
Fitzner, who kindly prepared the graphics in these lecture notes.

This work would not have been possible without the generous support of various
institutions. The work of MH is supported by the Netherlands Organisation for Scientific
Research (NWO) through VENI grant 639.031.035. The work of RvdH is supported by the
Netherlands Organisation for Scientific Research (NWO) through VICI grant 639.033.806
and the Gravitation Networks grant 024.002.003.

The content of this book has been presented by RvdH at the CRM-PIMS Summer
School in Probability 2015 in Montréal. He warmly thanks the organisers Louigi Addario-
Berry, Omer Angel, Louis-Pierre Arguin, Martin Barlow, Ed Perkins and Lea Popovic for
this opportunity, as well as the CRM for generous support.

Both of us have been working for many years on percolation and the lace expansion,
and we thank our colleagues for joyful and inspiring collaborations that led to many
joint articles. Most notably, we thank Christian Borgs, Jennifer Chayes, Robert Fitzner,
Takashi Hara, Frank den Hollander, Mark Holmes, Tim Hulshof, Asaf Nachmias, Akira
Sakai, Gordon Slade and Joel Spencer. Thank you for participating in the wonderful
journeys in this beautiful branch of mathematical research!

MH and RvdH, March 2017
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CHAPTER 1

Introduction and motivation

Percolation is a paradigmatic model in statistical physics. It is one of the simplest
models that displays a phase transition. Percolation originated in the physics community
as a model for a porous medium, and has since seen many other applications. It also
provides a highly active area of research, one in which tremendous progress was made in
the past decades, notably in two dimensions and in high dimensions. Our focus is on recent
progress in high-dimensional percolation. In this first chapter we start by presenting an
introduction to percolation.

There are a number of textbooks available with percolation as their main topic, most
notably Grimmett [119] as a general reference on the topic, Hughes [177] discussing also
the connections with physics including a nice historic account, Bollobás and Riordan [57]
with emphasis on two-dimensional models, and Kesten [192]. For an expository account
of recent progress in percolation with a long list of open problems, we refer to Kesten’s
survey [196]. The foundation of percolation as a mathematical discipline is generally
ascribed to Broadbent and Hammersley [64].

1.1. Introduction of the model

We consider the hypercubic lattice Zd, with bonds between vertices x, y ∈ Zd precisely
when x and y are nearest neighbors, i.e., when |x − y| = 1, where |x| = (

∑d
i=1 x

2
i )

1/2

denotes the Euclidean norm. The set of bonds of the lattice Zd is denoted by E(Zd). In
the language of graph theory, bonds are called edges, and we use both terms in these
lecture notes.

We first define bond percolation informally. The model has a parameter p ∈ [0, 1].
Each bond is occupied with probability p, and vacant otherwise, and the edge statuses
are independent random variables. Percolation studies the random sub-lattice consist-
ing of the occupied bonds. Alternatively, we remove bonds independently with a fixed
probability 1− p.

We sometimes generalize from the lattice setting to percolation on more general graphs
G = (V , E), finite or infinite. Here V is the vertex set and E ⊆ V ×V denotes the edge set.
In such cases, we often assume that G is transitive, i.e., the neighborhoods of all points
are the same. More precisely, transitivity means that for every x, y ∈ V , there exists a
bijection φ : V → V for which φ(x) = y and {φ(u), φ(v)} ∈ E precisely when {u, v} ∈ E .
Such a bijection φ : V → V is called an automorphism. In particular, transitivity of a
graph G implies that each vertex has the same degree.

We consider the probability space {0, 1}E equipped with the product topology (i.e.,
the minimal topology that makes finite-dimensional projections continuous). For a per-
colation configuration ω ∈ {0, 1}E , a bond b ∈ E is occupied whenever ω(b) = 1, and it
is vacant whenever ω(b) = 0. We equip this space with a family of product measures

3



4 1. INTRODUCTION AND MOTIVATION

(Pp)p∈[0,1] chosen such that Pp(b occupied) = p for any b ∈ E and p ∈ [0, 1]. Let Ep denote
expectation with respect to (w.r.t.) Pp.

We say that x is connected to y and write x ←→ y when there exists a (finite)
path of occupied bonds connecting x and y. Formally, x ←→ y on a configuration
ω ∈ {0, 1}E if there exist x = v0, v1, . . . , vm−1, vm = y ∈ Zd with the property that
{vi−1, vi} ∈ E and ω({vi−1, vi}) = 1 for all i = 1, . . . ,m (m ∈ N). We further write
{x ←→ y} = {ω : x ←→ y on the configuration ω}. We let the cluster of x be all the
vertices that are connected to x, i.e., C (x) = {y : x←→ y}. By convention, x ∈ C (x).

We mostly restrict to the setting where the probability that an edge is occupied is
fixed. In the literature, also the setting is studied where the vertex set V is given by
V = Zd, the edge set E is given by E = Zd × Zd and, for b ∈ E , the probability that b
is occupied depends on b in a translation invariant way; we discuss such an example in
Section 15.4.

Percolation function. We define the percolation function p 7→ θ(p) by

(1.1.1) θ(p) = Pp(|C (x)| =∞),

where x ∈ Zd is an arbitrary vertex and |C (x)| denotes the number of vertices in C (x).
By translation invariance, the above probability does not depend on the choice of x. We
therefore often investigate C (0) where 0 ∈ Zd denotes the origin.

When θ(p) = 0, then the probability that the origin is inside an infinite connected
component is 0, so that there is almost surely no infinite connected component. When
θ(p) > 0, on the other hand, by ergodicity, the proportion of vertices in infinite connected
components equals θ(p) > 0, and we say that the system percolates.

We define the percolation critical value by

(1.1.2) pc = pc(Zd) = inf{p : θ(p) > 0}.

The above critical value is sometimes written as pc = pH in honor of Hammersley, who
defined it in [129]. The first interesting question about percolation is whether the critical
value is non-trivial, i.e., whether 0 < pc < 1, and this is indeed the case whenever d > 1.
When θ(p) > 0, then on Zd, there is a unique infinite cluster as first proved by Aizenman,
Kesten and Newman [12]. Burton and Keane [66] gave a beautiful geometric proof of this
non-trivial fact. A nice account on the implications of the Burton-Keane proof is due to
Meester [214]. For other graphs, such as trees, or, more generally, non-amenable graphs,
pc(G) can be defined as in (1.1.2), but there can be infinitely many infinite components
(see Section 15.6 for details).

The main interest in percolation lies in what happens at or close to the critical value
p = pc. The following open problem states that percolation has no infinite critical cluster,
which arguably is the holy grail in percolation theory:

Open Problem 1.1 (Continuity of p 7→ θ(p)). Show that for perco-
lation on Zd with d ≥ 2, there are no infinite clusters at criticality,
i.e. θ(pc) = 0.

In d = 1, pc = 1, so that θ(pc) = 1 and the statement in Open Problem 1.1 is false.
Most embarrassingly, Open Problem 1.1 is still open in full generality. For dimension
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d = 2, pc = 1/2 and θ(pc) = 0 has been proven in a seminal paper by Kesten [191].
The verification of Open Problem 1.1 for high dimensions is one of the main aims of this
lecture notes. See in particular Theorem 5.1 and Corollary 5.2 below to get a taste of the
kind of results that we are after here.

Instead of considering bond percolation, one can also study site percolation, for which
we independently and with fixed probability 1−p remove the vertices in Zd along with all
bonds that are adjacent to the removed vertices. It may be seen that any bond percolation
model can be reformulated as a site percolation model on a suitably adjusted lattice, but
the reverse statement fails; see Grimmett [119]. In line with the majority of the literature,
our main focus is on bond percolation (with an exception in Section 16.2).

Susceptibility. We are interested in several key functions that describe the connec-
tions in bond percolation. The susceptibility p 7→ χ(p) is the expected cluster size given
by

(1.1.3) χ(p) = Ep|C (0)|.
Clearly, χ(p) =∞ for p > pc, since then |C (0)| =∞ with probability θ(p) > 0. Further,
p 7→ χ(p) is clearly increasing. Define the critical value pT = pT (Zd) by

(1.1.4) pT = sup{p : χ(p) <∞}.
The subscript T in pT (Zd) is in honor of H. Temperley. A natural question is whether
pT (G) = pc(G) for general graphs G, i.e., is χ(p) <∞ for every p < pc? The latter indeed
turns out to be true on Zd, and this is the main result in Chapter 3.

The main aim of these lecture notes is to describe the behavior of percolation at, or
close to, the critical value pc. For p ∈ [0, 1], let

(1.1.5) χf(p) = Ep
[
|C (0)|1{|C (0)|<∞}

]
denote the mean finite cluster size. Clearly, χf(p) = χ(p) for p < pT , but for p > pT ,
this may not be true (indeed, for p > pc, it is false). We define the two-point function
τp : Zd × Zd → [0, 1] by

(1.1.6) τp(x, y) = Pp(x←→ y).

When p > pc, it is natural to expect that τp(x, y) → θ(p)2 when |x − y| → ∞. To
investigate the speed of this convergence, we define the truncated two-point function
τ f
p : Zd × Zd → [0, 1] by

(1.1.7) τ f
p(x, y) = Pp(x←→ y, |C (x)| <∞),

and note that τ f
p(x, y) = τp(x, y) whenever |C (x)| <∞ occurs a.s. On Zd, when the model

is translation invariant, we have that τ f
p(x, y) = τ f

p(y − x, 0) ≡ τ f
p(y − x).

In terms of τ f
p(x), we can identify χf(p) as

(1.1.8) χf(p) = Ep

[∑
x∈Zd

1{0←→x,|C (0)|<∞}

]
=
∑
x∈Zd

τ f
p(x).

Similarly,

(1.1.9) χ(p) = Ep

[∑
x∈Zd

1{0←→x}

]
=
∑
x∈Zd

τp(x),
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where

(1.1.10) τp(x) = τp(0, x) = Pp(0←→ x).

Correlation length. An important measure of the spatial extent of clusters is the
correlation length ξ(p) defined by

(1.1.11) ξ(p) = −

(
lim
n→∞

log τ f
p(ne1)

n

)−1

,

where e1 = (1, 0, . . . , 0). Existence of the limit is due to the FKG inequality, see (1.3.1)
below, and a subadditivity argument; cf. [119, Theorem 6.44]. The correlation length
thus characterizes exponential decay of the two-point function along coordinate axes.
Exponential decay in arbitrary direction can be derived from this, see [119, Section 6.2]
and references therein.

The correlation length ξ(p) is closely related to (and should not be mistaken with) the
correlation length of order 2, also known as the average radius of gyration, given by

(1.1.12) ξ2(p) =

√
1

χf(p)

∑
x∈Zd
|x|2τ f

p(x),

where we recall that |x| denotes the Euclidean norm of x. Indeed, there are several
ways of defining the correlation length (or rather some correlation length), all of them
presumably equivalent in the sense that they are bounded above and below by finite and
positive constants times ξ(p) defined in (1.1.11). However, these equivalences are often
not known rigorously.

The correlation length measures the dependence between finite clusters at a given dis-
tance. If |x−y| � ξ(p) and, for p > pc, x and y are in finite clusters, then we can think of
C (x) and C (y) as being close to independent, while if |x−y| � ξ(p), then C (x) and C (y)
are quite dependent. Another loosely formulated yet pedagogical way of interpreting the
correlation length is the following. When looking at a percolation configuration in a win-
dow of length `, the exponential decay of the correlation between clusters is clearly visible
as soon as ` � ξ(p). On the other hand, when ` � ξ(p), the percolation configuration
appears “indistinguishable” from a critical percolation configuration (where we bear in
mind that limp↗pc ξ(p) =∞).

1.2. Critical behavior

The behavior of percolation models is most interesting and richest for p values that are
close to the critical value. Clearly, the precise value of pc(G) depends sensitively on the
nature of the underlying graph G. By drawing an analogy to physical systems, physicists
predict that the behavior of percolative systems close to criticality is rather insensitive to
the precise details of the model, and it is only characterized by the macroscopic behavior.
Thus, percolation is expected to behave in a universal manner. For example, it is predicted
that the critical nature of finite-range percolation systems on Zd, under suitable symmetry
conditions, is similar. While this prediction is far from rigorous, it does offer us a way
of summarizing percolation models by only looking at their simplest examples. One of
the key challenges of percolation theory is to make rigorous sense of this universality
paradigm.
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We now make the notion of universality more tangible, by discussing critical exponents.
The critical nature of many physical systems is believed to be characterized by the validity
of power laws, the exponent of which is a robust or universal measure of the underlying
critical behavior. We start by giving an example of a critical exponent. It is predicted
that

(1.2.1) θ(p) ∼ (p− pc)β as p↘ pc,

for some β > 0. The value of β is expected to be different for Zd with different d, but
(1.2.1) remains valid. The symbol ∼ in (1.2.1) can have several meanings, which we now
elaborate on. We say that the critical exponent β exists in the logarithmic form if

(1.2.2) lim
p↓pc

log θ(p)

log (p− pc)
= β.

We say that β exists in the bounded-ratios form, which we write as θ(p) � (p − pc)β, if
there exist 0 < c1 < c2 <∞ such that, uniformly for p ≥ pc,

(1.2.3) c1(p− pc)β ≤ θ(p) ≤ c2(p− pc)β,

Finally, we say that β exists in the asymptotic form if, as p ↘ pc, there exists a c > 0
such that

(1.2.4) θ(p) = c(p− pc)β(1 + o(1)).

The existence of a critical exponent is a priori unclear, and needs a mathematical proof.
Unfortunately, in general such a proof is missing, and we can only give proofs of the
existence in special cases. Indeed, the existence of the critical exponent β > 0 is stronger
than continuity of p 7→ θ(p), which is unknown in general (recall Open Problem 1.1).
Indeed, p 7→ θ(p) is clearly continuous on [0, pc), and it is also continuous (and even
infinitely differentiable) on (pc, 1] by the results of van den Berg and Keane [42] (for
infinite differentiability of p 7→ θ(p) for p ∈ (pc, 1], see Russo’s paper [230]). Thus,
continuity of p 7→ θ(p) is equivalent to the statement that θ(pc(Zd)) = 0.

We now introduce several more critical exponents. The critical exponent γ for the
expected cluster size is given by1

(1.2.5) χf(p) ∼ |p− pc|−γ, p→ pc.

More precisely, we can think of (1.2.5) as defining the two critical exponents γ, γ′ > 0
defined by

(1.2.6) χ(p) ∼ (pc − p)−γ, p↗ pc, χf(p) ∼ (p− pc)−γ
′
, p↘ pc,

with the predicted equality γ = γ′.
Further, ν, ν ′ are defined by

(1.2.7) ξ(p) ∼ (pc − p)−ν , p↗ pc, ξ(p) ∼ (p− pc)−ν
′
, p↘ pc,

again with the prediction that ν = ν ′. In the same way, ν2, ν
′
2 are defined by

(1.2.8) ξ2(p) ∼ (pc − p)−ν2 , p↗ pc, ξ2(p) ∼ (p− pc)−ν
′
2 , p↘ pc,

and supposedly ν2 = ν ′2 = ν = ν ′.

1The careful reader may notice that we are anticipating here that pc = pT .
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The gap exponent ∆ > 0 is defined by,

(1.2.9)
Ep
[
|C (0)|k+1

1{|C (0)|<∞}
]

Ep
[
|C (0)|k1{|C (0)|<∞}

] ∼ |p− pc|−∆ where k = 1, 2, 3, . . . ,

with the unwritten assumption that ∆ is independent of k. Also ∆ can be defined,
similarly to (1.2.6), as an exponent ∆ for p ↗ pc and another ∆′ for p ↘ pc, the values
being equal. As mentioned before, it is highly unclear that these critical exponents are
well-defined, and that the value of ∆ > 0 does not depend on k. However, there are good
physical reasons why these exponents are defined as they are.

The exponents β, γ, ν,∆ can be thought of as approach exponents that measure the
blow-up of various aspects of the cluster size as p approaches the critical value p = pc.
We finally define three critical exponents at criticality. The exponent δ ≥ 1 measures the
power-law exponent of the critical cluster tail, i.e.,

(1.2.10) Ppc(|C (0)| ≥ n) ∼ n−1/δ, n→∞,

the assumption that δ ≥ 1 following from the prediction that χ(pc) =∞. See Chapter 3
for a proof of this fact. Further, we define the extrinsic arm exponent ρex > 0 by

(1.2.11) Ppc
(
0←→ ∂Λn

)
∼ n−1/ρex , n→∞,

where Λn = {−n, . . . , n}d denotes the (`∞-)ball of radius n and ∂Λn = Λn\Λn−1 its (outer
vertex) boundary. In contrast to this, there is also the intrinsic arm exponent ρin > 0,
where, instead of the extrinsic `∞-metric, we use the intrinsic metric (also known as graph
distance or hop-count distance) dC (0) on the cluster C (0) interpreted as a graph,

(1.2.12) Ppc(∃x ∈ Zd : dC (0)(0, x) = n) ∼ n−1/ρin , n→∞,

Finally, η is defined by

(1.2.13) Epc
[
|C (0) ∩ Λn|

]
=
∑
x∈Λn

τpc(x) ∼ n2−η, n→∞.

There are several closely related versions of η that have been considered in the literature.
First, we can define η in x-space by assuming that

(1.2.14) τpc(x) = Ppc(0←→ x) ∼ |x|−(d−2+η), |x| → ∞,

which is clearly stronger than (1.2.13) by summing over x ∈ Λn:

Exercise 1.1 (Versions for η). Prove that (1.2.14) implies (1.2.13).

For the second alternative definition of η, we rely on Fourier theory. Fourier transforms
play a central role in high-dimensional percolation, so we take some time to introduce them
now.

Unless specified otherwise, k always denotes an arbitrary element from the Fourier
dual of Zd, which is the torus (−π, π]d. The Fourier transform of a function f : Zd → C
is defined by

(1.2.15) f̂(k) =
∑
x∈Zd

f(x) eik·x, k ∈ (−π, π]d.
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Even though the Fourier transforms have values in C, most of our functions are symmetric
w.r.t. reflection, that is, f(x) = f(−x) for all x ∈ Zd. For such functions, the Fourier
transform becomes

(1.2.16) f̂(k) =
∑
x∈Zd

cos(k · x) f(x), k ∈ (−π, π]d,

and is in fact R-valued. For two summable functions f, g : Zd 7→ R, we let f ? g denote
their convolution, i.e.,

(1.2.17) (f ? g)(x) =
∑
x∈Zd

f(y)g(x− y).

We note that the Fourier transform of f ? g is given by the product of f̂ and ĝ.
We next discuss an example that is crucial throughout this text. Let

(1.2.18) D(x) = 1{|x|=1}/(2d)

be the transition probability of simple random walk, for which we compute

(1.2.19) D̂(k) =
1

2d

∑
x : |x|=1

eik·x =
1

d

d∑
i=1

cos(ki), k = (k1, . . . , kd) ∈ [−π, π)d.

The simple random walk step distribution D and its Fourier transform D̂ will play a
central role in these lecture notes.

The Fourier transform of the two-point function is given by

(1.2.20) τ̂p(k) =
∑
x∈Zd

eik·xτp(x),

so that, recalling (1.1.9),

(1.2.21) χ(p) = τ̂p(0).

Then, we can define η in k-space by assuming that

(1.2.22) τ̂pc(k) ∼ |k|−2+η as |k| → 0.

It can be seen that (1.2.22) again implies (1.2.13), but this is less obvious. See our paper
with Hulshof [146] or the following exercise for more details:

Exercise 1.2 (Versions for η (Cont.)). Prove that also (1.2.22) implies (1.2.13) (or
look it up in [146]).

We emphasize here that (1.2.22) is a highly non-trivial result, since τ̂pc(0) = χ(pc) =
∞, so that τ̂pc(k) is the Fourier transform of a non-summable function. In particular,
taking k 6= 0 makes the sum in (1.2.20) finite. We argue in Chapter 4 that the same
is true for the random walk Green’s function, a statement that is quite relevant in high
dimensions.

The existence of the percolation critical exponents are deep results, and have provided
an enormous source of research in the past decades. Only for site percolation on the two-
dimensional triangular lattice and for percolation in sufficiently high dimensions, these
critical exponents are known to exist and their values have been identified. In Table 1.1,
we list the conjectured and proved results for the percolation critical exponents. There
are extensive numerical studies in the physics literature yielding approximations for the
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critical exponents in intermediate dimensions, see for example Stauffer and Aharony [250,
Table 2.2].

The values for d = 2 are believed to be valid for any finite-range two-dimensional
percolation model. At the moment, they are only proved to exist for site-percolation
on the two-dimensional triangular lattice and some related lattices. The history for the
two-dimensional case is that Schramm [240] first identified a class of continuous models
phrased in terms of one-dimensional Brownian motion, so-called SLE. These are confor-
mally invariant models in the plane of which the properties depend on the value of the
parameter κ > 0 that describes the variance of the Brownian motion. Schramm continued
by noting that if the scaling limit of two-dimensional percolation would be conformally
invariant, then it must be equal to SLE with parameter κ = 6. A celebrated result by
Smirnov [247] shows that indeed the scaling limit of critical percolation on the triangu-
lar lattice is conformally invariant. Schramm already noted that SLE with parameter
κ = 6 has similar critical exponents as in Table 1.1, when defined in an appropriate way.
Smirnov and Werner [249] identified the critical exponents relying on the conformal in-
variance proved by Smirnov. Recently, Grimmett and Manolescu [121] show that if the
critical exponents exist for one member of a certain family of models, then they exist for
all members of that family of isoradial graph. This family includes bond percolation on
the triangular lattice as well as bond percolation on the square lattice. Since site perco-
lation on the triangular lattice is not a member of this family, we are still waiting for the
proof that any one of them is conformally invariant as is widely believed. The critical
exponent ρin has not yet been identified mathematically in dimension d = 2; for bounds
on intrinsic distances in the planar case, we refer to Damron [80] and references therein.

d β γ ν δ η ρex ρin

2 5
36

43
18

4
3

91
5

5
24

48
5

?

3 – 6 ? ? ? ? ? ? ?

d > 6 1 1 1/2 2 0 1/2 1

Table 1.1. Conjectured or proved critical exponents for percolation. The
values for dimension 2 are rigorously proven for site-percolation on a tri-
angular lattice [249], the values for d > 6 are discussed in detail in these
lecture notes.

The aim of these lecture notes is to describe the results in high dimensions. For
percolation in sufficiently high dimensions, the critical exponents are now known to be
equal to those in the last row of Table 1.1. The main works in this direction are the
papers by Aizenman and Newman [13] and Barsky and Aizenman [27], who proved that
γ, β and δ take on these values when the so-called triangle condition is valid, and that
by Hara and Slade [133], who proved the so-called infrared bound that, in turn, verifies
that η = 0 and that the triangle condition holds. In these lecture notes, we explain and
prove these results, as well as their more recent extensions. For example, we discuss the
recent proof by Fitzner and the second author that shows that the mean-field critical
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exponents are valid for d ≥ 11. Further, we also discuss the notion of universality in high
dimensions. An example of universality is that the mean-field critical exponents in Table
1.1 are proved for all d > 6 when we consider percolation on a spread-out lattice consisting
of all bonds {x, y} with ‖x− y‖∞ ≤ L when L ≥ L0(d) is chosen to be sufficiently large.
Here, ‖x‖∞ = maxdi=1 |xi| denotes the supremum norm of x. In particular, in this setting,
the critical exponents do not depend on the value of L (even though the value of pc is
sensitive to L), an example of universality.

Percolation is a paradigmatic model in statistical physics. As discussed before, a
central notion in this field is universality. An example of universality in the setting of
percolation is the prediction that any finite-range percolation model on Zd has the same
critical exponents. While universality is quite plausible when describing real physical
systems from the viewpoint of statistical physics, and while universality is a very useful
notion since it allows us to study only the simplest finite-range model available, there
are very few examples where universality can be rigorously proved. High-dimensional
percolation provides one crucial example.

In the next section, we start by setting the stage. We describe three key technical
tools that are used throughout these lecture notes.

1.3. Russo, FKG and BKR

We mention two inequalities that play a profound role in percolation theory, namely
the FKG and BK inequalities. We also discuss Russo’s formula, which is useful to describe
derivatives of probabilities of events. Particularly the BK inequality and Russo’s formula
are essential in analysing high-dimensional percolation.

The Fortuin-Kasteleyn-Ginibre or FKG inequality in the context of percolation is
called the Harris inequality and was first proved by Harris in [143]. The more general
FKG inequality, which, for example, also applies to the Ising model, was derived by
Fortuin, Kasteleyn and Ginibre in [108]. We say that an event E is increasing when,
if E occurs for a percolation configuration ω and ω′ denotes a configuration for which
ω′(b) = 1 for every bond b for which ω(b) = 1, then E continues to hold for ω′. In other
words, the event E remains to hold when we turn more bonds from vacant to occupied.
The Harris inequality states that for two increasing events E and F that depend only on
a finite number of bonds,

(1.3.1) Pp(E ∩ F ) ≥ Pp(E)Pp(F ),

the FKG inequality gives the same conclusion under weaker assumptions on the measure
involved. In words, for increasing events E and F , the occurrence of E makes the si-
multaneous occurrence of F more likely. The intuition for the FKG inequality is that
if the increasing event E holds, then this makes it more likely for edges to be occu-
pied, and, therefore, it becomes more likely that the increasing event F also holds. Thus,
Pp(F | E) ≥ Pp(F ), which is equivalent to (1.3.1). See Häggström [124] for a Markov chain
proof of the FKG-inequality or Grimmett [119, Section 2.2] for a proof using induction
on the number of edges involved.

As an example, the FKG inequality yields that, for every x, y, u, v ∈ Zd,

(1.3.2) Pp(x←→ y, u←→ v) ≥ Pp(x←→ y)Pp(u←→ v).
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While the events in (1.3.2) do not depend on finitely many bonds, the inequality can be
obtained by an appropriate truncation argument.

The van den Berg-Kesten or BK-inequality gives, in a certain sense, an opposite in-
equality. We first state it in the case of increasing events, for which it was proved by van
den Berg and Kesten in [43]. The most general version is proved by Reimer in [227]. For
K ⊆ E and ω ∈ {0, 1}E , we write ωK(e) = ω(e) for e ∈ K, and ωK(e) = 0 otherwise. Let
E and F again be increasing events depending on finitely many bonds, and write

(1.3.3) E ◦ F = {ω : ∃K ⊆ E such that ωK ∈ E,ωKc ∈ F}.
Then, the van den Berg-Kesten (BK) inequality states that

(1.3.4) Pp(E ◦ F ) ≤ Pp(E)Pp(F ).

For example, the event {x ←→ y} ◦ {u ←→ v} is the event that there are edge-disjoint
occupied paths from x to y and from u to v, and (1.3.3) implies that2

(1.3.5) Pp
(
{x←→ y} ◦ {u←→ v}

)
≤ Pp(x←→ y)Pp(u←→ v).

Intuitively, this can be understood by noting that, if x ←→ y and u ←→ v must occur
disjointly, then we can first fix an occupied path connecting x and y in a certain arbitrary
manner, and remove the occupied edges used in this path. Then {x←→ y} ◦ {u←→ v}
occurs when in the configuration with the edges removed, we still have that u ←→ v.
Since we have removed the edges in the occupied path from x to y, this event now has
smaller probability than Pp(u←→ v). See Grimmett [119, Section 2.3] for a proof of the
BK-inequality.

Exercise 1.3 (BK for connection events). Use a restriction to finite domains and
monotone convergence to prove that (1.3.5) follows from (1.3.4).

We continue to define a generalization of the BK-inequality, allowing for events that
are possibly non-monotone, called the van den Berg-Kesten-Reimer (BKR) inequality, see
[43, 61, 227]. For a set of edges B, we say that an event E occurs on B if and only if it
occurs independently of the status of the edges not in B, i.e., it is the event

(1.3.6) E|B =
{
ω ∈ E : ∀ω′ such that ω′ = ω on B also ω′ ∈ E

}
.

For two events E,F , we let E ◦ F denote the event

(1.3.7) E ◦ F = {ω : ∃B1, B2 ⊆ E , B1 ∩B2 = ∅, ω ∈ E|B1 ∩ F|B2}.
We refer to the random sets of edges B1, B2 as witnesses for the events E and F , respec-
tively. The BKR-inequality states that

(1.3.8) Pp(E ◦ F ) ≤ Pp(E)Pp(F ).

While the BKR-inequality in (1.3.8) is in its formulation identical to the BK-inequality
in (1.3.4), we do state the two inequalities separately for ease of reference.3

Exercise 1.4 (BKR for increasing events). Prove that (1.3.7) reduces to (1.3.3) when
E and F are increasing.

2These events again do not depend on finitely many bonds, but they can be approximated by events
depending on finitely many bonds, so that our conclusion remains to hold. See Exercise 1.3.

3Grimmett [119] uses E�F for the event in (1.3.7).
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Exercise 1.5 (BKR and FKG). Prove that the BKR inequality implies the Harris
inequality when applied to an increasing event E and a decreasing event F , for which it
states that Pp(E ∩ F ) ≤ Pp(E)Pp(F ).

We finally discuss an important tool to study probabilities which goes under the name
of Russo’s formula [231] even though it appeared earlier in a similar form by Margulis
[212]. Let E be an increasing event that is determined by the occupation status of finitely
many bonds. Then we say that the bond {u, v} is pivotal for the event E when E occurs
when the status of {u, v} in the (possibly modified) configuration where {u, v} is turned
occupied, while E does not occur in the (possibly modified) configuration where {u, v}
is turned vacant. Thus, the bond {u, v} is essential for the occurrence of the event E.
The set of pivotal bonds for an event is random, as it depends on which other bonds are
occupied and vacant in the configuration. Russo’s formula states that for every increasing
event E that depends on a finite number of bonds,

(1.3.9)
d

dp
Pp(E) =

∑
e∈E

Pp
(
e pivotal for E

)
.

Russo’s formula allows us to study how the probability of an event changes as p varies.
The fact that (1.3.9) is only valid for events that depend on a finite number of bonds
is a nuisance, and there are many settings in which Russo’s formula can be extended
to events depending on infinitely many bonds by an appropriate cutting procedure. We
tread lightly on this issue, and refer to the literature for precise proofs.

To explain the intuition behind Russo’s formula, we consider

(1.3.10) Pp+ε(E)− Pp(E),

and use the Harris coupling. In the Harris coupling, we assign a uniform random variable
Ub to every bond b independently across the bonds, and say that b is p-occupied when
Ub ≤ p. For an event E, we write Ep when E occurs for the p-occupied configuration.
Then, we can write

(1.3.11) Pp+ε(E)− Pp(E) = P(Ep+ε)− P(Ep) = P(Ep+ε ∩ Ec
p),

since the event E is increasing. In the Harris coupling, every p-vacant bond is indepen-
dently occupied with probability ε/(1 − p) to obtain the (p + ε)-configuration. Since E
depends on the status of only finitely many bonds, if ε > 0 is very small, then most prob-
ably there is at most one bond that is different in the (p + ε)- and the p-configuration.
Thus, when Ep+ε occurs, but Ep does not, this bond must be pivotal for the occurrence
of Ep. Furthermore, since E is increasing, this bond needs to be p-vacant and (p + ε)-
occupied. Mind that the event {b is pivotal} is independent of the occupation of b. Thus,
since the factors of 1− p cancel,

(1.3.12) Pp+ε(E)− Pp(E) = ε
∑
b

E[1{b pivotal for Ep}] +O(ε2).

Dividing by ε and taking the limit ε↘ 0 gives (1.3.9).

1.4. Aim of these lecture notes and what is new?

We have now discussed the basic concepts in percolation. In this section, we present
the main aim of these lecture notes, which is twofold:
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First main aim of these lecture notes:

Give a self-contained proof for mean-field
behavior of high-dimensional percolation

We state and prove the fact that percolation in high dimensions has mean-field
critical exponents β = γ = 1, δ = 2 and η = 0. This proof is obtained by combining
the results in three seminal papers:
(1) First, the two papers by Aizenman and Newman [13] and Barsky and Aizenman
[27] that prove that these critical values exist and take their mean-field values
assuming a certain geometrical condition called the triangle condition. The proofs
of these facts rely on clever differential inequalities, some of which apply in general
dimensions and imply mean-field bounds.
(2) Second, the paper by Hara and Slade [133] that proves the infrared bound,
which, in turn, proves that the triangle condition holds. The proof relies on the
lace-expansion method, a key tool in high-dimensional statistical mechanics. The
lace expansion is a combinatorial expansion identity for the two-point function τp(x)
that relates it to the random walk Green’s function.

We perform the proofs needed for many of these results completely, and thus pro-
vide a first self-contained expository version of these facts. The proofs include recent
simplifications, for example the use of trigonometric functions due to Borgs, Chayes, the
second author, Slade and Spencer in [59], and the simplified analysis in joint work with
Sakai [149]. See also the excellent Saint-Flour notes by Slade [246] for a related analysis,
however, the main focus of that text is on self-avoiding walk instead.

Aside from these classical results that are now approximate 25 years old, we also discuss
recent extensions and additions. These results show that high-dimensional percolation is
a highly active research field, in which still substantial progress is being made. Further,
many important problems have not yet been resolved. Most prominently, we discuss the
following:

Second main aim of these lecture notes:

Describe further mean-field results for
percolation in high dimensions.

(1) The recent proof of Fitzner and the second author [105, 106], that mean-field
behavior holds for percolation in dimensions d ≥ 11;
(2) The proof of existence of arm exponents by Kozma and Nachmias [199, 200],
and the relevance of η = 0 in x-space proved by Hara, the second author and Slade
[132] and Hara [131];
(3) Finite-size scaling and percolation on high-dimensional tori and their relation-
ship to the Erdős-Rényi random graph in work of Borgs, Chayes, the second author,
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Slade and Spencer [58, 59] and the authors [144, 145];
(4) Extensions of these finite-size scaling results to hypercube percolation by Borgs,
Chayes, the second author, Slade and Spencer [60] and by Nachmias and the second
author [165, 166];
(5) The existence of the incipient infinite cluster (IIC) as proved by Jarái and the
second author [162], and with Hulshof in [146], and some of the scaling properties of
the IIC in recent work with Hulshof and Miermont [148]. We further highlight the
proof of the Alexander-Orbach conjecture for random walks on the high-dimensional
IIC by Kozma and Nachmias [199], and the Euclidean scaling of random walks on
the high-dimensional IIC by the authors with Hulshof [147];
(6) Super-process limits of critical percolation clusters, as proved by Hara and Slade
[140, 141], and for oriented percolation by Slade and the second author [171].

While describing the results and proofs, we state many open problems along the way.

1.5. Organization and notation

In Chapter 2, we start by analyzing percolation on the tree as well as its geometric
embedding, which goes under the name branching random walk (BRW). We focus on its
critical behavior. In Chapter 3, we show that the percolation phase transition is unique
by proving that pc = pT (recall (1.1.2) and (1.1.4)). This completes Part 1 of these lecture
notes.

In Chapter 4, we describe a geometric condition, the so-called triangle condition, that
implies that some of the critical exponents in Zd are equal to the mean-field exponents
for percolation on a tree identified in Chapter 2.1 and for BRW as identified in Section
2.2. This result lies at the heart of the methods to study high-dimensional percolation,
and formed the inspiration for Gordon Slade and Takashi Hara to study the two-point
function in detail in [133]. We explain the relevance of the triangle condition by showing
that it implies that γ = 1. In Chapter 5, we describe the main result in high-dimensional
percolation, the so-called infrared bound that implies the triangle condition. In Chapter
6, we explain the philosophy behind the proof of the infrared bound. This proof is based
on a combinatorial expansion that is often called the lace expansion, even though laces do
not appear in it. We derive this expansion in Chapter 6, bound its coefficients in Chapter
7 and analyze its asymptotics in Chapter 8. This completes the proof of the infrared
bound. In Chapter 9, we explain how the other critical exponents can be identified
by using differential inequalities. Chapters 4–9 describe the classical mean-field results in
high-dimensional percolation that constitute Part 2 of these lecture notes. Proofs in Parts
1 and 2 are given completely, so that the discussion of mean-field results is self-contained.

In Chapter 10, we discuss the non-backtracking lace expansion that is used to prove
that mean-field critical exponents exist for d ≥ 11. In Chapter 11, we discuss some of the
more recently investigated critical exponents, such as ν, η, ρin and ρex. In Chapter 12,
we define the so-called incipient infinite cluster, an infinite critical percolation cluster. In
Chapter 13, we discuss finite-size effects in percolation, by describing percolation on high-
dimensional tori, and their relations to random graphs. We argue that the Erdős-Rényi
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random graph is the mean-field model in this setting, and state results that confirm this
prediction. These results form Part 3 of these lecture notes, in which partial proofs are
given and overviews in cases where proofs are incomplete.

In the remaining Part 4 of these lecture notes, we discuss related and open problems.
In Chapter 14, we investigate random walks on large percolation clusters. We close
these lecture notes in Chapter 15 with several related results, ranging from relations
between percolation and super-processes, oriented percolation, to long-range percolation
and percolation on non-amenable graphs, as well as a list of open problems on related
models in Chapter 16.

Notation. Let us introduce some standard notation. We say that a sequence of
events En occurs with high probability (whp) when limn→∞ P(En) = 1. We further write
f(n) = O(g(n)) if |f(n)|/|g(n)| is uniformly bounded from above by a positive constant
as n → ∞, f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)), f(n) = Ω(g(n)) if
1/f(n) = O(1/g(n)) and f(n) = o(g(n)) if f(n)/g(n) tends to 0 as n→∞. We say that
f(n)� g(n) when g(n) = o(f(n)).

We write ‖ · ‖∞ for the supremum (or `∞-) norm on Zd or Rd, ‖ · ‖1 for the `1-norm,
and | · | for the Euclidean (or `2-) norm.

For sequences of random variables (Xn)n≥1, we let Xn
d−→ X denote that Xn converges

in distribution to X, while Xn
P−→ X denotes that Xn converges in probability to X and

Xn
a.s.−→ X denotes that Xn converges almost surely to X. We write that Xn = OP(Yn)

when |Xn|/Yn is a tight sequence of random variables and Xn = oP(Yn) when |Xn|/Yn
P−→

0.



CHAPTER 2

Fixing ideas: Percolation on a tree and branching random walk

These lecture notes discuss percolation in high dimensions. When the dimension
is high, space is so vast that faraway pieces of percolation clusters are close to being
independent. The main purpose of these lecture notes is to make this imprecise statement
precise. One reflection of this is that critical percolation clusters in high dimensions
have relatively few cycles. On a tree, they are precisely independent, so that the above
heuristic suggests that percolation on the high-dimensional hypercubic lattice is close to
percolation on a tree. However, a tree does not have a Euclidean structure, and after
discussing percolation on a tree, we discuss branching random walk, which we consider to
be the proper mean-field model for percolation in high dimensions.

2.1. Percolation on a tree

We start by studying percolation on the regular tree. In particular, we identify the
critical exponents for percolation on a tree. We follow Grimmett [119, Section 10.1] or
the second author’s lecture notes [154, Section 1.2.2]. Let Tr denote the r-regular tree of
degree r. The advantage of trees is that they do not contain cycles, which makes explicit
computations possible. We first prove that the critical exponents for percolation on a
regular tree exist and identify their values in the following theorem:

Theorem 2.1 (Critical behavior on the r-regular tree). On the r-regular tree Tr,
pc(Tr) = pT (Tr) = 1/(r − 1), and β = γ = γ′ = ρin = 1 and δ = ∆ = ∆′ = 2 in the
asymptotic sense.

Proof. We make substantial use of the fact that percolation on a tree can be de-
scribed in terms of branching processes. Let o denote a distinguished vertex that we call
the root of the tree. For vertices x, y ∈ Tr, we write x ∼ y whenever x and y are linked
by an edge in the tree Tr, and denote by (Ix,y)x∼y an i.i.d. family of Bernoulli random
variables with parameter p indicating whether the edge {x, y} is occupied or not. For
x 6= o, we write CBP(x) for the forward cluster of x in Tr, i.e., those vertices y ∈ Tr that
are connected to x and for which the unique path from x to y only moves away from the
root o. Then, clearly,

(2.1.1) |C (o)| = 1 +
∑
e∼o

Io,e|CBP(e)|,

where the sum is over all neighbors e of o, and (|CBP(e)|)e∼o is an i.i.d. sequence indepen-
dent of (Io,e)e∼o. Equation (2.1.1) allows us to deduce all information concerning |C (o)|
from the information of |CBP(e)|. Also, for each x 6= o, |CBP(x)| satisfies the formula

(2.1.2) |CBP(x)| = 1 +
∑

v∼x : h(v)>h(x)

Ix,v|CBP(v)|,

17
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where h(x) is the distance to the root (or height) of x in Tr, and
(
|CBP(v)|

)
v∼x : h(v)>h(x)

is a set of r − 1 independent copies of |CBP(x)|. Thus, |CBP(x)| is the total population
size of a branching process, also known as its total progeny. We now derive the critical
exponents one by one, in the order γ, ∆, β, γ′, ∆′, δ and ρin.

Proof that γ = 1 on the tree. We use (2.1.2) to conclude that

(2.1.3) χBP(p) := Ep|CBP(x)| = 1 + (r − 1)pEp|CBP(x)| = 1 + (r − 1)pχBP(p),

so that

(2.1.4) χBP(p) = Ep|CBP(x)| = 1

1− (r − 1)p
.

From (2.1.1), we then obtain that, for p < 1/(r − 1),

(2.1.5) χ(p) = 1 + rpχBP(p) = 1 +
rp

1− (r − 1)p
=

1 + p

1− (r − 1)p
,

while, for p ≥ 1/(r − 1), χ(p) = ∞. In particular, pT = 1/(r − 1), and γ = 1 in the
asymptotic sense. The computation of χ(p) can also be performed without the use of
(2.1.2), by noting that, for p ∈ [0, 1],

(2.1.6) τp(x) = ph(x),

and the fact that, for n ≥ 1, there are r(r − 1)n−1 vertices in Tr at height n, so that, for
p < 1/(r − 1),

(2.1.7) χ(p) = 1 +
∞∑
n=1

r(r − 1)n−1pn = 1 +
rp

1− (r − 1)p
=

1 + p

1− (r − 1)p
.

However, for related results for percolation on a tree, the connection to branching processes
in (2.1.2) is vital.

Proof that ∆ = 2 on the tree. You do it:

Exercise 2.1 (∆ = 2 on the tree). Prove that ∆ = 2 on the tree.

Proof that β = 1 on the tree. We continue to investigate the critical exponent β
for the percolation function on the tree. Let θBP(p) = Pp(|CBP(x)| = ∞). Then θBP(p)
is the survival probability of a branching process with a binomial offspring distribution
with parameters r − 1 and p. Thus, θBP(p) satisfies the equation

(2.1.8) θBP(p) = 1−
(
1− p+ p(1− θBP(p))

)r−1
= 1−

(
1− pθBP(p)

)r−1
.

To compute θBP(p), it is more convenient to work with the extinction probability ζBP(p) =
1 − θBP(p), which is the probability that the branching process dies out. The extinction
probability ζBP(p) satisfies

(2.1.9) ζBP(p) =
(
1− p+ pζBP(p)

)r−1
.

This equation can be seen by noting that each of the r − 1 possible children of the root
needs to die out for the process to go extinct. By the absence of cycles, these events are
independent and have the same probability, which explains the power r − 1 in (2.1.9).
Further, the probability that a child of the root dies out equals 1 − p + pζBP(p), since
either the edge leading to it is vacant, or the edge leading to it is occupied and then the
branching process generated from this child needs to die out as well.
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The equation (2.1.9) can be solved explicitly when r = 2 (the ‘line graph’), where the
unique solution is ζBP(p) = 1 for p ∈ [0, 1) and ζBP(1) = 0. As a result, θBP(p) = 0 for
p ∈ [0, 1) and θBP(1) = 1, so that pc(T2) = 1. Having dealt with r = 2, we henceforth
assume r ≥ 3.

When r = 3, (2.1.9) reduces to

(2.1.10) p2ζBP(p)2 + (2p(1− p)− 1)ζBP(p) + (1− p)2 = 0,

so that

(2.1.11) ζBP(p) =
1− 2p(1− p)± |2p− 1|

2p2
.

Since ζBP(1) = 0, we must have that

(2.1.12) ζBP(p) =
1− 2p(1− p)− |2p− 1|

2p2
,

so that ζBP(p) = 1 for p ∈ [0, 1/2], while, for p ∈ [1/2, 1],

(2.1.13) ζBP(p) =
1− 2p(1− p) + (1− 2p)

2p2
=

2− 4p+ 2p2

2p2
=
(1− p

p

)2

.

As a result, we have the explicit form θBP(p) = 0 for p ∈ [0, 1/2] and

(2.1.14) θBP(p) = 1−
(1− p

p

)2

=
2p− 1

p2
,

for p ∈ [1/2, 1], so that pc(T3) = 1/2. In particular, p 7→ θBP(p) is continuous, and

(2.1.15) θBP(p) = 8(p− pc)(1 + o(1)) as p↘ pc.

It is not hard to see that (2.1.15) together with (2.1.1) implies that

(2.1.16) θ(p) = 12(p− pc)(1 + o(1)) as p↘ pc.

Thus, for r = 3, the percolation function is continuous, and β = 1 in the asymptotic
sense.

One can easily extend the asymptotic analysis in (2.1.15)–(2.1.16) to r ≥ 4, for which
pc(Tr) = pT (Tr) = 1/(r − 1). We leave this as an exercise:

Exercise 2.2 (Asymptotics p 7→ θ(p) for Tr with r ≥ 4). Prove that, on Tr with
r ≥ 4,

(2.1.17) θBP(p) =
2(r − 1)2

r − 2
(p− pc)(1 + o(1)),

and

(2.1.18) θ(p) =
2r(r − 1)

r − 2
(p− pc)(1 + o(1)).
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Proof that γ′ = 1 on the tree. In order to study χf
BP(p) = Ep[|CBP(x)|1{|CBP(x)|<∞}]

for p > pc = 1/(r − 1), we make use of the fact that

(2.1.19) χf
BP(p) = (1− θBP(p))Ep

[
|CBP(x)|

∣∣ |CBP(x)| <∞
]
,

and the conditional law of percolation on the tree given that |CBP(x)| <∞ is percolation
on a tree with p replaced by the dual percolation probability pd given by

(2.1.20) pd = p(1− θBP(p)).

Indeed, each of the edges incident to the root that is occupied needs to be leading to a
vertex that dies out itself, and all these events are independent. This explains that the
offspring distribution of the root is binomial with parameter pd as in (2.1.20) and r − 1.
But then each of the children of the root is again conditioned to go extinct, so that also
their offspring distribution is binomial with parameters pd and r − 1.

The crucial fact is that pd < pc(Tr), which follows from the equality 1−θBP(p) = ζBP(p),
(2.1.9) and the fact that

(r − 1)pζBP(p) = (r − 1)p
(
1− p+ pζBP(p)

)r−1
< (r − 1)p

(
1− p+ pζBP(p)

)r−2

=
d

ds
(1− p+ ps)r−1

∣∣∣
s=ζBP(p)

.(2.1.21)

Since ζBP(p) is the smallest solution of (1−p+ps)r−1 = s, this implies that the derivative
of (1 − p + ps)r−1 at s = ζBP(p) is strictly bounded above by 1 for p > pc(Tr). Thus, by
conditioning a supercritical cluster in percolation on a tree to die out, we obtain a sub-
critical cluster at an appropriate subcritical pd which is related to the original percolation
parameter. This fact is sometimes called the discrete duality principle.

We use (2.1.7) to conclude that

χf
BP(p) = (1− θBP(p))Ep

[
|CBP(x)|

∣∣ |CBP(x)| <∞
]

= (1− θBP(p))
1

1− (r − 1)p(1− θBP(p))
.(2.1.22)

Using that θBP(p) = C(p − pc)(1 + o(1)) for C > 1, cf. (2.1.17), in the asymptotic sense
then gives that

(2.1.23) χf
BP(p) =

Cγ′ + o(1)

p− pc
.

By (2.1.1), this can easily be transferred to χf(p), so that also γ′ = 1 in the asymptotic
sense.

Proof that ∆′ = 2 on the tree. The above analysis can be extended to ∆′ = 2,
by looking at higher moments of the cluster size conditioned to be finite. By the duality
described above, this follows from the fact that ∆ = 2 and β = 1.

Proof that δ = 2 on the tree. We can compute δ by using the random walk hitting
time theorem, see Grimmett’s percolation book [119, Prop. 10.22] or the more recent
proof by the second author and Keane in [163], where a simple proof is given for general
branching processes. This result yields that

(2.1.24) Pp(|CBP(x)| = k) =
1

k
P(X1 + · · ·+Xk = k − 1),
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where (Xi)i≥1 is an i.i.d. sequence of binomial random variables with parameter r−1 and
success probability p.

Exercise 2.3 (Branching processes and random walks). Prove that

(2.1.25) Pp(|CBP(x)| = k) = P1(Sk = 0 for the first time),

where Sk = 1 +
∑k

i=1(Xi − 1).

Exercise 2.4 (Random walk hitting time theorem). Prove (2.1.24) using induction
on the equality

(2.1.26) Pm(Sk = 0 for first time) =
m

k
P1(X1 + · · ·+Xk = k − 1),

where Sk = m+
∑k

i=1(Xi − 1), and the previous exercise.

From (2.1.24), we conclude that

(2.1.27) Pp(|CBP(x)| = k) =
1

k

(
k(r − 1)

k − 1

)
pk−1(1− p)k(r−1)−(k−1).

To prove that δ = 2, we note that for p = pc(Tr) = 1/(r − 1), by a local limit theorem,

(2.1.28) Ppc(|CBP(x)| = k) = (2Cδ + o(1))
1√
k3
.

Summing over k ≥ n, we obtain

(2.1.29) Ppc(|CBP(x)| ≥ n) =
∑
k≥n

(2Cδ + o(1))
1√
k3

=
Cδ + o(1)√

n
.

This proves that δ = 2 in an asymptotic sense on the tree.

Proof that ρin = 1 on the tree. We can compute ρin by noting that

(2.1.30) θn = Ppc
(
∃v ∈ CBP(o) such that h(v) = n

)
satisfies the recursion relation

(2.1.31) 1− θn = (1− pcθn−1)r−1.

It is not hard to see that (2.1.31) together with pc(Tr) = 1/(r − 1) implies that θn =
(Cin + o(1))/n, so that ρin = 1. This is left as Excercise 2.5 below. �

Exercise 2.5 (Proof of (2.1.31) and its asymptotics).

(a) Prove (2.1.31).
(b) Prove that (2.1.31) implies that θn = 2/(σ2n)(1 + O(1/n)), where σ2 = (r −

2)/(r − 1) is the variance of the offspring distribution. Hint: Perform induction
on n for vn = 1/θn.

Exercise 2.6 (A lower bound on pc for general graphs).

(a) Use the percolation critical values pc(Tr) = pT (Tr) = 1/(r − 1) on the r-regular
tree Tr in Theorem 2.1 to show that pc(G) ≥ 1/r when G is a transitive graph
with degree r.

(b) Improve the bound in part (a) to pc(G) ≥ 1/(r − 1) when G is a transitive graph
with degree r.
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The computation of the key objects for percolation on a tree is feasible due to the
close relationship to branching processes, a topic which has attracted substantial interest
in the probability community. See the books by Athreya and Ney [23], Harris [142] and
Jagers [181] for detailed discussions about branching processes.

2.2. Branching random walk as the percolation mean-field model

We next argue that branching random walk, henceforth abbreviated by BRW, can
be viewed as the mean-field model for percolation, and we shall see that the critical
behavior of percolation in high dimensions is closely related to the critical behavior of
BRW. Of course, percolation on the tree lacks a geometric embedding into (Euclidean)
space. Therefore, the critical exponents ρex, ν, ν

′ and η are not so easily defined on the
tree.

BRW is a random embedding of a branching process with Binomial(2d, p)-offspring
distribution into Zd. This can be intuitively understood as follows. Every vertex x in
percolation on Zd has a binomial number of neighbors with parameters p and 2d for
which the edge leading to it is occupied. Thus, one could imagine exploring a cluster
vertex by vertex. In high dimensions, space is quite vast, so that it is relatively rare to
close a cycle. Cycles form the difference between percolation on a tree and percolation in
Zd. BRW is precisely the process in which we ignore cycles. Thus, one might hope that
BRW is closely related to percolation in sufficiently high dimensions. One of the main
aims of these lecture notes is to make this intuition precise. Before starting with that,
though, let us first investigate BRW in more detail, so as to obtain insight in the kind of
results that we might be able to show for high-dimensional percolation.

We may think of branching random walk as percolation on the 2d-ary tree that is
embedded into the Euclidean lattice Zd, and we explain this BRW embedding now. For
every v ∈ Tr, we associate a spatial location φ(v) ∈ Zd in the following (random) way. We
let φ(o) = 0, so that the root in Tr is mapped to the origin in Zd. Further, for v ∈ Tr, we
let p(v) ∈ Tr denote the unique parent of v, i.e., the neighbor of v that is on the unique
path to the root o in the tree Tr. Then, for every v ∈ Tr having parent p(v) ∈ Tr, we let
φ(v) = φ(p(v)) + Yv, where Yv ∈ Zd is a random neighbor of the origin, i.e., for every e
with |e| = 1,

(2.2.1) P(Yv = e) = 1/(2d).

The random variables (Yv)v∈Tr\{o} form a collection of i.i.d. random variables.
We denote the BRW two-point function Gp(x) by

(2.2.2) Gp(x) = Ep
[ ∑
v∈C (o)

1{φ(v)=x}

]
, x ∈ Zd.

and its truncated version by

(2.2.3) Gf
p(x) = Ep

[ ∑
v∈C (o)

1{φ(v)=x}1{|C (o)|<∞}

]
, x ∈ Zd.

The BRW two-point functions Gp(x) and Gf
p(x) have similar interpretations as the per-

colation two-point function τp(x) and τ f
p(x) in (1.1.6)–(1.1.7).
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Alternatively, denoting by N(x) the total number of particles in C (o) that are mapped
to x ∈ Zd by φ,

Gf
p(x) = Ep[N(x)1{|C (o)|<∞}](2.2.4)

= Ep
[∑
v∈Tr

1{φ(v)=x}1{v∈C (o)}1{|C (o)|<∞}

]
=
∑
v∈Tr

Pp
(
φ(v) = x, v ∈ C (o), |C (o)| <∞

)
=
∑
v∈Tr

P(φ(v) = x)Pp(v ∈ C (o), |C (o)| <∞),

the latter by the independence of the embedding of the tree and the occupation statuses
of the bonds.

We now turn to p ≤ pc(Tr) = 1/(r − 1), in which case we can remove the condition
that |C (o)| < ∞. When h(v) = n, in order for {v ∈ C (o)} to occur, all the n edges on
the path between o and v have to be occupied, so that Pp(v ∈ C (o)) = pn. Further,

(2.2.5) P(φ(v) = x) = P(
∑
u∈πv

Yu = x),

where πv contains all the vertices on the unique path between o and v. Again, when
h(v) = n, and by the independence of the random variables (Yv)v∈Tr\{o},

(2.2.6) P(φ(v) = x) = P(
n∑
i=1

Yi = x) = D?n(x),

where D?n denotes the n-fold convolution of D with itself, and we recall that D denotes
the simple random walk transition probability defined in (1.2.18). As a result, we obtain
that

(2.2.7) Gp(x) =
∑
n≥0

r(r − 1)n−1pnD?n(x) =
r

r − 1
C(r−1)p(x),

where Cµ(x) denotes the random walk Green’s function given by

(2.2.8) Cµ(x) =
∑
n≥0

µnD?n(x).

It is well known that, for any d ≥ 3, µ = 1 serves as a critical value for the simple random
walk Green’s function Cµ(x), and that there exists a constant A > 0 such that

(2.2.9) C1(x) =
A

|x|d−2
(1 + o(1)),

cf. Uchiyama [256]. Probabilistically, C1(x) describes the expected number of visits to
the site x of a random walk starting at the origin. See e.g., Uchiyama’s results in [256]
for detailed asymptotics that imply (2.2.9). We take p = pc(Tr) = 1/(r − 1), so that

(2.2.10) Gpc(x) =
r

r − 1
C1(x).

Thus, (2.2.9) implies that η = 0 in x-space for BRW.



24 2. FIXING IDEAS: PERCOLATION ON A TREE AND BRANCHING RANDOM WALK

The connection to BRW yields a powerful intuitive way to predict properties of per-
colation in high dimensions. Further, it yields a powerful relation between BRW and the
random walk Green’s function that will prove to be extremely useful later on.

In Fourier language, the fact that η = 0 is much simpler. Indeed, taking the Fourier
transform of (2.2.8) leads to

(2.2.11) Ĉµ(k) =
∑
n≥0

µnD̂n(k) =
1

1− µD̂(k)
.

Since |D̂(k)| ≤ 1 with D̂(0) = 1, we again see that µ = 1 serves as a critical value. For
µ = 1, we obtain

(2.2.12) Ĉ1(k) =
∑
n≥0

D̂n(k) =
1

1− D̂(k)
.

Using a series expansion of cosine, we obtain for k → 0 that

(2.2.13) 1− D̂(k) =
1

d

d∑
i=1

[1− cos(ki)] =
1

2d

d∑
i=1

k2
i (1 + o(1)) =

1

2d
|k|2(1 + o(1)),

and arrive at

(2.2.14) Ĉ1(k) =
2d

|k|2
(1 + o(1)) as k → 0.

This proves that η = 0 in k-space.

BRW also allows us to define ρex and ν2, ν
′
2, ν, ν

′. For ρex, we write

(2.2.15) Ppc(∃v ∈ C (o) : φ(v) ∈ ∂Λn) ∼ n−1/ρex ,

recalling that ∂Λn consists of lattice sites at `∞-distance n from the origin. The exponents
ν and ν ′ are the critical exponents of the BRW correlation length

(2.2.16) ξBRW(p) = − lim
n→∞

(
log(Gf

p(ne))

n

)−1

,

where we recall (1.2.7) and (2.2.3). Similarly, the exponents ν2 and ν ′2 are the critical
exponents of

(2.2.17) ξBRW

2 (p) =

√
1

χf(p)

∑
x∈Zd
|x|2Gf

p(x),

where we recall (1.2.8) and (2.2.3). The following theorem collects results for the critical
behavior of BRW:

Theorem 2.2 (Critical behavior branching random walk). For BRW with a binomial
offspring distribution with parameters r − 1 and p, the critical value equals pc = pT =
1/(r − 1), and β = γ = γ′ = 1, δ = ∆ = ∆′ = 2, η = 0 and ν2 = ν ′2 = ν = ν ′ = ρex = 1/2
in the asymptotic sense.

Proof. All these critical exponents follow from Theorem 2.1, except η, ν2, ν
′
2, ν, ν

′

and ρex. The fact that η = 0 follows from (2.2.9) and (2.2.10).
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For ν2 and ν ′2, we note that

(2.2.18) Gf
p(x) =

∑
v∈Tr

D?h(v)(x)τ f
p(v).

Fix p < pc = 1/(r − 1), so that τ f
p(v) = τp(v) = ph(v). Then, using the simple random

walk variance given by
∑

x∈Zd |x|2D?n(x) = n, we compute∑
x∈Zd
|x|2Gf

p(x) =
∑
v

∑
x∈Zd
|x|2D?h(v)(x)τ f

p(v)(2.2.19)

=
∑
v

h(v)τ f
p(v) =

∑
n≥1

nr(r − 1)n−1pn =
rp

[1− (r − 1)p]2
,

so that ν2 = 1/2 for BRW. This can be extended to ν ′2 = 1/2 by using the duality between
supercritical BRW conditioned to go extinct and subcritical BRW as discussed around
(2.1.20). The fact that ν = 1/2 for BRW follows from a careful analysis of Cµ(ne1) when
n→∞, using large deviations for random walks. Again this can be extended to ν ′ = 1/2
by using the duality between supercritical BRW conditioned to go extinct and subcritical
BRW.

The proof that ρex = 1/2 is more involved, and is therefore omitted here. �





CHAPTER 3

Uniqueness of the phase transition

In this chapter, we state and prove the celebrated result that pc = pT , which was
independently proved by Menshikov [215] and by Aizenman and Barsky [9]. This theorem
is the starting point of the investigation of high-dimensional percolation. We first state
the result in Section 3.1. We then give two separate proofs of the uniqueness of the phase
transition. In Section 3.2, we first give the recent and beautiful proof by Duminil-Copin
and Tassion [93]. After this, we give the proof by Aizenman and Barsky [9] by first stating
its key result in Section 3.3, defining its central quantity, the percolation magnetization,
in Section 3.4, as well as two differential inequalities the magnetization satisfies. In
Section 3.5, we infer a lower bound on the magnetization for p = pc. In Section 3.6, we
complete the Aizenman-Barsky uniqueness proof. Finally, in Section 3.7, we prove the
crucial Aizenman-Barsky differential inequalities. These differential inequalities also play
a pivotal role in the identification of mean-field critical exponents for percolation in high
dimensions.

3.1. Main result

The main result of this chapter is the following theorem:

Theorem 3.1 (Uniqueness of the phase transition [9, 215]). For every p < pc,

(3.1.1) Ep|C (0)| <∞.
As a result, pc = pT .

Three fairly different proofs of this theorem exist. The one by Menshikov [215] (also
presented by Grimmett [119, Section 5.2]) shows that the probability of the event An that
there exists a vertex x with ‖x‖1 ≥ n such that 0 is connected to it decays exponentially
for any p < pc(Zd). This immediately implies that Ep|C (0)| < ∞ for all p < pc(Zd).
The proof relies on Russo’s formula, as well as a lower bound on the expected number
of pivotals for the event An in terms of the probability of An itself, and then bootstraps
this to exponential decay of Pp(An) for n large. The second proof is by Aizenman and
Barsky [9], and a recent proof is given by Duminil-Copin and Tassion [93]. We start with
the latter, as it is quite simple and insightful. After this, we give the proof by Aizenman
and Barsky [9], which relies on the magnetization and differential inequalities for it. The
proof by Aizenman and Barsky turns out to be instrumental also to prove the existence
of the critical exponents β and δ in high dimensions in Chapter 9.

3.2. The Duminil-Copin and Tassion uniqueness proof

We consider percolation on Zd with d ≥ 2. We start with some notation. Recall that
the Λn denotes the cube with radius n, and ∂Λn = Λn \ Λn−1.

Theorem 3.2 (Equality of critical values and exponential decay [93]). For any d ≥ 2,

27
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(1) For p < pc, there exists c = c(p, d) > 0 such that for every n ≥ 1,

(3.2.1) Pp(0←→ ∂Λn) ≤ e−cn.

(2) For p > pc,

(3.2.2) θ(p) ≥ p− pc
p(1− pc)

.

(3) χ(pc) =∞.

Indeed, (3.2.1) implies (3.1.1), so that Theorem 3.1 follows. The ingenious idea of
Duminil-Copin and Tassion is yet another characterization for the critical value pc, and
we introduce this value now. For any (finite) vertex set S ⊂ Zd, we let ∆S denote its
edge boundary, that is, all the (directed) edges (x, y) with x ∈ S and y 6∈ S.

We say that x is connected to y in S when there exists a path {vi}ki=0 ⊆ S such that
v0 = x and vk = y, for which {vi−1, vi} is occupied for every i = 1, . . . , k. We write this
as {x←→ y in S}.

From now on, we let S always stand for a finite set of vertices containing the origin,
and for such S we define

(3.2.3) ϕp(S) = p
∑

(x,y)∈∆S

Pp(0←→ x in S).

In words, ϕp(S) is the expected number of occupied edges (x, y) in the boundary of S for
which there is a path of bonds inside S that connects the origin to x. The novel critical
value is then

(3.2.4) p̃c(Zd) = sup{p ∈ [0, 1] : ∃ a finite set S with 0 ∈ S ⊂ Zd such that ϕp(S) < 1}.

The proof of Theorem 3.2 proceeds by showing assertion (1)–(3) of the theorem for
p̃c rather than for pc. This shows that there is exponential decay of Pp(0 ←→ ∂Λn) for
p < p̃c and proves a linear lower bound on θ(p) for p > p̃c. Consequently, p̃c = pc, and
the theorem follows.

The argument uses an exploration like the one by Hammersley [128], but it is simplified
significantly by using the BK-inequality, which was not yet known to Hammersley.

Proof of subcritical exponential decay in Theorem 3.2(1). We start by proving
Theorem 3.2(1). Let p < p̃c, then there exists a finite set S ⊂ Zd containing the origin
with ϕp(S) < 1. Let L be so big that S ⊆ ΛL−1. Assume that the event 0 ←→ ∂ΛkL

holds. We now prove that Pp(0←→ ∂ΛkL) ≤ ϕp(S)k for every k ≥ 1. To this end, we fix
k ≥ 1 and define

(3.2.5) CS = {z ∈ S : 0←→ z in S}

to be the cluster of 0 when restricting attention to the bonds in S. Since S ∩ ∂ΛkL = ∅,
there must exist at least one edge (x, y) ∈ ∆S such that

(a) 0 is connected to x in S;
(b) (x, y) is occupied;
(c) y is connected to ∂ΛkL in C c

S .
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Therefore, by a union bound followed by a decomposition with respect to the possible
values of CS, we see that

Pp(0←→ ∂ΛkL)

(3.2.6)

≤
∑

(x,y)∈∆S

∑
C⊆S

Pp
(
{0←→ x in S,CS = C } ∩ {(x, y) occ.} ∩ {y ←→ ∂ΛkL in Zd \ C }

)
= p

∑
(x,y)∈∆S

∑
C⊆S

Pp
(
0←→ x in S,CS = C )Pp

(
y ←→ ∂ΛkL in Zd \ C

)
.

Here we abbreviate {(x, y) occ.} for the event that the directed bond (x, y) is occupied,
and we use the fact that the events {0 ←→ x in S,CS = C }, {(x, y) occ.} and {y ←→
∂ΛkL in Zd \C } are independent. This follows since the first event depends only on bonds
with both endpoints in C ∩ S, the bond (x, y) has precisely one endpoint in C ∩ S, while
the third event only depends on bonds with both endpoints outside C:

Exercise 3.1 (Check independence). Prove the independence in (3.2.6).

Since {y ←→ ∂ΛkL} is an increasing event and y ∈ ΛL,

(3.2.7) Pp
(
y ←→ ∂ΛkL in Zd \ C

)
≤ Pp(y ←→ ∂ΛkL) ≤ Pp(0←→ ∂Λ(k−1)L),

which leads us to

Pp(0←→ ∂ΛkL) ≤ p
∑

(x,y)∈∆S

∑
C⊆S

Pp
(
0←→ x in S,CS = C )Pp(0←→ ∂Λ(k−1)L)

= ϕp(S)Pp(0←→ ∂Λ(k−1)L).(3.2.8)

Iterating this inequality leads to

(3.2.9) Pp(0←→ ∂ΛkL) ≤ ϕp(S)k.

This proves Theorem 3.2(1) with c = (1/L) log(1/ϕp(S)) > 0, since ϕp(S) < 1. �

Proof of supercritical mean-field lower bound on θ(p) in Theorem 3.2(2). For
the proof of Theorem 3.2(2), we prove a differential inequality for p 7→ Pp(0←→ ∂ΛkL):

Lemma 3.3 (Differential inequality for the one-arm probability [93]). For every p ∈
[0, 1] and n ≥ 1,

(3.2.10)
d

dp
Pp(0←→ ∂Λn) ≥ 1

p(1− p)
·
(

inf
0∈S⊆Λn

ϕp(S)
)[

1− Pp(0←→ ∂Λn)
]
.

Before proving Lemma 3.3, we show how it implies Theorem 3.2(2). By assumption,
for p > p̃c, inf0∈S⊆Λn ϕp(S) ≥ 1. Then, let fn(p) = Pp(0←→ ∂Λn), so that

(3.2.11)
d

dp
log[1/(1− fn(p))] =

d
dp
fn(p)

1− fn(p)
≥ 1

p(1− p)
=

1

p
+

1

1− p
.

We integrate (3.2.11) between p̃c and p to obtain

(3.2.12) log[1/(1− fn(p))]− log[1/(1− fn(p̃c))] ≥ log(p/p̃c)− log[(1− p)/(1− p̃c)],
so that also

(3.2.13) log[1/(1− fn(p))] ≥ log(p/p̃c)− log[(1− p)/(1− p̃c)],
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which implies that

(3.2.14)
1

1− fn(p)
≥ p(1− p̃c)
p̃c(1− p)

.

We conclude that

(3.2.15) Pp(0←→ ∂Λn) = fn(p) ≥ 1− p̃c(1− p)
p(1− p̃c)

=
p(1− p̃c)− p̃c(1− p)

p(1− p̃c)
=

p− p̃c
p(1− p̃c)

.

Since this lower bound is independent of n, we can take n→∞ to obtain

(3.2.16) θ(p) ≥ p− p̃c
p(1− p̃c)

,

as required. �

Proof of Lemma 3.3. We note that the event {0 ←→ ∂Λn} depends only on the
occupation status of the bonds inside Λn, thus we may apply Russo’s formula (1.3.9) to
obtain

d

dp
Pp(0←→ ∂Λn) =

∑
(x,y)

Pp((x, y) pivotal for 0←→ ∂Λn)(3.2.17)

=
1

1− p
∑
(x,y)

Pp((x, y) pivotal for 0←→ ∂Λn, 0←→/ ∂Λn).

In the second line we have used that the occupation of the bond (x, y) is independent of
it being pivotal. Define

(3.2.18) S = {x ∈ Λn such that x←→/ ∂Λn}.

We note that S can be obtained by exploring clusters from the vertices in the boundary
∂Λn. When 0 ←→/ ∂Λn, the set S is a subset of Λn containing the origin. We sum over
all possible choices of S to obtain

(3.2.19)
d

dp
Pp(0←→ ∂Λn) =

1

1− p
∑

0∈S⊆Λn

∑
(x,y)

Pp((x, y) pivotal for 0←→ ∂Λn,S = S).

Observe that on the event {S = S} with 0 ∈ S, the pivotal edges (x, y) for 0 ←→ ∂Λn

are those in ∆S for which 0←→ x in S:

Exercise 3.2 (Characterization pivotal edges). Prove that on the event {S = S}, the
pivotal edges b for {0←→ ∂Λn} are given by b = (x, y) ∈ ∆S such that {0←→ x in S}.

Therefore,

(3.2.20)
d

dp
Pp(0←→ ∂Λn) =

1

1− p
∑

0∈S⊆Λn

∑
(x,y)∈∆S

Pp(0←→ x in S,S = S).

The event {S = S} is measurable with respect to the edges with at least one endpoint
outside of S, while {0 ←→ x in S} is measurable with respect to the edges having both
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endpoints in S, and are therefore independent. We conclude that

d

dp
Pp(0←→ ∂Λn) =

1

1− p
∑

0∈S⊆Λn

∑
(x,y)∈∆S

Pp(0←→ x in S)Pp(S = S)(3.2.21)

=
1

p(1− p)
∑

0∈S⊆Λn

ϕp(S)Pp(S = S)

≥ 1

p(1− p)

(
inf

0∈S⊆Λn
ϕp(S)

) ∑
0∈S⊆Λn

Pp(S = S)

=
1

p(1− p)

(
inf

0∈S⊆Λn
ϕp(S)

)
Pp(0←→/ ∂Λn),

as desired. Here we note that S = S for some S with 0 ∈ S ⊆ Λn precisely when
0←→/ ∂Λn. �

Proof that critical expected cluster size is infinite in Theorem 3.2(3). As-
sertions (1) and (2) of Theorem 3.2 readily imply that pc = p̃c, we are therefore left to
prove that χ(p̃c) =∞. We note that the set

P := {p : ∃S ⊂ Zd, S 3 0, |S| <∞ with ϕp(S) < 1}
is an open subset of [0, 1], and hence pc = p̃c 6∈ P . Thus,

χ(p̃c) =
∑
x∈Zd

Pp̃c(0←→ x) =
∑
n≥0

∑
x∈∂Λn

Pp̃c(0←→ x)

≥
∑
n≥0

∑
x∈∂Λn

Pp̃c(0←→ x in Λn) ≥ 1

p

∑
n≥0

ϕp̃c(Λn) = +∞,(3.2.22)

as desired. �

3.3. The Aizenman-Barsky proof of uniqueness of the phase transition

In the remainder of this chapter, we discuss the Aizenman-Barsky [9] proof of the
uniqueness of the phase transition in Theorem 3.1. The main ingredient of the Aizenman-
Barsky proof is the following theorem:

Theorem 3.4 (Bound on θ(p) when χf(p) =∞ [9]). If p ∈ [0, 1] is such that χf(p) =
∞, then either θ(p) > 0, or θ(p) = 0 and θ(q) ≥ (q − p)/(2q) for all q > p.

Theorem 3.4 immediately implies the uniqueness of the phase transition in Theorem
3.1:

Proof of Theorem 3.1. Trivially, pT ≤ pc. We argue by contradiction and assume
that pT < pc. Then there exists a p < pc such that χ(p) =∞. Since p < pc, we know that
χ(p) = χf(p) (since |C (0)| < ∞ a.s.), so that also χf(p) = ∞. By Theorem 3.4 and the
fact that θ(p) = 0, it then follows that θ(q) ≥ (q − p)/(2q) for all q > p, so that q ≥ pc
for every q > p. Thus, p ≥ pc, which is a contradiction. �

The remainder of this chapter is devoted to the proof of Theorem 3.4. We start by dis-
cussing the magnetization, which is an essential tool in studying percolation, particularly
in high dimensions.
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3.4. The magnetization

For γ ∈ [0, 1], the percolation magnetization is defined by

(3.4.1) M(p, γ) =
∑
k≥1

[1− (1− γ)k]Pp(|C (0)| = k) = Ep
[
1− (1− γ)|C (0)|].

Alternatively, M(p, γ) = 1 − G|C (0)|(1 − γ), where G|C (0)|(s) = Ep[s|C (0)|] denotes the
probability generating function of |C (0)| under the measure Pp.

The quantity M(p, γ) also has a useful probabilistic interpretation in terms of a com-
bined bond and site percolation model. For this, we color each vertex x ∈ Zd green with
probability γ. Denote the resulting probability measure of bond and site variables by
Pp,γ, and denote the (random) set of green sites by G . Then,

(3.4.2) M(p, γ) = Pp,γ(0←→ G ) = Pp,γ(C (0) ∩ G 6= ∅)

is the probability that the cluster of the origin contains at least one green vertex.

We investigate the behavior of M(p, γ) for p close (or equal) to the critical value pc,
and γ > 0 small. We note that if Ppc(|C (0)| ≥ n) ∼ n−1/δ, then the generating function
M(pc, γ) behaves as M(pc, γ) ∼ γ1/δ. Such relation goes under the name Abelian theorem
and is fairly straightforward. The reverse statement, known as Tauberian theorem, is
typically more delicate. Thus, we can use the magnetization to study δ.

Exercise 3.3 (Magnetization and cluster size distribution). Show that Ppc(|C (0)| ≥
n) ∼ n−1/δ as n→∞ for some δ > 0 implies M(pc, γ) ∼ γ1/δ as γ ↘ 0.

For fixed p, the function γ 7→ M(p, γ) is strictly increasing, with M(p, 0) = 0 and
M(p, 1) = 1. In addition, for γ ∈ (0, 1), M(p, γ) is strictly increasing in p. Define
the green-free susceptibility or (in the probabilistic interpretation) the expected size of a
green-free cluster by

(3.4.3) χ(p, γ) = Ep
[
|C (0)|(1− γ)|C (0)|] = Ep,γ

[
|C (0)|1{C (0)∩G =∅}

]
.

Then, we note that γ 7→ ∂M(p, γ)/∂γ = (1 − γ)−1χ(p, γ) is monotone decreasing in
γ ∈ (0, 1). That the magnetization is a useful quantity can also be seen in the following
exercise:

Exercise 3.4 (Magnetization and percolation). Prove that limγ↘0M(p, γ) = θ(p),
while limγ↘0 χ(p, γ) = χf(p).

The probabilistic interpretations ofM(p, γ) and χ(p, γ) allow one to prove the following
differential inequalities that lie at the heart of the proof of Theorem 3.4:

Lemma 3.5 (Aizenman-Barsky differential inequalities [9]). If 0 < p < 1 and 0 < γ <
1, then

(3.4.4) (1− p)∂M
∂p
≤ 2d(1− γ)M

∂M

∂γ
,

(3.4.5) M ≤ γ
∂M

∂γ
+M2 + pM

∂M

∂p
.

Lemma 3.5 is proved in Section 3.7. We start by using the differential inequalities to
derive bounds on the magnetization and related quantities.
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3.5. The lower bound on the magnetization

In this section, we prove the following lower bound on the magnetization M(p, γ):

Proposition 3.6 (Lower bound on M). Let p ∈ (0, 1) be such that χf(p) = ∞, and
γ ∈ (0, 1), and let K = 1 + 2dp

1−p . Then,

(3.5.1) M(p, γ) ≥
√
γ/K.

Proof. We fix p ∈ (0, 1) such that χf(p) =∞, and drop the p dependence from the
notation. Inserting (3.4.4) into (3.4.5), defining K̃ = 2dp

1−p , and using 1− γ ≤ 1, we get

(3.5.2) M ≤ γ
dM

dγ
+M2 + K̃M2 dM

dγ
.

Since M > 0 as long as γ > 0, we can divide by M2 dM
dγ

to get

(3.5.3)
1

M

dγ

dM
− 1

M2
γ ≤ K̃ +

dγ

dM
,

where we are using the fact that γ 7→M(p, γ) has a well-defined inverse function on [0, 1].
Therefore,

(3.5.4)
d

dM

( γ
M

)
≤ K̃ +

dγ

dM
.

Next we integrate (3.5.4) between 0 and M and use that γ(0) = 0 and limM→0
γ(M)
M

=

γ′(0) = 1/M ′(0) = 1/χf(p) = 0 to get

(3.5.5)
γ

M
≤ K̃M + γ.

Observing that 1 − (1 − γ)k ≥ 1 − (1 − γ) = γ, we see from (3.4.1) that γ ≤ M , which
simplifies (3.5.5) to

(3.5.6)
γ

M
≤ KM,

where K = K̃ + 1. This completes the proof of (3.5.1). �

Exercise 3.5. If we drop the assumption χf(p) =∞ in Proposition 3.6, show that

(3.5.7) M(p, γ) ≥

√
γ

K
+

[
1

2Kχf(p)

]2

− 1

2Kχf(p)
.

3.6. Aizenman-Barsky proof of mean-field lower bound on θ(p)

In this section, we prove Theorem 3.4. We follow [119, Proof of Theorem (5.48)]. Fix
γ, a ∈ (0, 1) and suppose that χf(a) = ∞. If θ(a) > 0, then there is nothing to prove.
Thus, we shall henceforth assume that θ(a) = 0 and χf(a) = ∞. However, mind that
M(a, γ) > 0, since γ ∈ (0, 1).

We rewrite (3.4.5) as

(3.6.1)
1

M(p, γ)

∂M(p, γ)

∂γ
+

1

γ

∂

∂p

[
pM(p, γ)− p

]
≥ 0.
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We integrate over a ≤ p ≤ b and δ ≤ γ ≤ ε, where 0 < a < b < 1, 0 < δ < ε. On this
rectangle, M(p, γ) is maximal for (p, γ) = (b, ε). Thus,

(3.6.2) (b− a) log(M(b, ε)/M(a, δ)) + log(ε/δ)
[
bM(b, ε)− aM(a, δ)− (b− a)

]
≥ 0.

Bounding aM(a, δ) ≥ 0 leads further to

(3.6.3) (b− a) log(M(b, ε)/M(a, δ)) + log(ε/δ)
[
bM(b, ε)− (b− a)

]
≥ 0.

We divide by log(ε/δ) and take the limit as δ ↘ 0. By Proposition 3.6,

(3.6.4) lim sup
δ↘0

log(M(a, δ))

log(δ)
≤ 1

2
,

so that we conclude that

(3.6.5) 0 ≤ 1
2
(b− a) +

[
bM(b, ε)− (b− a)

]
= bM(b, ε)− 1

2
(b− a).

Finally, let ε↘ 0 and use that M(b, ε)↘ θ(b) to arrive at

(3.6.6) bθ(b)− 1
2
(b− a) ≥ 0.

Dividing by b proves the claim in Theorem 3.4. �

3.7. Proof of the Aizenman-Barsky differential inequalities

3.7.1. Proof of (3.4.4). We follow the proof of [119, Lemma (5.51)]. We use (3.4.2)
and Russo’s formula (1.3.9) to obtain1

(1− p) ∂
∂p
M(p, γ) = (1− p)

∑
{x,y}

Pp,γ
(
{x, y} pivotal for 0←→ G

)
(3.7.1)

=
∑
{x,y}

Pp,γ
(
{x, y} vacant and pivotal for 0←→ G

)
,

where the sum is over all bonds {x, y} ∈ E(Zd). Instead of summing over undirected bonds,
we can instead sum over directed bonds, which we denote by (u, v), once we introduce
a direction into the event. Indeed, we say that the (directed) bond (x, y) is vacant and
pivotal for 0←→ G precisely when the following three events occur:

(a) the origin is not connected to G ;
(b) x is connected to the origin by an occupied path;
(c) y is joined to G by an occupied path.

Therefore,

(1− p) ∂
∂p
M(p, γ) =

∑
(x,y)

Pp,γ(0←→ x,C (0) ∩ G = ∅, y ←→ G ).(3.7.2)

1Bear in mind that we are dealing with an event that relies on infinitely many bonds. The fact that
Russo’s formula can be applied follows by a truncation argument by first proving the result on a finite
box, and then showing convergence when the width of the box grows large, cf. [22]. A similar argument
is used for the susceptibility in the proof of Theorem 4.2 below. We refrain from giving the details here.
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We proceed by conditioning on C (0) = C , to obtain

(1− p) ∂
∂p
M(p, γ) =

∑
(x,y)

∑
C

Pp(C (0) = C )Pp,γ(C ∩ G = ∅, y ←→ G | C (0) = C ),

(3.7.3)

where the sum is over all sets C of vertices that contain 0 and x but do not contain
y. Conditionally on C (0) = C , the two events {C (0) ∩ G = ∅} and {y ←→ G } are
independent, since the first depends only on the status of vertices in C , while the second
depends on the status of vertices outside of C and edges having no endpoint in C . Thus,

Pp,γ(C ∩ G = ∅, y ←→ G | C (0) = C )(3.7.4)

= Pp,γ(C ∩ G = ∅ | C (0) = C )Pp,γ(y ←→ G | C (0) = C ).

Now, since C does not contain y, the connection from y to G should avoid all vertices in
C (0), so that

(3.7.5) Pp,γ(y ←→ G | C (0) = C ) ≤ Pp,γ(y ←→ G ) = M(p, γ).

Therefore,

(1− p) ∂
∂p
M(p, γ) ≤

∑
(x,y)

∑
C

Pp(C (0) = C )Pp,γ(C ∩ G = ∅ | C (0) = C )M(p, γ)

≤M(p, γ)
∑
(x,y)

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅),(3.7.6)

where the inequality follows since we no longer restrict to C that do not contain y. The
above probability is independent of y, and since there are 2d possible choices for y such
that (x, y) is a bond, we obtain

(1− p) ∂
∂p
M(p, γ) ≤ 2dM(p, γ)

∑
x

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅).(3.7.7)

Finally, we note that
(3.7.8)∑

x∈Zd
Pp,γ(x ∈ C (0),C (0) ∩ G = ∅) = Ep,γ

[
|C (0)|1{C (0)∩G =∅}

]
= (1− γ)

∂

∂γ
M(p, γ).

This completes the proof of (3.4.4). �

Exercise 3.6 (Differential inequality for θ(p) [72]). Let p > pc. Assume that the
event {0 ←→ ∞} a.s. has a finite number of pivotal bonds. Show that θ(p) satisfies the
differential inequality

(3.7.9) θ(p) ≤ θ(p)2 + pθ(p)
∂

∂p
θ(p).

Exercise 3.7 (Finite number of pivotals for connection to infinity). Argue why it is
reasonable that the event {0←→∞} a.s. has a finite number of pivotal bonds. Check how
Chayes and Chayes [72] prove this fact. Further, prove that this fact is indeed true when
we assume that the half-space percolation function

θhalf(p) := Pp
(
0←→∞ in {0, 1, 2, . . . } × Zd−1

)
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satisfies θhalf(p) > 0 for every p > pc.

Exercise 3.8 (Mean-field bound θ(p) revisited [72]). Use the differential inequality
in Exercise 3.6 to prove that there exists a constant a > 0 such that θ(p) ≥ a(p− pc) for
p > pc.

3.7.2. Proof of (3.4.5). We again follow the proof of [119, Lemma (5.53)] closely.
The proof of (3.4.5) is very similar to that of (3.4.4). We useM(p, γ) = Pp,γ(C (0)∩G 6= ∅)
to split

(3.7.10) M(p, γ) = Pp,γ(|C (0) ∩ G | = 1) + Pp,γ(|C (0) ∩ G | ≥ 2).

The first term on the r.h.s. of (3.7.10) equals γ ∂M
∂γ

, which is the first term in (3.4.5), since

Pp,γ(|C (0) ∩ G | = 1) =
∞∑
n=1

nγ(1− γ)n−1Pp(|C (0)| = n)(3.7.11)

= γ
∂

∂γ

∞∑
n=1

[1− (1− γ)n]Pp(|C (0)| = n) = γ
∂

∂γ
M(p, γ).

For the second term, we define Ax to be the event that either x ∈ G or that x is
connected by an occupied path to a vertex g ∈ G . Then,

Pp,γ(|C (0) ∩ G | ≥ 2) = Pp,γ(A0 ◦ A0)(3.7.12)

+ Pp,γ(|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur).

We apply the BK-inequality to obtain

(3.7.13) Pp,γ(A0 ◦ A0) ≤ Pp,γ(A0)2 = M(p, γ)2,

leading to the second term in (3.4.5). Thus, we are left to prove that

(3.7.14) Pp,γ(|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur) ≤ pM
∂M

∂p
.

To prove (3.7.14), we move on to investigate the event that |C (0) ∩ G | ≥ 2, but that
A0 ◦ A0 does not occur. This event is equivalent to the existence of a (directed) bond
(x, y) for which the following occurs:

(i) the edge b is occupied; and
(ii) in the subgraph of Zd obtained by deleting (x, y), the following events occur:

(a) no vertex of G is joined to the origin by an open path;
(b) x is joined to 0 by an occupied path;
(c) the event Ay ◦ Ay occurs.

The events in (ii) are independent of the occupation status of the bond (x, y), so that

Pp,γ(|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur)(3.7.15)

=
p

1− p
∑
(x,y)

Pp,γ((x, y) closed, x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay)

≤ p

1− p
∑
(x,y)

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay).
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We condition on C (0) to obtain

Pp,γ(C (0) ∩ G = ∅, Ay ◦ Ay)(3.7.16)

=
p

1− p
∑
(x,y)

∑
C

Pp(C (0) = C )Pp,γ(C (0) ∩ G = ∅, Ay ◦ Ay | C (0) = C ),

where the sum over C is over all finite and connected sets of vertices which contain 0 and
x but not y. Since C does not contain y, we can write

Pp,γ(C (0) ∩ G = ∅, Ay ◦ Ay | C (0) = C )(3.7.17)

= Pp,γ({C (0) ∩ G = ∅} ∩ {Ay ◦ Ay off C } | C (0) = C ),

where we write {Ay ◦ Ay off C } when there exist two bond disjoint paths connecting y
and G that do not contain any vertices in C .

Conditionally on C (0) = C , the events {C (0) ∩ G = ∅} and {Ay ◦ Ay off C } are
independent, since C (0) ∩ G = ∅ depends on the occupation statuses of the vertices in
C , while {Ay ◦Ay off C } depends on the vertices in Zd \C and the edges between them.
Thus,

Pp,γ(C (0) ∩ G = ∅, Ay ◦ Ay | C (0) = C )(3.7.18)

= Pp,γ(C (0) ∩ G = ∅ | C (0) = C )Pp,γ(Ay ◦ Ay off C ).

By the BK-inequality,

(3.7.19) Pp,γ(Ay ◦ Ay off C ) ≤ Pp,γ(Ay off C )2 ≤M(p, γ)Pp,γ(Ay off C ).

As a result,

p

1− p
∑
(x,y)

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay)

(3.7.20)

≤ pM(p, γ)

1− p
∑
(x,y)

∑
C

Pp(C (0) = C )Pp,γ(C (0) ∩ G = ∅ | C (0) = C )Pp,γ(Ay off C )

=
pM(p, γ)

1− p
∑
(x,y)

∑
C

Pp(C (0) = C )Pp,γ(C (0) ∩ G = ∅, Ay | C (0) = C )

=
pM(p, γ)

1− p
∑
(x,y)

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅,C (y) ∩ G 6= ∅) = pM(p, γ)
∂M

∂p
,

where the first equality follows again by conditional independence, and the last equality
by the fact that

(3.7.21) (1− p)∂M
∂p

=
∑
(x,y)

Pp,γ(x ∈ C (0),C (0) ∩ G = ∅,C (y) ∩ G 6= ∅),

where we recall (3.7.2). This completes the proof of (3.4.5). �





Part 2

Mean-field behavior: differential inequalities
and the lace expansion





CHAPTER 4

Critical exponents and the triangle condition

In this chapter, we define an important condition, the so-called triangle condition,
which implies mean-field behavior in percolation in the sense that the percolation critical
exponents β, γ and δ take on their mean-field values β = γ = 1, δ = 2. This chapter is
organized as follows. We state the main result in Section 4.1. In Section 4.2, we illustrate
the use of the triangle condition in its simplest setting by proving that it implies that
γ = 1. The proof that it implies that β = 1, δ = 2 is deferred to Chapter 9. We discuss
one-sided mean-field bounds on the critical exponents δ and β in Section 4.3.

4.1. Definition of the triangle condition

We start by defining the triangle condition. Aizenman and Newman [13] were the first
to establish the existence of mean-field critical exponents for percolation models under a
condition called the triangle condition:

The triangle condition is the condition that

(4.1.1) 4pc =
∑
x,y∈Zd

τpc(0, x)τpc(x, y)τpc(y, 0) <∞,

where we recall that τp(x, y) = Pp(x ←→ y) is the percolation two-
point function.

The following theorem states that the critical exponents β, γ, δ exist under the triangle
condition, and take on their mean-field values for percolation on the tree (recall Theorem
2.1):

Theorem 4.1 (Mean-field critical exponents under the triangle condition [13, 27]).
For percolation on a transitive graph, if the triangle condition holds, then β = γ = 1,
δ = 2 in the bounded-ratio sense.

It is a priori not obvious that the triangle condition is the appropriate condition for
mean-field behavior, but the present theorem advocates that it is. Note that the triangle
condition is also a strong condition. In particular, it implies that τpc(x)→ 0 as |x| → ∞,
which, in turn, implies that θ(pc) = 0. Therefore, the triangle condition implies that the
percolation function is continuous.

We give the proof that γ = 1 under the triangle condition below. In [27], Barsky
and Aizenman also proved that, under the same condition, β = 1 and δ = 2. We give
these proofs in Chapter 9 below. Needless to say, without the actual verification of the
triangle condition, Theorem 4.1 would not prove anything, but it does highlight why the
verification of the triangle condition is such an important result.

41
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Exercise 4.1 (Random walk triangle condition). Prove that

(4.1.2) 4(RW) =
∑
x,y∈Zd

C1(x)C1(y − x)C1(y) <∞,

if and only if d > 6, where Cµ(x) denotes the random walk Green’s function defined in
(2.2.8).

4.2. The susceptibility critical exponent γ

Here we give the Aizenman-Newman argument [13] to identify the critical exponent
γ = 1. In its statement, we use the following open triangle diagram, which, for x ∈ Zd, is
defined as

(4.2.1) 4p(x) =
∑
u,v

τp(u)τp(v − u)τp(x− v).

Then, the main result concerning γ is as follows:

Theorem 4.2 (γ = 1 under the triangle condition [13]). For percolation on a transitive
graph, if the triangle condition holds in the form that 4pc(e) < 1 for e ∼ 0, then γ = 1
in the bounded-ratio sense.

The proof of Theorem 4.2 consists of two parts, a lower bound on χ(p) for p < pc
that is valid for every transitive percolation model, and an upper bound that relies on the
triangle condition 4pc(e) < 1 in (4.2.1). We next present these two proofs.

Proof that γ ≥ 1. We use Russo’s formula (1.3.9), and for the time being ignoring
the finite-bond restriction, to obtain

(4.2.2)
d

dp
τp(x) =

∑
(u,v)

Pp
(
(u, v) pivotal for 0←→ x

)
.

Mind that Russo’s formula is formulated for unoriented bonds; however, we can replace
it by a sum over oriented bonds if we declare (u, v) to be pivotal for 0 ←→ x whenever
0←→ u and v ←→ x occur and there is no connection from 0 to x when the bond {u, v}
is made vacant. This yields the above formula. Summing over x ∈ Zd and assuming
differentiability of χ yields

(4.2.3)
d

dp
χ(p) =

∑
x∈Zd

∑
(u,v)

Pp
(
(u, v) pivotal for 0←→ x

)
.

We next note that if (u, v) is pivotal for 0 ←→ x, then there exist two disjoint paths of
occupied bonds connecting 0 and u, and v and x, respectively. Thus, {0←→ u} ◦ {v ←→
x} occurs. By the BK inequality (1.3.4),

(4.2.4)
d

dp
χ(p) ≤

∑
x

∑
(u,v)

τp(u)τp(x− v) = 2dχ(p)2.

To make (4.2.4) precise, one has to overcome a few technicalities, since Russo’s formula
in (1.3.9) can only be applied to events E depending on a finite number of bonds, which
is not the case for {0←→ x}. We return to these issues below.
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To complete the argument, note that we can rewrite (4.2.4) as

(4.2.5)
d

dp
χ(p)−1 ≥ −2d.

We assume for the time being that χ(pc)
−1 = 0. Ignoring this subtle point, we can

integrate (4.2.5) over [p, pc] to obtain

(4.2.6) χ(pc)
−1 − χ(p)−1 = −χ(p)−1 ≥ −2d(pc − p),

so that

(4.2.7) χ(p) ≥ 1

2d(pc − p)
.

This proves that γ ≥ 1 if γ exists. Of course, (4.2.7) is stronger than the existence of γ,
as it provides a pointwise lower bound valid for every p ∈ [0, pc). �

Finite-size corrections and χ(pc) = ∞. In the above proof, we neglected three
subtleties. The first is that we have used Russo’s formula (1.3.9) in a setting where the
event actually depends on infinitely many bonds, the second is that we have assumed
differentiability of χ(p) and χ(p)−1, the third is that we have assumed that χ(pc) = ∞.
All three can be resolved by performing an appropriate finite-size approximation, which
we are presenting next. We start by introducing the necessary notation.

Let τnp (x, y) denote the probability that x is connected to y by only using the bonds

in the cube Λn = {−n, . . . , n}d, and let Pnp denote the percolation measure on the cube
Λn. Let χn(p) = maxw∈Λn

∑
x∈Λn

τnp (w, x) be the maximal expected cluster size on the
cube Λn. A technical ingredient to the proof is the following continuity statement:

Lemma 4.3 (Continuity of equicontinuous functions). Let (fα)α∈A be an equicontinu-
ous family of functions on an interval [t1, t2], i.e., for every given ε > 0, there is a δ > 0
such that |fα(s) − fα(t)| < ε whenever |s − t| < δ, uniformly in α ∈ A. Furthermore,
suppose that supα∈A fα(t) < ∞ for each t ∈ [t1, t2]. Then t 7→ supα∈A fα(t) is continuous
on [t1, t2].

A proof of this standard result can be found, for example, in [246, Lemma 5.12]. Note
that (fα)α∈A is equicontinuous whenever supα∈A supt∈[t1,t2] |f ′α(t)| ≤ K for some K > 0.
Then, the finite-size corrections are investigated in the following lemma:

Lemma 4.4 (Continuity of p 7→ 1/χ(p)). The functions p 7→ 1/χn(p) are equicontin-
uous, and χn(p) → χ(p) for every p ∈ [0, 1]. As a result, p 7→ 1/χ(p) is continuous, and
in particular, χ(pc) =∞.

Proof. We start by proving that χn(p)→ χ(p) for every p ∈ [0, 1]. Note that

(4.2.8) χ(p) ≥ χn(p) ≥
∑
x∈Λn

τnp (0, x).

Further, by the bounded convergence theorem, τnp (0, y) ↗ τp(0, y) for every y ∈ Zd, so
that monotone convergence implies

(4.2.9) χn(p)↗ χ(p).

In particular, also

(4.2.10) lim
n→∞

1/χn(p) = 1/χ(p).
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This proves the pointwise convergence of χn(p).
We continue with the claimed equicontinuity. As in (4.2.2),

(4.2.11)
d

dp
τnp (w, x) =

∑
(u,v)

Pnp
(
(u, v) pivotal for w ←→ x

)
,

where now the sum is over all edges with both endpoints in the cube Λn. Thus summing
over x ∈ Λn yields, for fixed w ∈ Λn,

d

dp

∑
x∈Λn

τnp (w, x) =
∑
x∈Λn

d

dp
τnp (w, x)(4.2.12)

=
∑
x∈Λn

∑
(u,v)

Pnp
(
(u, v) pivotal for w ←→ x

)
.

Following the steps above, we thus arrive at the statement that, for every p ∈ [0, 1] and
uniformly in w ∈ Λn,

(4.2.13)
d

dp

∑
x∈Λn

τnp (w, x) ≤ 2dχn(p)2.

We next relate this to d
dp
χn(p). The function p 7→ χn(p) is continuous, as a maximum of

increasing and continuous functions. Secondly, χn(p) is a finite maximum of differentiable
functions, and therefore χn(p) is almost everywhere differentiable. Finally, since χn(p)
is a finite maximum of continuous functions, there is (at least one) maximizer wp (when
there are multiple, pick any one of them). Therefore,

χn(p+ ε)− χn(p) =
∑
x∈Λn

[τnp+ε(wp+ε, x)− τnp (wp, x)](4.2.14)

≤
∑
x∈Λn

[τnp+ε(wp+ε, x)− τnp (wp+ε, x)]

≤ max
w∈Λn

∑
x∈Λn

[τnp+ε(w, x)− τnp (w, x)].

Dividing by ε and letting ε↘ 0 leads to

(4.2.15)
d

dp
χn(p) ≤ max

w∈Λn

∑
x∈Λn

d

dp
τnp (w, x).

As a result,

(4.2.16)
d

dp
χn(p) ≤ 2dχn(p)2,

so that

(4.2.17) 0 ≥ d

dp

1

χn(p)
≥ −2d.

Thus, the functions p 7→ 1/χn(p) form an equicontinuous non-increasing family of func-
tions, with uniformly bounded derivative. Further, as n → ∞, the function 1/χn(p)
converges to 1/χ(p) for every p ∈ [0, 1] by (4.2.10). By equicontinuity, the limit must be
continuous. Since 1/χ(p) = 0 for every p > pc, we conclude that χ(pc) = 0 (which we
already proved using other means in Theorem 3.2(3)). �
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This completes the proof of γ ≥ 1. �

In the above, we have been quite precise in our finite-size arguments. In the sequel,
we often ignore such issues, and refer to the literature for the precise proofs. We next
turn to the upper bound γ ≤ 1, for which we recall that we assume that 4pc(e) < 1 for
e ∼ 0, where, for x ∈ Zd, we define 4pc(x) to be the open triangle in (4.2.1). We note
that 4p = 4p(0). We shall see that we require several related triangles in the sequel.

Exercise 4.2 (A derivative of a finite maximum of functions). Fix a finite set of
indices I. For i ∈ I, let p 7→ fi(p) be a differentiable function. Adapt the argument in
(4.2.14) to show that

(4.2.18)
d

dp
max
i∈I

fi(p) ≤ max
i∈I

d

dp
fi(p).

Proof that γ ≤ 1 when 4pc(e) < 1 for e ∼ 0. The proof that γ ≤ 1 when the
triangle condition holds is a nice example of the general methodology in high dimension.
The BK-inequality gives an upper bound on (4.2.3), and, in order to prove that γ = 1, a
matching lower bound on (4.2.3) needs to be obtained. For this, we need similar objects
as in the lace expansion performed later in Chapter 6.2, and start by introducing a few
objects that we define again, more formally, in Definition 6.2 below. We start by exploiting
the independence of the occupation statuses of the bonds to explicitly write

(4.2.19) Pp
(
(u, v) pivotal for 0←→ x

)
= Ep

[
1{0←→u}τ

C̃ (u,v)(0)(v, x)
]
,

where, for A ⊂ Zd, the restricted two-point function τA(v, x) is the probability that v is

connected to x using only bonds with both endpoints outside A, and C̃ (u,v)(0) consists
of those sites that are connected to 0 without using the bond (u, v). We prove equalities
such as (4.2.19) in more generality in Lemma 6.4 below, and omit the proof here. Such
explicit equalities are at the heart of the lace-expansion methodology in high-dimensional
percolation.

Clearly, τ C̃ (u,v)(0)(v, x) ≤ τ(v, x), and this reproves the upper bound obtained in (4.2.4)
using the BK-inequality. We continue to prove the lower bound. For A ⊆ Zd, we write

{x A←→ y} if either x = y ∈ A or if x ←→ y and every occupied path connecting x to
y has at least one bond with an endpoint in A, and call this event “x is connected to y
through A”. We note that

(4.2.20) τ(v, x)− τA(v, x) = Pp(v
A←→ x).

Thus,

d

dp
χ(p) =

∑
x

∑
(u,v)

Ep[1{0←→u}]τp(v, x)

−
∑
x

∑
(u,v)

Ep
[
1{0←→u}Pp

(
v

C̃ (u,v)(0)←→ x
)]

= 2dχ(p)2 −
∑
x

∑
(u,v)

Ep
[
1{0←→u}Pp

(
v

C̃ (u,v)(0)←→ x
)]
.(4.2.21)
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Now, for any A ⊆ Zd,

(4.2.22) Pp(v
A←→ x) ≤

∑
a∈A

Pp
(
{v ←→ a} ◦ {a←→ x}

)
,

which, after resumming over x to retrieve a factor χ(p), leads to

d

dp
χ(p) ≥ 2dχ(p)2 − χ(p)

∑
(u,v)

∑
a∈Zd

Ep[1{0←→u}1{a∈C̃ (u,v)(0)}]Pp(v ←→ a)

≥ 2dχ(p)2 − χ(p)
∑
(u,v)

∑
a∈Zd

Ep[1{0←→u,a}]Pp(v ←→ a).

Applying a union bound combined with the BK inequality yields

Pp(0←→ u, 0←→ a) ≤
∑
z

Pp
(
{0←→ z} ◦ {z ←→ u} ◦ {z ←→ a}

)
(4.2.23)

≤
∑
z

τp(z)τp(u− z)τp(a− z),

so that

(4.2.24)
∑
(u,v)

∑
a

Pp(0←→ u, 0←→ a)Pp(v ←→ a) ≤ 2dχ(p)4p(e) ≤ 2dχ(p)4pc(e),

implying

(4.2.25)
d

dp
χ(p) ≥ 2dχ(p)2[1−4pc(e)]

for e = v− u. If we know that 4pc(e) < 1, then we can integrate the above equation in a
similar fashion as around (4.2.5) to obtain γ = 1. When we only have the finiteness of the
triangle, then some more work under the name of ultraviolet regularization is necessary
to make the same conclusion, see [13, Lemma 6.3] for details. An alternative argument
involving operator theory is given by Kozma [198]. We omit the details of this ultraviolet
regularization argument. �

The main ingredient in the above proof is (4.2.19). If we would ignore the interaction,
which causes only a small quantitative error in high dimensions, then we could replace
(4.2.19) by ∑

(u,v)

Pp
(
(u, v) pivotal for 0←→ x

)
≈
∑
(u,v)

Ep
[
1{0←→u}τ(v, x)

]
(4.2.26)

= 2d(τp ? D ? τp)(x).

We use inclusion-exclusion to make such approximations precise in the further sections,
as this is the main idea behind the lace expansion.

4.3. Mean-field bounds on the critical exponents δ and β and overview

It turns out that the differential inequalities imply one-sided bounds on various critical
exponents. We have already seen in the proof of Theorem 4.2 that γ ≥ 1 is valid in any
dimension (and even in every transitive percolation model). Such a bound in terms of
a mean-field critical exponent is called a mean-field bound. In this section, we discuss
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so-called mean-field bounds on the critical exponents β and δ following from the analysis
in Chapter 3.

The bound on δ is at the moment a little tricky, and we need to resort to a generating
function estimate. For this, we say that δ exists for the generating function, e.g., in the
bounded-ratio sense, when there exist constants 0 < cδ < Cδ <∞ such that

(4.3.1) cδγ
1/δ ≤M(pc, γ) ≤ Cδγ

1/δ.

Then, we obtain the following mean-field bounds:

Corollary 4.5 (Mean-field bounds on β and δ). It is the case that β ≤ 1 when
the critical exponent β exists. Further, δ ≥ 2 when the critical exponent δ exists for the
generating function as in (4.3.1).

Proof. The bound on β directly follows from Theorem 3.2(2). The bound on δ is
Proposition 3.6. �

Taking stock of where we are now. We have identified the triangle condition in
(4.1.1) as being the decisive factor for mean-field behavior in percolation. We have proved
that it implies the mean-field susceptibility critical exponent γ = 1, and we have further
seen mean-field lower bounds on β and δ. In the next chapter, we investigate the infrared
bound for the percolation two-point function, and we see that this implies that the triangle
condition is satisfied in sufficiently high dimensions. In Chapter 9, after having completed
the proof of the infrared bound, we perform the proofs that β = 1 and δ = 2 under the
triangle condition.





CHAPTER 5

Proof of triangle condition: The infrared bound

In this chapter, we state one of the key results in high-dimensional percolation, the
so-called infrared bound. We state the result in Section 5.1, and in Section 5.2, we extend
the result to a slightly modified percolation model known as spread-out percolation. In
Section 5.3, we give an overview of the proof of the infrared bound relying on the lace
expansion. Finally, in Section 5.4, we discuss random walk triangles. The main idea is
that if the random walk triangles is sufficiently small, then the infrared bound follows.

5.1. The infrared bound

The infrared bound was first proved for percolation in the seminal 1990 paper by Hara
and Slade [133]. It has been the main workhorse for high-dimensional percolation in the
past decades. The infrared bound provides an upper bound for the percolation two-point
function in Fourier space, in terms of the random walk Green’s function:

Theorem 5.1 (Infrared bound [133]). For percolation, there exists d0 > 6 such that
for d ≥ d0 > 6, there exists a constant A(d) < 3 (the ‘amplitude’) such that, uniformly in
p ∈ [0, pc) and k ∈ (−π, π]d,

(5.1.1) τ̂p(k) ≤ A(d)

1− D̂(k)
.

Mind that Lemma 5.3 asserts that τ̂p(k) is non-negative, so that (5.1.1) is even valid
for the absolute value of τ̂p(k).

For the critical simple random walk Green’s function, the inequality (5.1.1) in Theorem
5.1 holds with an equality andA(d) = 1, recall (2.2.12). Thus, we can think of Theorem 5.1
as stating that the percolation two-point function τpc is a small perturbation of the simple
random walk Green’s function. In light of the relation between the simple random walk
Green’s function and the branching random walk two-point function in (2.2.7), we can
alternatively think of Theorem 5.1 as stating that critical percolation in high dimensions
is a small perturbation of branching random walk. In the next three chapters, we establish
this connection and prove Theorem 5.1 in full detail.

Next, we establish the triangle condition as a consequence of the infrared bound:

Corollary 5.2 (Triangle condition and critical exponents). For percolation, there
exists d0 > 6 such that for d ≥ d0 > 6, the triangle condition holds. Therefore, by
Theorem 4.1, the critical exponents γ, β and δ exist in the bounded-ratio sense, and take
on the mean-field values γ = β = 1, δ = 2.

In the proof of Corollary 5.2, the following non-negativity result of τ̂p(k), proved by
Aizenman and Newman [13, Lemma 3.3] and interesting in its own right, proves to be
useful:

49
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Lemma 5.3 (Non-negativity τ̂p(k)). Let p ∈ [0, 1] be such that χ(p) < ∞. Then, for
every k ∈ (−π, π]d,

(5.1.2) τ̂p(k) ≥ 0.

Proof. We view τp(x, y) as an operator, and prove that it is of positive type, meaning
that for every summable function f : Zd 7→ C,

(5.1.3)
∑
x,y∈Zd

f̄(x)τp(x, y)f(y) ≥ 0,

where f̄(x) denotes the complex conjugate of f(x). We can write∑
x,y∈Zd

f̄(x)τp(x, y)f(y) =
∑
x,y∈Zd

Ep
[
f̄(x)1{x←→y}f(y)

]
(5.1.4)

= Ep
[∑

C

∣∣∣∑
x∈C

f(x)
∣∣∣2] ≥ 0,

where the sum is over all clusters C that partition Zd. The claim now follows from
Bochner’s Theorem, cf. [226, Theorem IX.9]. �

Proof of Corollary 5.2. The equalities γ = β = 1, δ = 2 in the bounded-ratio
sense follow from the triangle condition and Theorem 4.1. We now establish that the
triangle condition follows from Theorem 5.1. Note that, for every p ∈ [0, 1],

(5.1.5) 4p =
∑
x,y∈Zd

τp(0, x)τp(x, y)τp(y, 0) = τ ?3p (0),

where τ ?3p (0) denotes the three-fold convolution of τp with itself evaluated at x = 0. We
use the Fourier inversion theorem, which states that

(5.1.6) f(x) =

∫
(−π,π]d

e−ik·xf̂(k)
dk

(2π)d
,

whenever |f̂(k)| is integrable. We apply (5.1.6) to (5.1.5) with p < pc, and use that

(5.1.7) τ̂ ?3p (k) = τ̂p(k)3,

to arrive at

(5.1.8) 4p =

∫
(−π,π]d

τ̂p(k)3 dk

(2π)d
.

By the infrared bound in Theorem 5.1,

(5.1.9) 4p ≤ A(d)3

∫
(−π,π]d

1

[1− D̂(k)]3
dk

(2π)d
.

The arising integral in (5.1.9) is bounded uniformly in the dimension d for d > 6, as we
show next.

We claim that for any integer n < d/2, there is a constant C = C(n) > 0 independent
of the dimension d such that

(5.1.10)

∫
(−π,π]d

1

[1− D̂(k)]n
dk

(2π)d
≤ C.
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In order to prove this, we note that 1− cos(k) ≥ 2
π2k

2 for every k ∈ (−π, π], and we thus
get

(5.1.11) 1− D̂(k) =
1

d

d∑
i=1

[1− cos(ki)] ≥
2

π2d

d∑
i=1

k2
i =

2

π2

|k|2

d
, k ∈ (−k, k]d.

This gives readily

(5.1.12)

∫
(−π,π]d

1

[1− D̂(k)]n
dk

(2π)d
≤ π2n

2n

∫
(−π,π]d

dn

|k|2n
dk

(2π)d
.

The right hand side of (5.1.12) is finite if (and only if) d > 2n. For a > 0 and n > 0,

(5.1.13)
1

an
=

1

Γ(n)

∫ ∞
0

tn−1e−tadt.

Applying this with a = |k|2/d yields

(5.1.14)
1

Γ(2n)

π2n

2n

∫ ∞
0

tn−1

(∫ π

−π

(
e−tθ

2)1/d dθ

2π

)d

dt

as an upper bound for (5.1.12). This is non-increasing in d, because ‖f‖p ≤ ‖f‖q for
0 < p ≤ q ≤ ∞ on a probability space by Lyapunov’s inequality, and the term in brackets
is finite as a Gaussian integral. It remains to show that the integral over t is finite (for
small d). In order to establish this, we bound further, for d > 2n,

(5.1.15)

∫ π

−π

(
e−tθ

2)1/d dθ

2π
≤ min

{
1,

∫ ∞
−∞

(
e−tθ

2)1/d dθ

2π

}
=
√

2πd/t ∧ 1,

which, upon substitution into (5.1.14), yields

(5.1.16)
1

Γ(2n)

π2n

2n

∫ ∞
0

tn−1
(√

2πd/t ∧ 1
)d

dt,

which is finite when n− 1− d/2 < −1, i.e., when d > 2n. This proves (5.1.10).
Since A(d) is uniformly bounded by 3, we get from (5.1.9) and (5.1.10) that 4p is

bounded uniformly in p < pc. Pointwise convergence of τp(x) to τpc(x) implies that the
claim also holds for p = pc, since, by monotone convergence,

4pc =
∑
x,y∈Zd

τpc(0, x)τpc(x, y)τpc(y, 0)(5.1.17)

= lim
p↗pc

∑
x,y∈Zd

τp(0, x)τp(x, y)τp(y, 0)

= lim
p↗pc
4p <∞.

�
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The triangle 4pc(e) with e ∼ 0. It is useful to also consider 4pc(e), as this is the
quantity that appears for example in the proof of the upper bound γ ≤ 1. For this, we
note that by symmetry,

(5.1.18) 4p(e) =
1

2d

∑
e∼0

τ ?3p (e) = (D ? τ ?3p )(0) =

∫
(−π,π]d

D̂(k)τ̂p(k)3 dk

(2π)d
.

By Cauchy-Schwarz,

4p(e)
2 ≤

∫
(−π,π]d

D̂(k)2 dk

(2π)d
×
∫

(−π,π]d
τ̂p(k)6 dk

(2π)d
.(5.1.19)

The second term is bounded as in (5.1.9) and (5.1.10), it is thus finite when d > 12 and
its bound is uniform in the dimension d. The first term is small when d is large, due to
the fact that

(5.1.20)

∫
(−π,π]d

D̂(k)2 dk

(2π)d
= P(S2 = 0) =

1

2d
,

where (Sm)m≥0 denotes simple random walk in d dimensions. Thus, for d > 12, 4p(e)
2 =

O(1/d) uniformly in p < pc, so that, for d > 12 sufficiently large, we indeed obtain that
4pc(e) < 1. �

Exercise 5.1 (Proof of 1 − cos(k) bounds). Prove that 1 − cos(k) ≤ k2/2 and 1 −
cos(k) ≥ 2

π2k
2 for every k ∈ (−π, π].

Exercise 5.2 (Bound on open triangle). Let p < pc. Prove that 4p(x) is maximal
for x = 0. Hint: Use the Fourier inversion theorem on 4p(x) = τ ?3p (x) and Lemma 5.3.

Kozma [198] proves the statement that the open triangle is finite when the closed
triangle is for general vertex-transitive graphs. He uses completely different methods
using operator theory, since Fourier theory is not applicable in such generality.

The above not only suggests that the triangle condition should be satisfied whenever
d > 6, but there is also strong evidence that the critical exponents should not take on
their mean-field values when d < 6. We return to this issue in Section 11.3, where we
show that ρex = 1/2 and η = 0 in x-space imply that d ≥ 6.

5.2. Spread-out models

In this section, we state another theorem that shows mean-field behavior, but now for
the so-called spread-out model (we refer to our previously considered percolation model
as the nearest-neighbor model). In the spread-out model, we consider vertex set Zd with
a different set of edges, namely

(5.2.1) E =
{
{x, y} : ‖x− y‖∞ ≤ L

}
,

where L ≥ 1 is a sufficiently large constant. The reason to study such, arguably somewhat
esoteric, spread-out models is that we can make the triangle diagram small by taking L
large, so that the dimension can remain unchanged. This makes the role of the upper
critical dimension clearer, as indicated by the following theorem. In its statement, we
abbreviate pc = pc(L,Zd):
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Theorem 5.4 (Infrared bound [133]). For spread-out percolation with d > 6, there
exists L0 = L0(d) and A = A(d, L) such that for every L ≥ L0 and uniformly in p ∈ [0, pc)
and k ∈ (−π, π]d,

(5.2.2) τ̂p(k) ≤ A(d, L)

|k|2
.

Theorem 5.4 is proved in an identical fashion as Theorem 5.1, and, alternatively, the
result can also be formulated as that there exists a constant A(d, L) such that, uniformly
in p ∈ [0, pc) and k ∈ (−π, π]d,

(5.2.3) τ̂p(k) ≤ A(d, L)

1− D̂L(k)
,

where

(5.2.4) DL(x) =
1{‖x‖∞≤L}

(2L+ 1)d

is the random walk step distribution on the cube of width L. Here, for L large, A(d, L) =
1 + O(L−d), so that (5.2.3) can really be seen as the perturbative statement that τ̂p(k)
is approximately the Fourier transform of the random walk Green’s function or BRW
two-point function with step distributions DL.

In Theorem 5.4, the so-called upper-critical dimension appears as dc = 6, and it is
believed that mean-field results cannot be valid for d < dc, while for d = dc, logarithmic
corrections appear to mean-field behavior. We return to this question in Section 11.3. In
the next section, we explain the philosophy behind the proofs of Theorems 5.1 and 5.4,
focusing on Theorem 5.1.

Exercise 5.3 (Non-triviality of percolation on spread-out lattices). Let d ≥ 2. Prove
that pc = pc(L,Zd) for the spread-out model with edge set in (5.2.1) satisfies pc ∈ (0, 1).

5.3. Overview of proof: a lace-expansion analysis

The proof of the infrared bound in Theorem 5.1 makes use of a clever combinatorial
expansion technique, somewhat like the cluster expansion in statistical mechanics. This
expansion goes under the name of the percolation lace expansion. Lace-expansion tech-
niques have been used to prove mean-field results for various models, including the self-
avoiding walk, percolation, lattice trees and lattice animals, the Ising model, ϕ4-models,
the contact process, etc. In these lecture notes, we focus on the percolation setting. For
an excellent survey of the lace-expansion method with a focus on self-avoiding walk, we
refer the reader to the Saint-Flour lecture notes of Slade [246].

Any lace-expansion analysis consists of three main steps that are strongly intertwined:

(I) Derivation lace expansion: First, we need to derive the lace expansion. For
percolation, the lace expansion takes the form

(5.3.1) τp(x) = δ0,x + 2dp(D ? τp)(x) + 2dp(Πp ? D ? τp)(x) + Πp(x),

valid for all p ≤ pc and with explicit, but quite complicated, formulas for the
function Πp : Zd → R, whose finiteness is a priori not obvious. The function Πp
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f(p) ≤ 1

f(p) ≤ 0.999

Bounds on simple diagrams

Bounds on coefficients

Assume a bound

Conclude a bound

Figure 5.1. Proof of claim (iii): f(p) ≤ 1 implies f(p) ≤ 0.999.

and its properties form the key to the understanding of the two-point function,
as can be seen by taking the Fourier transform and solving for τ̂p(k) to yield

(5.3.2) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]
.

Thus, the function Πp uniquely identifies the two-point function, and is sometimes
called the irreducible two-point function. The derivation of the lace expansion is
performed in Chapter 6.

(II) Bounds on the lace-expansion coefficients: The second key ingredient in
an analysis using the lace expansion are the bounds on the lace-expansion coef-
ficients Πp. These bounds facilitate the proof of the fact that the equations in
(5.3.1) and (5.3.2) are small perturbations of simple random walk. The bounds
on the lace-expansion coefficients are proved in Chapter 7.

(III) Bootstrap analysis of the lace expansion: Now that we have completed
the bounds on the lace-expansion coefficients, we are ready to analyze the lace
expansion, with the aim to prove the infrared bound in Theorem 5.1. This is
difficult, since the bounds on the lace-expansion coefficients are in terms of the
two-point function τp itself, thus creating an apparent circularity in the reason-
ing. Therefore, we need a bootstrap argument to circumvent this problem. The
bootstrap analysis is performed in Chapter 8.

In the bootstrap, we assume that certain bounds hold for p < pc on a certain (finite)
set of functions fi(p), and then conclude that a better bound must also hold. Here we can

think of f1(p) = 2dp or f2(p) = supk∈(−π,π)d τ̂p(k)[1− D̂(k)]. These estimates can then be
used to prove sharp bounds on the lace-expansion coefficients, which in turn imply better
bounds on the bootstrap functions. When fi(0) obey the better bound for every i, and
the functions p 7→ fi(p) are continuous, this implies that the better bounds hold for every
p ∈ [0, pc), and thus also at p = pc. This is intuitively explained in Figure 5.1.

Together, the above steps prove that when the dimension is such the random-walk
triangle condition holds, i.e., when

(5.3.3) 4(RW) =
∑
x,y∈Zd

C1(x)C1(y − x)C1(y) <∞,
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then also the percolation triangle condition in (4.1.1) is satisfied. For technical reasons,
we need that 4(RW) is sufficiently close to 1, which is only true when d is sufficiently large.
We see such restrictions on 4p also reflected in the requirement that 4pc(e) < 1 for e ∼ 0
in the proof that γ ≤ 1. In the next section, we investigate such random walk quantities
in more detail.

5.4. The random walk triangle

In this section, we prove random walk conditions very similar to the random walk
triangle condition. These are formulated in the following proposition:

Proposition 5.5 (Random walk triangles). For simple random walk, for any l, n ≥ 0,
there exist constants c(RW)

l,n independent of d such that for d > 4n,

(5.4.1)

∫
(−π,π]d

D̂(k)2l

[1− D̂(k)]n
dk

(2π)d
≤ c(RW)

2l,n d
−l.

As a consequence, we get that (under the hypothesis of the theorem) for any λ ∈ [0, 1],

(5.4.2)

∫
(−π,π]d

D̂(k)2l

[1− λD̂(k)]n
dk

(2π)d
≤ c(RW)

2l,n d
−l.

The reason for this is that we can represent the left hand side in x-space and bound as

(5.4.3)
∑
x

(
D∗2l ∗ C∗nλ

)
(x) ≤

∑
x

(
D∗2l ∗ C∗n1

)
(x),

and then (after retransformation into Fourier space) applying (5.4.1).

Proof of Proposition 5.5. We follow [59, Sect. 2.2.2]. The Cauchy-Schwarz in-
equality1 yields∫

(−π,π]d

D̂(k)2l

[1− D̂(k)]n
dk

(2π)d
≤
(∫

(−π,π]d
D̂(k)4l dk

(2π)d

)1/2

(5.4.4)

×

(∫
(−π,π]d

1

[1− D̂(k)]2n
dk

(2π)d

)1/2

.

The second term on the right hand side is bounded uniformly by (5.1.10). Finally, we
argue that the first term on the right hand side of (5.4.4) is small if d is large. Note that

(5.4.5)

∫
(−π,π]d

D̂(k)4l dk

(2π)d
= D?4l(0)

is the probability that simple random walk returns to its starting point after the 4lth step.
This is bounded from above by cl(2d)−2l with cl being a well-chosen constant, because
the first 2l steps must be compensated by the last 2l. Finally, the square root yields the
upper bound O(d−l). �

Fourier theory plays a very important role in these lecture notes, so we encourage you
to make the following exercises:

1The Hölder inequality gives better bounds here. In particular, it requires d > 2n only, cf. (2.19) in
[59]. Since we are working in high dimensions anyway, the extra dimensions needed here do not matter.
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Exercise 5.4 (Related triangles). Show that for d > 6 and simple random walk,
uniformly for λ ≤ 1 and k ∈ (−π, π]d,∫

(−π,π]d
D̂(l)2Ĉλ(l)

2 1
2

[
Ĉλ(l + k) + Ĉλ(l − k)

] dl

(2π)d
≤ c(RW)

2,3 /d,(5.4.6) ∫
(−π,π]d

D̂(l)2Ĉλ(l)Ĉλ(l − k)Ĉλ(l + k)
dl

(2π)d
≤ c(RW)

2,3 /d,(5.4.7)

where c(RW)

2,3 is the same as in Proposition 5.5. [Hint: For (5.4.7), show that

Ĉλ(l − k)Ĉλ(l + k)(5.4.8)

=
(∑
x∈Zd

cos(l · x) cos(k · x)Cλ(x)
)2

−
(∑
x∈Zd

sin(l · x) sin(k · x)Cλ(x)
)2

,

and use that l 7→
∑

x∈Zd cos(l · x) cos(k · x)Cλ(x) is the Fourier transform of x 7→ cos(k ·
x)Cλ(x).]

Exercise 5.5 (Percolation open polygons). Fix p < pc. Use the Inverse Fourier
Theorem and Lemma 5.3 to prove that τ ?sp (x) ≤ τ ?sp (0) for every x ∈ Zd and s ≥ 1. Show

further that (D?2 ? τ ?sp )(x) ≤ (D?2 ? τ ?sp )(0) for every x ∈ Zd and s ≥ 1. Conclude that
these bounds also hold for p = pc.

Random walk triangle condition for spread-out models. We recall our dis-
cussion of spread-out models in Section 5.2. The major motivation for the spread-out
model with DL as in (5.2.4) stems from the fact that we can prove mean-field behaviour
for d ≥ d0 = 6 provided that L is sufficiently large (in contrast to the nearest-neighbor
model, where d0 need be sufficiently large). The reason for this difference is seen best
when contrasting the assertion of Proposition 5.5 with the corresponding statement for
spread-out models, which reads as follows:

Proposition 5.6 (Random walk triangles for spread-out model). For the spread-out
walk, there exist constants c(RW)

l,n = c(RW)

l,n (d) independent of L such that for d > 2n and
l ≥ 1,

(5.4.9)

∫
(−π,π]d

D̂L(k)2l

[1− D̂L(k)]n
dk

(2π)d
≤ c(RW)

2l,n L
−d,

where DL is defined in (5.2.4).

Recall from (5.3.3) that the random-walk triangle diagram ∆(RW) is obtained as the
left-hand side of (5.4.9) with l = 0 and n = 3, and the proposition thus gives that not
only ∆(RW) is finite if d > 6, but also that it is arbitrarily small.

Proof. We again follow [59, Sect. 2.2.2] and [149, Section 3]. We separately consider
the regions ‖k‖∞ ≤ L−1 and ‖k‖∞ > L−1. We note that, for suitable constants c1, c2 > 0,

1− D̂L(k) ≥ c1L
2|k|2 if ‖k‖∞ ≤ L−1,(5.4.10)

1− D̂L(k) > c2 if ‖k‖∞ ≥ L−1,(5.4.11)

both inequalities being fairly straightforward to prove.

Exercise 5.6 (Bounds on 1− D̂L). Prove (5.4.10) and (5.4.11).
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By (5.4.10) and the bound D̂L(k)2 ≤ 1, the corresponding contributions to the integral
are ∫

k:‖k‖∞≤L−1

D̂L(k)2l

[1− D̂L(k)]n
dk

(2π)d
≤ 1

cs1L
2n

∫
k : ‖k‖∞≤L−1

1

|k|2n
dk

(2π)d
(5.4.12)

≤ Cd,c1L
−d,

if d > 2n, where Cd,c1 is a constant depending (only) on d and c1, and by (5.4.11),∫
k:‖k‖∞>L−1

D̂L(k)2l

[1− D̂L(k)]n
dk

(2π)d
≤ c2

−n
∫
k : ‖k‖∞>L−1

D̂L(k)2l dk

(2π)d
(5.4.13)

≤ constL−d,

for some positive constant and l ≥ 1. In the last step we have used that

(5.4.14)

∫
k∈(−π,π]d

D̂L(k)2 dk

(2π)d
= (DL ? DL)(0) =

∑
y∈Zd

DL(y)2 ≤ constL−d,

since maxxDL(x) = O(L−d). �





CHAPTER 6

The derivation of the lace expansion via inclusion-exclusion

In this chapter, we perform the combinatorial expansion that relies on inclusion-
exclusion for the percolation two-point function τp(x). We follow the classical Hara-Slade
expansion [133]. An overview of this expansion can be found in the related paper by Hara
and Slade [138]. We adapt it using ideas in [59] and [149]. We provide an overview to the
expansion in Section 6.1. We give a self-contained and detailed derivation of the expan-
sion in Section 6.2. We close this chapter in Section 6.3 by discussing the lace expansion,
focussing in particular on the error term that arises in the inclusion-exclusion expansion.
For an introduction to the lace expansion for various different models, see the Saint-Flour
lecture notes by Slade [246]. We start by giving an overview of the expansion.

6.1. Classical inclusion-exclusion lace expansion

The term “lace” was used by Brydges and Spencer [65] for certain graphs that arose in
the expansion that they invented to study the self-avoiding walk. Although the inclusion-
exclusion expansion for percolation evolved from the lace expansion for the self-avoiding
walk, this graphical construction does not occur for percolation, so that the term “lace”
expansion is a misnomer in the percolation context. However, the name has stuck for
historical reasons.

We start by giving a brief introduction to the inclusion-exclusion lace expansion, with
an indication of how it is used to prove the infrared bound in Theorem 5.1 that implies
the triangle condition. We restrict attention here to percolation on the hypercubic lattice
Zd, with d large. In fact, the derivation of the expansion as well as obtaining the bounding
diagrams in Chapters 6 and 7 applies verbatim to any transitive graph. Only during the
Fourier analysis in Chapter 8 we are limited to the lattice Zd, as Fourier techniques are
not available in such general context.

Given a percolation cluster containing 0 and x, we call any bond whose removal
would disconnect 0 from x a pivotal bond. The connected components that remain after
removing all pivotal bonds are called sausages. Since, by definition, sausages are separated
by at least one pivotal bond, no two sausages can share a vertex. Thus, the sausages are
constrained to be mutually avoiding. In high dimensions this is, at least intuitively,
a relatively weak constraint, since sausage intersections require a cycle, and cycles are
unlikely in high dimensions. In fact, for p asymptotically proportional to 1/(2d), and
hence for p = pc, the probability that the origin is in a cycle of length 4 is of order
d2d−4 = d−2, and larger cycles are even more unlikely. The fact that cycles are unlikely
also means that clusters tend to be tree-like and percolation paths tend to be close to
random walk paths. This makes it reasonable to attempt an inclusion-exclusion analysis,
where the connection from 0 to x is treated as a random walk path, with correction terms
taking into account cycles in sausages and intersections between sausages that appear

59
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0

x

0 x

Figure 6.1. A percolation cluster with a string of 8 sausages joining 0 to
x, and a schematic representation of the string of sausages. The 7 pivotal
bonds are shown in bold.

through the use of inclusion-exclusion. With this in mind, it makes sense to relate τp(x)
to the random walk Green’s function as defined in (2.2.8).

For this, we start from (2.2.8) and notice that the random walk Green’s function
satisfies

(6.1.1) Cµ(x) = δ0,x + µ(D ? Cµ)(x).

Indeed, the first term arises from the zero step walk, and the second term arises by
conditioning on the first step of the simple random walk.

The lace expansion of Hara and Slade [133] is a combinatorial expansion for τp(x) that
makes this inclusion-exclusion procedure precise. It produces a convolution equation of
the form

(6.1.2) τp(x) = δ0,x + 2dp(D ? τp)(x) + 2dp(Πp ? D ? τp)(x) + Πp(x)

for the two-point function, valid for p ≤ pc. The expansion gives explicit but complicated
formulas for the function Πp : Zd → R. It turns out that if d ≥ d0 and d0 > 6 is

sufficiently large, then Π̂p(k) = O(1/d) uniformly in p ≤ pc. Putting Πp ≡ 0 in (6.1.2)
gives (6.1.1), and in this sense the percolation two-point function can be regarded as a
small perturbation of the random walk Green’s function.

Applying the Fourier transform, (6.1.2) can be solved to give

(6.1.3) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]
.

Therefore, Π̂p(k) is sometimes called the irreducible two-point function. It follows that

Π̂p(k) uniquely identifies τ̂p(k) and vice versa:

Exercise 6.1 (Uniqueness lace-expansion coefficient). Take p < pc. Show that (6.1.3)

uniquely identifies Π̂p(k).
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We show that when d ≥ d0 and d0 > 6 is sufficiently large, then Π̂p(k) can be well

approximated by Π̂p(0). Since Π̂p(k) is also small compared to 1, (6.1.3) suggests that
the approximation

(6.1.4) τ̂p(k) ≈ 1

1− 2dp[1 + Π̂p(0)]D̂(k)

is reasonable (where ≈ denotes an uncontrolled approximation). Comparing with (2.2.11),
this suggests that

(6.1.5) τ̂p(k) ≈ Ĉµp(k) with µp = 2dp[1 + Π̂p(0)].

Since τ̂p(0) = χ(p) → ∞ as p ↗ pc (recall Theorem 3.2(3)), the critical threshold must
satisfy the implicit equation

(6.1.6) 2dpc[1 + Π̂pc(0)] = 1.

In order to derive the infrared bound in Theorem 5.1, it then suffices to prove that τ̂p(k)

in (6.1.3) can be bounded from above by A(d)/[1 − D̂(k)]. A problem for this is that

in order to bound the expansion coefficients Π̂p(k), we need to rely on bounds on the
two-point function τ̂p(k), which seems to lead to a circular argument. This circularity
is avoided in Chapter 8 using an ingenious bootstrap argument. In the remainder of this
chapter, we derive the expansion in (6.1.2) and identify the coefficients Π̂p(k).

6.2. Derivation of the inclusion-exclusion lace expansion

In this section, we derive a version of the inclusion-exclusion lace expansion (6.1.2)
that contains a remainder term. We use the method of Hara and Slade [133], which
applies directly in this general setting, and we follow the presentation of Borgs et al. in
[59] closely. Parts of the exposition of the expansion are taken verbatim from [59, Section
3.2], where the expansion was derived for general graphs and further references are given.

We start by introducing some notation. Fix p ∈ [0, 1]. We define

J(x) = p1{x∼0} = 2dpD(x),(6.2.1)

with D given by (1.2.18). We write τ(x) = τp(x) for brevity, and generally drop subscripts
indicating dependence on p. The result of this section is summarized in the following
proposition:

Proposition 6.1 (Inclusion-exclusion lace expansion). Let p be such that θ(p) = 0.
For each M = 0, 1, 2, . . ., the expansion takes the form

(6.2.2) τ(x) = δ0,x + (J ? τ)(x) + (ΠM ? J ? τ)(x) + ΠM(x) +RM(x),

where the ? denotes convolution. The function ΠM : Zd → R is the key quantity in the
expansion, and RM(x) is a remainder term defined in (6.2.20) for M = 0, in (6.2.26) for
M = 1 and in (6.2.28) for M ≥ 2. The dependence of ΠM on M is given by

(6.2.3) ΠM(x) =
M∑
N=0

(−1)NΠ(N)(x),

with Π(N)(x) independent of M . Π(N)(x) is defined in (6.2.7) for N = 0, in (6.2.25) for
N = 1, and in (6.2.27) for N ≥ 2.
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The alternating sign in (6.2.3) arises via a repeated inclusion-exclusion argument. In
Chapter 8, we prove that, for all d ≥ d0 with d0 ≥ 6 large enough and p < pc,

(6.2.4) lim
M→∞

∑
x∈Zd
|RM(x)| = 0.

This leads to (6.1.2) with Π = Π∞ (see also Section 6.3 below). Convergence properties
of (6.2.3) when M = ∞ is also established in Chapter 8. The remainder of this section
gives the proof of Proposition 6.1.

Initiating the expansion. To get started with the expansion, we need the following
definitions:

Definition 6.2 (Connections in and through sets of vertices). (a) Given a set of
vertices A ⊆ Zd, we say that x and y are connected in A, and write {x ←→ y in A}, if
x = y ∈ A or if there is an occupied path from x to y having all its endpoints in A. We
define the restricted two-point function by

(6.2.5) τA(x, y) = P(x←→ y in Zd\A).

(b) Given a bond configuration, and a set of vertices A ⊆ Zd, we say that x and y are
connected through A, if x ←→ y and every occupied path connecting x to y has at least

one bond with an endpoint in A, or if x = y ∈ A. This event is written as {x A←→ y}.

With this definition at hand, we can extend (4.2.20) to get for every x, y ∈ Zd, A ⊆ Zd,

(6.2.6) τA(x, y) = τ(x, y)−
(
τ(x, y)− τA(x, y)

)
= τ(x, y)− P(x

A←→ y).

Definition 6.3 (Double connections and pivotal bonds). (a) Given a bond configu-
ration, we say that x is doubly connected to y, and we write x⇐⇒ y, if x = y or if there
are at least two bond-disjoint paths from x to y consisting of occupied bonds.
(b) Given a bond configuration, and a bond b, we define C̃ b(x) to be the set of vertices
connected to x in the new configuration obtained by setting b to be vacant.
(c) Given a bond configuration, a bond {u, v} (occupied or not) is called pivotal for the
connection from x to y if (i) either x←→ u and y ←→ v, or x←→ v and y ←→ u, and

(ii) y 6∈ C̃ {u,v}(x). Bonds are not usually regarded as directed. However, it is convenient
at times to regard a bond {u, v} as directed from u to v, and we emphasize this point of
view with the notation (u, v). A directed bond (u, v) is pivotal for the connection from x

to y if x ←→ u, v ←→ y and y 6∈ C̃ {u,v}(x). We denote by Piv(x, y) the set of directed
pivotal bonds for the connection from x to y.

Start of the expansion for M = 0. To begin the expansion, we define

(6.2.7) Π(0)(x) = P(0⇐⇒ x)− δ0,x

and distinguish configurations with 0←→ x according to whether or not there is a double
connection, to obtain

(6.2.8) τ(x) = δ0,x + Π(0)(x) + P(0←→ x, 0⇐⇒/ x).
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A

x
b b̄ y

Figure 6.2. The event E(x, b, y;A) of Lemma 6.4. The shaded regions
represent the vertices in A. There is no restriction on intersections between
A and C̃ b(y).

If 0 is connected to x, but not doubly, then Piv(0, x) is nonempty. There is therefore a
unique element (u, v) ∈ Piv(0, x) (the first pivotal bond, sometimes also called the cutting
bond) such that 0⇐⇒ u, and we can write

P(0←→ x, 0⇐⇒/ x)(6.2.9)

=
∑
(u,v)

P(0⇐⇒ u and (u, v) is occupied and pivotal for 0←→ x).

Now comes the essential part of the expansion. Ideally, we would like to factor the
probability on the right side of (6.2.9) as

P(0⇐⇒ u)P((u, v) is occupied)P(v ←→ x)(6.2.10)

=
(
δ0,u + Π(0)(u)

)
J(u, v)τ(x− v),

where J(u, v) = J(v − u). The expression (6.2.10) is the same as (6.2.2) with ΠM = Π(0)

and RM = 0. However, (6.2.9) does not factor in this way because the cluster C̃ (u,v)(u)

is constrained not to intersect the cluster C̃ (u,v)(v), since (u, v) is pivotal. What we can
do is approximate the probability on the right hand side of (6.2.9) by (6.2.10) using
inclusion-exclusion, and then attempt to deal with the error term.

The cutting-bond lemma. In order to use inclusion-exclusion, we use the next
lemma, which gives an identity for the probability on the right hand side of (6.2.9). In
fact, we also need a more general identity, involving the following generalizations of the
event appearing on the right hand side of (6.2.9). Let x, u, v, y ∈ Zd with u ∼ v, and
A ⊆ Zd be nonempty. Then we define the events

E ′(v, y;A) = {v A←→ y} ∩ {@(u′, v′) ∈ Piv(v, y) such that v
A←→ u′},(6.2.11)

and

E(x, u, v, y;A) = E ′(x, u;A) ∩ {(u, v) is occupied and pivotal for x←→ y}.(6.2.12)

Note that {x ⇐⇒ y} = E ′(x, y;Zd), while E(0, u, v, x;Zd) is the event appearing on the
right hand side of (6.2.9). A version of Lemma 6.4, with E ′(x, u;A) replaced by {0←→ u}
on both sides of (6.2.13), appeared as (4.2.19) in the Aizenman-Newman proof of γ = 1.
See also Exercise 6.2 below.

Lemma 6.4 (The cutting-bond lemma). Let p ∈ [0, 1] be such that θ(p) = 0, let
x, u, v, y ∈ Zd, and let A ⊆ Zd be nonempty. Then

(6.2.13) E
(
1E(x,u,v,y;A)

)
= pE

(
1E′(x,u;A) τ

C̃ {u,v}(x)(v, y)
)
.



64 6. THE DERIVATION OF THE LACE EXPANSION VIA INCLUSION-EXCLUSION

Proof. The event appearing in the left side of (6.2.13) is depicted in Figure 6.2.
We first observe that the event E ′(x, u;A) ∩ {(u, v) ∈ Piv(x, y)} is independent of the
occupation status of the bond (u, v). This is true by definition for {(u, v) ∈ Piv(x, y)},
and when (u, v) is pivotal, the occurrence or not of E ′(x, u;A) cannot be affected by {u, v}
since in this case E ′(x, u;A) is determined by the occupied paths from x to u and no such
path uses the bond {u, v}. Therefore, the left side of (6.2.13) is equal to

(6.2.14) pE
(
1E′(x,u;A)∩{(u,v)∈Piv(x,y)}

)
.

By conditioning on C̃ {u,v}(x), (6.2.14) is equal to

(6.2.15) p
∑
S : S3x

E
(
1E′(x,u;A)∩{(u,v)∈Piv(x,y)}∩{C̃ {u,v}(x)=S}

)
,

where the sum is over all finite connected sets of vertices S containing x. This is possible,
since by assumption θ(p) = 0, so that, in particular, |C̃ {u,v}(x)| <∞ a.s.

In (6.2.15), we make the replacement, valid for all connected S such that x←→ u in
S,

{(u, v) ∈ Piv(x, y)} ∩ {C̃ {u,v}(x) = S}(6.2.16)

= {v ←→ y in Zd\S} ∩ {C̃ {u,v}(x) = S}.

Indeed, on the one hand, {v ←→ y in Zd \ C̃ {u,v}(x)} = {v ←→ y in Zd \ S} must occur

when (u, v) ∈ Piv(x, y) and when C̃ {u,v}(x) = S. On the other hand, when {v ←→
y in Zd \ C̃ {u,v}(x)} = {v ←→ y in Zd \ S} occurs, then also (u, v) ∈ Piv(x, y) (recall
Definition 6.3(c)).

The event {v ←→ y in Zd\S} depends only on the occupation status of bonds that

do not have an endpoint in S. Further, given that {v ←→ y in Zd\S} ∩ {C̃ {u,v}(x) = S}
occurs, the event E ′(x, u;A) is determined by the occupation status of bonds that do have

an endpoint in S = C̃ {u,v}(x). Similarly, the event {C̃ {u,v}(x) = S} depends on bonds that

have one or both endpoints in S. Hence, given S, the event E ′(x, u;A)∩ {C̃ {u,v}(x) = S}
is independent of the event that {v ←→ y in Zd\S}, and therefore (6.2.15) is equal to

(6.2.17) p
∑
S : S3x

E
(
1E′(x,u;A)∩{C̃ {u,v}(x)=S}

)
τS(v, y).

Bringing the restricted two-point function inside the expectation, replacing the superscript
S by C̃ {u,v}(x), and performing the sum over S, gives the desired result. �

Exercise 6.2 (The Aizenman-Newman identity (4.2.19)). Prove (4.2.19) by adapting
the proof of Lemma 6.4.

Completion expansion for M = 0. So far we have expanded the probability of
{x ←→ y}, from now on it is more convenient to consider {0 ←→ x} instead. It follows
from (6.2.9) and Lemma 6.4 that

P(0←→ x, 0⇐⇒/ x) =
∑
(u,v)

J(u, v)E
(
1{0⇐⇒u} τ

C̃ (u,v)(0)(v, x)
)
,(6.2.18)

where we write C̃ (u,v)(x) in place of C̃ {u,v}(x) to emphasize the directed nature of the bond

(u, v). On the right side, τ C̃ (u,v)(x)(v, y) is the restricted two-point function given the clus-

ter C̃ (u,v)(x) of the outer expectation, so that in the expectation defining τ C̃ (u,v)(x)(v, y),
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0
b b′

x

Figure 6.3. A possible configuration appearing in the second stage of the expansion.

C̃ (u,v)(x) should be regarded as a fixed set. We stress this delicate point here, as it is
crucial also in the rest of the expansion. The inner expectation on the right hand side
of (6.2.18) effectively introduces a second percolation model on a second graph, which is

coupled to the original percolation model via the set C̃ (u,v)(x).

We write, using (6.2.6) with A = C̃ (u,v)(0),

τ C̃ (u,v)(0)(v, x) = τ(v, x)−
(
τ(v, x)− τ C̃ (u,v)(0)(v, x)

)
(6.2.19)

= τ(x− v)− P
(
v ←C̃

(u,v)(0)−−−−−→ x
)
,

insert this into (6.2.18), and use (6.2.8) and (6.2.7) to obtain

τ(x) = δ0,x + Π(0)(x) +
∑
(u,v)

(
δ0,u + Π(0)(u)

)
J(u, v)τ(x− v)

−
∑
(u,v)

J(u, v)E0

(
1{0⇐⇒u} P1(v ←

C̃
(u,v)
0 (0)
−−−−−→ x)

)
.(6.2.20)

Here, we have introduced the subscripts 0 and 1 to denote the two percolation config-

urations. Thus, the law of C̃ (u,v)
0 (0) is described by P0 and E0, and C̃ (u,v)

0 (0) should be
considered a fixed set inside the expectation E1. With R0(x) equal to the last term on the
right side of (6.2.20) (including the minus sign), this proves (6.2.2) for M = 0.

Expansion for M = 1 and cutting-bond partition. To continue the expansion,
we would like to rewrite R0(x), i.e., the final term of (6.2.20), in terms of a product with
the two-point function. A configuration contributing to the expectation in the final term
of (6.2.20) is illustrated schematically in Figure 6.3, in which the bonds drawn with heavy
lines should be regarded as living on a different graph than the bonds drawn with lighter
lines, as explained previously. Our goal is to extract a factor τ(y− v′), where v′ is the top
of the bond b′ shown in Figure 6.3.

Given a configuration in which v ←A−→ x, the cutting bond (u′, v′) is defined to be the first

pivotal bond for v ←→ x such that v ←A−→ u′. It is possible that no such bond exists, as for
example would be the case in Figure 6.3 if only the leftmost four sausages were included
in the figure (using the terminology of Section 6.1), with x in the location currently
occupied by u′, which is the bottom of the bond b′. Recall the definitions of E ′(v, x;A)

and E(x, u, v, y;A) in (6.2.11) and (6.2.12). By partitioning {v A←→ x} according to the
location of the cutting bond (or the lack of a cutting bond), we obtain the following
partition:
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Lemma 6.5 (Cutting-bond partition).

(6.2.21) {v A←→ x} = E ′(v, x;A)
·⋃ ·⋃

(u′,v′)

E(v, u′, v′, x;A),

Exercise 6.3 (Proof Lemma 6.5). Prove Lemma 6.5.

Lemma 6.5 implies that

P(v
A←→ x) = P(E ′(v, x;A)) +

∑
(u′,v′)

P(E(v, u′, v′, x;A)).(6.2.22)

Using the cutting-bond Lemma 6.4, this gives

P(v
A←→ x) = P(E ′(v, x;A)) +

∑
(u′,v′)

J(u′, v′)E
(
1E′(v,u′;A) τ

C̃ (u′,v′)(v)(v′, x)
)
.(6.2.23)

Inserting the identity (6.2.19) into (6.2.23), we obtain

P(v
A←→ x) = P(E ′(v, x;A)) +

∑
(u′,v′)

J(u′, v′)P(E ′(v, u′;A)) τ(x− v′)

−
∑

(u′,v′)

J(u′, v′)E1

(
1E′(v,u′;A) P2(v

′ ←
C̃

(u′,v′)
1 (v)
−−−−−−→ x)

)
.(6.2.24)

In the last term on the right hand side, we have again introduced subscripts for C̃ and
the expectations, to indicate to which expectation C̃ belongs.

Let

(6.2.25) Π(1)(x) =
∑
(u,v)

J(u, v)E0

(
1{0⇐⇒u}P1

(
E ′(v, x; C̃ (u,v)

0 (0))
))
.

Inserting (6.2.24) into (6.2.20), and using (6.2.25), we obtain

τ(x) = δ0,x + Π(0)(x)− Π(1)(x) +
∑
(u,v)

(
δ0,u + Π(0)(u)− Π(1)(u)

)
J(u, v) τ(x− v)

+
∑
(u,v)

J(u, v)
∑

(u′,v′)

J(u′, v′)× E0

(
1{0⇐⇒u}E1

(
1
E′(v,u′;C̃

(u,v)
0 (0))

P2

(
v′ ←

C̃
(u′,v′)
1 (v)
−−−−−−→ x

)))
.

(6.2.26)

This proves (6.2.2) for M = 1, with R1(x) given by the last line of (6.2.26).

Iteration of inclusion-exclusion and expansion for general M . We now repeat
this procedure recursively, rewriting

P2

(
v′ ←

C̃
(u′,v′)
1 (v)
−−−−−−→ x

)
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using (6.2.24), and so on. This leads to (6.2.2), with Π(0) and Π(1) given by (6.2.7) and
(6.2.25), and, for N ≥ 2,

Π(N)(x) =
∑

(u0,v0)

· · ·
∑

(uN−1,vN−1)

[N−1∏
i=0

J(ui, vi)
]
E01{0⇐⇒u0}(6.2.27)

× E11E′(v0,u1;C̃0) · · ·EN−11E′(vN−2,uN−1;C̃N−2)EN1E′(vN−1,x;C̃N−1),

and R0(x) and R1(x) defined in (6.2.20) and (6.2.26), and, for M ≥ 2,

RM(x) = (−1)M+1
∑

(u0,v0)

· · ·
∑

(uM ,vM )

[ M∏
i=0

J(ui, vi)
]
E01{0⇐⇒u0}

× E11E′(v0,u1;C̃0) · · ·EM−11E′(vM−2,uM−1;C̃M−2)

× EM

[
1E′(vM−1,uM ;C̃M−1)PM+1(vM ←

C̃M−−→ x)
]
,(6.2.28)

where we have used the abbreviation C̃j = C̃
(uj ,vj)
j (vj−1), with v−1 = 0.

Exercise 6.4 (Iteration for M = 2). Perform the iteration one more step, and thus
prove (6.2.2) for M = 2 by identifying R2(x) and Π(2)(x).

Exercise 6.5 (Solution of iteration). Use induction to prove (6.2.2) for general M ≥ 2
and identify RM(x) and Π(N)(x) as in (6.2.28) and (6.2.27).

6.3. Full expansion: how to deal with the error term

In this section, we explain how to obtain the full lace expansion as in (5.3.1), or its
Fourier version in (5.3.2). The essential difference between (6.2.2) and (5.3.1) is the error
term RM(x) that appears in (6.2.2), while it is absent in (5.3.1). We obtain (5.3.1) from
(6.2.2) by letting M → ∞. Here we explain how one might prove bounds on this error
term that allow us to take this limit.

Since

(6.3.1) PM+1(vM ←
C̃M−−→ x) ≤ τ(x− vM),

it follows from (6.2.27)–(6.2.28) that

|RM(x)| ≤
∑

uM ,vM∈Zd
Π(M)(uM)J(uM , vM)τ(x− vM)(6.3.2)

≤
∑

uM ,vM∈Zd
Π(M)(uM)J(uM , vM) = 2dp Π̂(M)(0).

Equation (6.3.2) is crucial in order to show that |RM(x)| → 0 as M → ∞. We see that

|RM(x)| → 0 as M → ∞ whenever Π̂(M)(0) → 0. Assuming that indeed |RM(x)| → 0 as
M →∞, we arrive at (6.1.2) with

(6.3.3) Π(x) =
∞∑
N=0

(−1)NΠ(N)(x).

Further, summing the first bound in (6.3.2) over x gives

(6.3.4)
∑
x∈Zd
|RM(x)| ≤ 2dpΠ̂(M)(0)χ(p).
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When p < pc, we know that χ(p) <∞. As a result, (6.2.4) follows for every p < pc when

Π̂(M)(0) → 0 as M → ∞. Of course, the fact that |RM(x)| → 0 as M → ∞ is one of the
key steps in the analysis of the inclusion-exclusion lace expansion, as it also allows us to
give the implicit relation for pc given by (6.1.6)! The key ingredient to this is to show

that Π̂(M)(0)→ 0 is exponentially small in M uniformly in p < pc, where the base of the
exponential is closely related to the triangle diagram.



CHAPTER 7

Diagrammatic estimates for the lace expansion

In this chapter, we prove bounds on Π(N). These bounds are summarized in Lemma 7.1
for N = 0, Lemma 7.2 for N = 1 and Proposition 7.4 for N ≥ 2. We refer to the methods
of this section as diagrammatic estimates, as we use Feynman diagrams to provide a
convenient representation for upper bounds on Π(N). This chapter follows Borgs et al.
[59, Section 4] closely, and is in parts a verbatim copy of it. In turn, this approach is
essentially identical to what is done by Hara and Slade in [133, Section 2.2], apart from
some notational differences. The overview in Section 7.1 is novel, and we expand on the
explanations. In Section 7.2, we give a warm up by bounding Π(0) and Π(1). In Sections
7.3–7.5, we provide bounds on Π(N) in terms of diagrams, and bound these in terms of
triangle diagrams and related objects. These bounds are performed in three key steps.
In the first step in Section 7.3, we provide bounding events on the lace-expansion events
E ′(v, y;A) tailored for an application of the BK-inequality (1.3.4). In Section 7.4, we
apply the BK-inequality to bound the lace-expansion coefficients in terms of diagrams,
and conveniently organize the large arising sums. Finally, in Section 7.5, we reduce the
necessary bounds to bounds in terms of five simple diagrams like the triangle diagram.
We close this chapter in Section 7.6 by giving a summary of what we have achieved and
an outlook on how to proceed.

7.1. Overview of the bounds

Recall (6.1.3), which implies that

(7.1.1) τp(x) =
(
(1 + Πp) ? Vp

)
(x),

where we define Vp(x) in terms of its Fourier transform V̂p(k) as

(7.1.2) V̂p(k) =
1

1− 2dpD̂(k)[1 + Π̂p(k)]
.

In this chapter, we answer the following question:

What bounds do we need on Πp for τ̂p(k) to be a small perturbation

of Ĉλp(k) for an appropriate λp, where

(7.1.3) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]
?

In anticipation of the fact that Πp is a small perturbation, we assume that Πp is small
in high dimensions. Therefore, it is reasonable to assume that the asymptotics of τp(x)
are mainly determined by that of Vp(x). Let us assume this for the time being, we return
to this issue at the end of this section.

69
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If 2dpD̂(k)[1 + Π̂p(k)] were the Fourier transform of a nonnegative and summable
function Qp(x), then we could interpret Vp(x) as the Green’s function associated with the
random walk with transition probabilities given by

(7.1.4) Dp(x) =
Qp(x)∑
y∈Zd Qp(y)

.

Then,

(7.1.5) Vp(x) = Gµp(x),

where

(7.1.6) Ĝµ(k) =
1

1− µD̂p(k)
,

and

(7.1.7) µp =
∑
y∈Zd

Qp(y) = Q̂p(0) = 2dpD̂(0)[1 + Π̂p(0)] = 2dp[1 + Π̂p(0)].

Therefore, the critical value pc = pc(Zd) should be determined by

(7.1.8) µpc = 2dpc[1 + Π̂pc(0)] = 1.

Thus, for p = pc,

(7.1.9) V̂pc(k) = Ĝ1(k) =
1

1− D̂pc(k)
,

which is the critical Green’s function with random walk transition probabilities x 7→
Dpc(x). Taylor expansion shows that

(7.1.10) V̂pc(k) ∼ A

|k|2

whenever the random walk transition probabilities have finite second moment, i.e., when

(7.1.11)
∑
x∈Zd
|x|2Dpc(x) <∞.

We know that D̂pc(k) = 2dpcD̂(k)[1 + Π̂pc(k)], so that∑
x∈Zd
|x|2Dpc(x) = 2dpc

∑
x∈Zd
|x|2D(x)

∑
x∈Zd

Πpc(x)(7.1.12)

+ 2dpc
∑
x∈Zd

D(x)
∑
x∈Zd
|x|2Πpc(x)

= 2dpc[1 + Π̂pc(0)] + 2dpc
∑
x∈Zd
|x|2Πpc(x),

where we use that, for symmetric functions x 7→ f(x) and x 7→ g(x),

(7.1.13)
∑
x∈Zd
|x|2(f ? g)(x) =

∑
x∈Zd
|x|2f(x)

∑
y∈Zd

g(y) +
∑
x∈Zd

f(x)
∑
y∈Zd
|y|2g(y).

Exercise 7.1 (Second moment of convolution). Prove (7.1.13).



7.1. OVERVIEW OF THE BOUNDS 71

As a result, this leads us to the requirement that

(7.1.14) Π̂pc(0) <∞,
∑
x∈Zd
|x|2Πpc(x) <∞.

It turns out to be convenient to work in Fourier space instead. The first bound in (7.1.14)
is already formulated in Fourier language. Of course, the second statement in (7.1.14)
should be equivalent to the statement that, for small k,

(7.1.15)
∑
x∈Zd

[1− cos(k · x)]Πpc(x) = Π̂pc(0)− Π̂pc(k) = O(|k|2),

where we have used the spatial symmetry of x 7→ Πp(x). Since 1 − D̂(k) = O(|k|2), this
can also be interpreted as saying that

(7.1.16) Π̂pc(0) <∞, Π̂pc(0)− Π̂pc(k) = O(1− D̂(k)).

The main aim in this chapter is to prove slightly stronger bounds, proving that Π̂p(k) is
in fact a small perturbation in high dimensions:

Our main aim in the analysis of the lace expansion in this and the
next chapter is to show that there exists a constant CΠ independent
of the dimension d such that, for all d sufficiently large and uniformly
in p < pc,

(7.1.17) |Π̂p(k)| ≤ CΠ/d, |Π̂p(0)− Π̂p(k)| ≤ (CΠ/d)[1− D̂(k)].

The extra factors of 1/d are crucial in order to show that Π̂p(k) indeed is a small
perturbation. This suggests what we need to prove for the lace-expansion coefficients.
These bounds are the main aim of this section. However, there are a few problems that
we have conveniently glossed over:

(a) The first is that x 7→ Dpc(x) = 2dpc(D ? (δ0,· + Πpc))(x) is not a random walk step
distribution. The point is that the function x 7→ Πpc(x) can have both signs, so that also
Dpc(x) = 2dpc(D ? (δ0,· + Πpc))(x) may have negative values. It is true that x 7→ Dpc(x)
sums up to one (recall (7.1.8)). Thus, probabilistic arguments do not apply, and we have
to resort to more analytical tools.

(b) The second problem is possibly even more daunting. Indeed, the lace-expansion coef-
ficients are complicated objects. For example, by the BK-inequality, Π(0)

p (x) = Pp(0 ⇐⇒
x) ≤ Pp(0 ←→ x)2 = τp(x)2. Since τpc(x) should be small for x large, at first glance this
looks quite promising. Unfortunately, this bound is in terms of the object we are trying
to bound in the first place! Thus, at a second glance, this method seems doomed...

Fortunately, there is a clever way around this, which is through a bootstrap or forbidden-
region argument that we discuss in detail in Section 8.1, and its application is performed
in all detail in Chapter 8. Intuitively, the bootstrap argument argues that if the two-point
function satisfies some nice bound of the form that we are trying to prove, then even better
bounds hold. If these bounds can be formulated in terms of continuous functions (of p),
and if the bounds are trivially satisfied when p = 0, then they

have to be true for all p ∈ [0, pc).
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Indeed, these assumptions imply that a certain forbidden region arises, and thus the
functions should avoid that forbidden region. In particular, when the region is chosen
appropriately, this implies that the functions at hand cannot blow up when p approached
pc.

We apply these arguments to functions such as

p 7→ 2dp or p 7→ sup
k∈(−π,π]d

[1− D̂(k)]τ̂p(k).

Of course, the fact that all the stated assumptions are true is highly non-trivial and
requires a precise proof, which is called the bootstrap analysis of the lace expansion, and
is performed in the following chapter.

In the next section, as a warm up, we start by giving bounds on Π(0) and Π(1), as these
give a very clear picture of how such bounds can be formulated and proved in general. In
Section 7.4, we introduce notation to state and derive the general bounds.

7.2. A warm up: bounds on Π(0) and Π(1)

In this section, we prove upper bounds on Π(0) and Π(1) to explain the philosophy
behind the proofs. Before stating the bounds, we introduce some notation.

The upper bounds we prove are in terms of various quantities related to the triangle
diagram. We recall the definition of ∆p(x) from (4.2.1) and define

(7.2.1) ∆p = max
x∈Zd

∆p(x) = max
x∈Zd

∑
y,z∈Zd

τp(y)τp(z− y)τp(x− z) =
∑
y,z∈Zd

τp(y)τp(z− y)τp(z),

where the last equality is established in Exercise 5.2. We further define a related quantity

(7.2.2) ∆̃p(x) =
∑

y,z,u∈Zd
τp(y)τp(z − y)2dpD(u)τp(x− z − u) = (τp ? τp ? τ̃p)(x),

where we let

(7.2.3) τ̃p(x) = 2dp(D ? τp)(x).

Finally, let

(7.2.4) ∆̃p = max
x∈Zd

∆̃p(x).

The extra convolution with D present in ∆̃p makes that ∆̃p = O(1/d) (in contrast to ∆p,
which is always larger than 1), and this is essential for showing that the lace-expansion
coefficients are small in high dimensions.

Further, we need two diagrams that allow us to formulate the bounds on Π̂(0)
pc (0) −

Π̂(0)
pc (k) and Π̂(1)

pc (0)− Π̂(1)
pc (k). For this, and for k ∈ (−π, π]d and y ∈ Zd, we let

Wp(y; k) =
∑
x∈Zd

[1− cos(k · x)]τ̃p(x)τp(x+ y),(7.2.5)

Wp(k) = max
y∈Zd

Wp(y; k).(7.2.6)
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Bounds on Π̂(0). We crucially use the BK-inequality in order to prove the following
bounds on Π̂(0):

Lemma 7.1 (Bounds on Π(0)). For N = 0, and all k ∈ (−π, π]d,

(7.2.7)
∣∣Π̂(0)(k)

∣∣ ≤ ∆̃p,

and

(7.2.8) Π̂(0)(0)− Π̂(0)(k) ≤ Wp(0; k).

Proof. By (6.2.7) and the BK inequality (1.3.4),

(7.2.9) Π(0)(x) = P(0⇐⇒ x)− δ0,x ≤ τp(x)2 − δ0,x.

For x 6= 0, the event {0 ←→ x} is the union over neighbors e of the origin of the events
{{0, e} occupied} ◦ {e←→ x}. Thus, by the BK inequality,

(7.2.10) τp(x) ≤ 2dp(D ? τp)(x) = τ̃p(x) (x 6= 0).

Therefore, using further that τp(x) ≤ (τp ? τp)(x),

|Π̂p(k)| =
∣∣∣ ∑
x∈Zd : x 6=0

cos(k · x)Π(0)(x)
∣∣∣ ≤ ∑

x∈Zd : x 6=0

Π(0)(x)(7.2.11)

≤
∑
x∈Zd

τp(x)τ̃p(x) ≤ ∆̃p(0) ≤ ∆̃p.

Similarly, ∑
x∈Zd

[1− cos(k · x)]Π(0)(x) ≤
∑

x∈Zd : x 6=0

[1− cos(k · x)]τp(x)2(7.2.12)

≤
∑

x∈Zd : x 6=0

[1− cos(k · x)]τp(x)τ̃p(x) = Wp(0; k).

This proves (7.2.7)–(7.2.8). These proofs in particular highlight the importance of the
BK-inequality in obtaining bounds on Π(0)! �

Bounds on Π̂(1). We continue to bound Π(1), which is more involved due to the

occurrence of the difficult event E ′(v, x; C̃ (u,v)
0 (0)) in (6.2.25). The main result is as

follows:

Lemma 7.2 (Bounds on Π(1)). For N = 1,

(7.2.13)
∑
x∈Zd

Π(1)(x) ≤ ∆̃p(∆p)
2,

and ∑
x∈Zd

[1− cos(k · x)]Π(1)(x) ≤ 3(∆p)
2Wp(k) + 6∆̃p∆pWp(k).(7.2.14)

Alternatively, ∑
x∈Zd

[1− cos(k · x)]Π(1)(x) ≤ Wp(0; k) + 16∆̃p∆pWp(k).(7.2.15)

In the proof of Lemma 7.2, we make essential use of the following trigonometric in-
equality:
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Lemma 7.3 (Split of cosines [105]). Let J ≥ 1 and ti ∈ R for i = 1, . . . , J . Then

1− cos
( J∑
i=1

ti

)
≤ J

J∑
i=1

[1− cos(ti)].(7.2.16)

Proof. Abbreviate t =
∑J

i=1 ti. By taking the real part of the telescoping sum
identity

1− eit =
J∑
i=1

[1− eiti ]
i−1∏
j=1

eitj ,(7.2.17)

we obtain

(7.2.18) 1− cos(t) ≤
J∑
i=1

[1− cos(ti)] +
J∑
i=2

sin(ti) sin

(
i−1∑
j=1

tj

)
.

In the following, we use | sin(x+y)| ≤ | sin(x)|+| sin(y)|, |ab| ≤ (a2+b2)/2 and 1−cos2(a) ≤
2[1− cos(a)] to conclude from (7.2.18) that

1− cos(t) ≤
J∑
i=1

[1− cos(ti)] +
J∑
i=2

i−1∑
j=1

| sin(ti)|| sin(tj)|(7.2.19)

≤
J∑
i=1

[1− cos(ti)] +
1

2

J∑
i=2

i−1∑
j=1

[
sin2(ti) + sin2(tj)

]
=

J∑
i=1

[1− cos(ti)] +
J − 1

2

J∑
i=1

sin2(ti)

≤ J
J∑
i=1

[1− cos(ti)].

�

Now we are ready to complete the proof of Lemma 7.2:

Proof of Lemma 7.2 except (7.2.15). Recall that

(7.2.20) Π(1)(x) =
∑
(u,v)

J(u, v)E0

(
1{0⇐⇒u}P1

(
E ′(v, x; C̃ (u,v)

0 (0))
))
.

We start by giving a bound on P1

(
E ′(v, x; C̃ (u,v)

0 (0))
)
. For this, we note that

(7.2.21) E ′(v, x; C̃0) ⊆
⋃
z1∈C̃0

⋃
t1∈Zd
{v ←→ t1} ◦ {t1 ←→ z1} ◦ {t1 ←→ x} ◦ {z1 ←→ x}.

Therefore,

P1

(
E ′(v, x; C̃ (u,v)

0 (0))
)

≤
∑
z1

1{z1∈C̃0}

∑
t1∈Zd

P1

(
{v ←→ t1} ◦ {t1 ←→ z1} ◦ {t1 ←→ x} ◦ {z1 ←→ x}

)
.

(7.2.22)
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Substituting this bound into (7.2.20) leads to

Π(1)(x) ≤
∑
(u,v)

J(u, v)
∑
z1

E0

(
1{0⇐⇒u,z1∈C̃0}

)
(7.2.23)

×
∑
t1∈Zd

P1

(
{v ←→ t1} ◦ {t1 ←→ z1} ◦ {t1 ←→ x} ◦ {z1 ←→ x}

)
.

Using that

P0

(
0⇐⇒ u, z1 ∈ C̃0

)
≤ P0

(
0⇐⇒ u, 0←→ z1

)
≤
∑
w0∈Zd

P0

(
{0←→ u} ◦ {0←→ w0} ◦ {w0 ←→ u} ◦ {w0 ←→ z1}

)
,(7.2.24)

we arrive at the bound

Π(1)(x) ≤
∑
(u,v)

J(u, v)
∑

w0,z1∈Zd
P0

(
{0←→ u} ◦ {0←→ w0} ◦ {w0 ←→ u} ◦ {w0 ←→ z1}

)

×
∑
t1∈Zd

P1

(
{v ←→ t1} ◦ {t1 ←→ z1} ◦ {t1 ←→ x} ◦ {z1 ←→ x}

)
.

(7.2.25)

Using the BK-inequality, this leads to

Π(1)(x) ≤
∑

u,w0∈Zd

[
τp(u)τp(w0)τp(u− w0)

] ∑
z1∈Zd

τp(z1 − w0)(7.2.26)

×
∑

v,t1∈Zd
J(u, v)τp(t1 − v)

[
τp(z1 − t1)τp(x− t1)τp(x− z1)

]
=

∑
u,w0∈Zd

[
τp(u)τp(w0)τp(u− w0)

] ∑
z1∈Zd

τp(z1 − w0)

×
∑
t1∈Zd

τ̃p(t1 − u)
[
τp(z1 − t1)τp(x− t1)τp(x− z1)

]
.

We further sum the above over x ∈ Zd, and let t′1 = t1 − z1, x
′ = x− z1 to obtain∑

x∈Zd
Π(1)(x) ≤

∑
u,w0∈Zd

[
τp(u)τp(w0)τp(u− w0)

] ∑
z1∈Zd

τp(z1 − w0)(7.2.27)

×
∑

x′,t′1∈Zd
τ̃p(t

′
1 + z1 − u)

[
τp(t

′
1)τp(x

′ − t′1)τp(x′)
]

=
∑

u,w0∈Zd

[
τp(u)τp(w0)τp(u− w0)

]
×

∑
t′1,x
′∈Zd

(τp ? τ̃p)(t
′
1 + w0 − u)

[
τp(t

′
1)τp(x

′ − t′1)τp(x′)
]
,

where we use that∑
z1∈Zd

τp(z1 − w0)τ̃p(t
′
1 + z1 − u) =

∑
z1∈Zd

τp(w0 − z1)τ̃p(t
′
1 + z1 − u)(7.2.28)

= (τp ? τ̃p)(t
′
1 + w0 − u).
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Uniformly in t′1, w0, u,

(7.2.29) (τp ? τ̃p)(t
′
1 + w0 − u) ≤ max

x∈Zd
(τp ? τ̃p)(x) ≤ ∆̃p.

After applying this bound, we use that∑
t′1,x
′∈Zd

τp(t
′
1)τp(x

′ − t′1)τp(x′) =
∑

u,w0∈Zd
τp(u)τp(w0)τp(u− w0) = ∆p,(7.2.30)

to arrive at (7.2.13).
For (7.2.14), we write x = u+ (t1 − u) + (x− t1), and use Lemma 7.3 to bound

(7.2.31) [1− cos(k ·x)] ≤ 3[1− cos(k ·u)] + 3[1− cos(k · (t1−u))] + 3[1− cos(k · (x− t1))].
This gives rise to three terms that we bound one by one. The term with [1−cos(k·(t1−u))]
is the easiest, and can be bounded in an identical way as for

∑
x∈Zd Π(1)(x). Indeed,

following these computations, it gives rise to an extra factor [1 − cos(k · (t′1 + z1 − u))].
This can be bounded by replacing (7.2.28)–(7.2.29) by

max
t′1,w0,u

∑
z1∈Zd

[1− cos(k · (t′1 + z1 − u))]τp(z1 − w0)τ̃p(t
′
1 + z1 − u) = Wp(k).(7.2.32)

We proceed with the contribution due to 3[1− cos(k · u)], which we bound as∑
x,u,w0∈Zd

[
3[1− cos(k · u)]τp(u)τp(w0)

] ∑
z1∈Zd

τp(u− w0)τp(z1 − w0)(7.2.33)

×
∑
t1∈Zd

τ̃p(t1 − u)
[
τp(z1 − t1)τp(x− t1)τp(x− z1)

]
≤

∑
u,w′0∈Zd

[
3[1− cos(k · u)]τp(u)τp(u+ w′0)

] ∑
z′1∈Zd

τp(w
′
0)τp(z

′
1 − w′0)

×
∑

x′,t′1∈Zd
τ̃p(t

′
1)
[
τp(z

′
1 − t′1)τp(x′ − t′1)τp(x′ − z′1)

]
,

where w′0 = w0 − u, t′1 = t1 − u, z′1 = z1 − u, x′ = x− u. Now, uniformly in w′0,

(7.2.34)
∑

u,w′0∈Zd

[
3[1− cos(k · u)]τp(u)τp(u+ w′0)

]
≤ 3Wp(k),

so that the contribution due to 3[1− cos(k · u)] is bounded by

3Wp(k)
∑

z′′1 ,w
′
0,t
′
1∈Zd

τp(w
′
0)τp(z

′′
1 + t′1 − w′0)τ̃p(t′1)(7.2.35)

×
∑
x′′∈Zd

[
τp(z

′′
1 )τp(x

′′)τp(x
′′ − z′′1 )

]
,

where x′′ = x′ − t′1, z′′1 = z′1 − t′1. Uniformly in z′′1 ,

(7.2.36)
∑

w′0,t
′
1∈Zd

τp(w
′
0)τp(z

′′
1 + t1 − w′0)τ̃p(t′1) ≤ ∆̃p,

and

(7.2.37)
∑

z′′1 ,x
′′∈Zd

[
τp(z

′′
1 )τp(x

′′)τp(x
′′ − z′′1 )

]
≤ ∆p,
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so that that the contribution due to 3[1− cos(k ·u)] is bounded by 3Wp(k)∆̃p∆p. It is not
hard to see that by symmetry, the contribution due to 3[1− cos(k · (x− t1))] is the same:

Exercise 7.2 (Contribution due to 1− cos(k · (x− t1))). Prove that the contribution
due to 3[1−cos(k · (x− t1))] can also be bounded by 3Wp(k)∆̃p∆p. This can either be done
by using symmetry, or adapting the steps of the above proof.

The proof of the improved inequality (7.2.15) is deferred to Section 7.5.3. This is
an essential improvement, as it turns out that the right hand side of (7.2.15) contains a
factor 1/d, while the right hand side of (7.2.14) does not. �

Conclusion of bounds on Π̂(0) an Π̂(1). Lemmas 7.1 and 7.2 bring us substantially
closer to achieving our main goal in bounding Π̂p(k) as formulated in (7.1.17), provided
that we can prove that the bounding diagrams that we encounter in Lemmas 7.1 and
7.2 can indeed be bounded by CΠ/d and (CΠ/d)[1 − D̂(k)]. How this can be achieved is
explained in detail in the next chapter.

In the proof of Lemma 7.2, we see that the bounds, even for N = 1, rapidly become
quite involved. The estimates are all quite standard, but the organization of the arising
sums is a challenge. This becomes significantly more involved when dealing with Π(N)

for N ≥ 2. In the following section, we explain how such sums can be performed in an
organized way. We also explain how these bounds can be represented by pictures.

7.3. Bounds on the lace expansion: bounding events

In the coming three sections, we show how Π(N) of (6.2.27) can be bounded in terms
of Feynman diagrams. Given increasing events E,F , recall the notation E ◦ F to denote
the event that E and F occur disjointly, as introduced in Section 1.3.

The analysis consists of three key steps. In the first step, performed in this section, we
bound the difficult events E ′(v, x;A) appearing in (6.2.27) by simpler connection events.
In the second step, performed in Section 7.4, we bound the probability of these connec-
tion events by products of two-point functions using the BK-inequality, and efficiently
summarize the arising products of two-point functions in terms of simple diagrams. In
the final step, performed in Section 7.5, we bound these diagrams in terms of triangles
and related diagrams.

Let P(N) denote the product measure on N + 1 independent copies of percolation on
Zd. By Fubini’s Theorem and (6.2.27),

Π(N)(x) =
∑

(u0,v0)

· · ·
∑

(uN−1,vN−1)

[N−1∏
i=0

J(ui, vi)
]

(7.3.1)

× P(N)
(
{0⇐⇒ u0}0 ∩

(N−1⋂
i=1

E ′(vi−1, ui; C̃i−1)i
)
∩ E ′(vN−1, x; C̃N−1)N

)
,

where, for an event F , we write Fi to denote that F occurs on the ith copy of the
percolation configurations. To estimate Π(N)(x), it is convenient to define the events (for
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F0(x, u0, w0, z1) =
x

w0

u0

z1

F ′(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti zi

• ui

wi

zi+1

F ′′(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti zi

• ui

wi

zi+1

FN(vN−1, tN , zN , y) =
vN−1 tN zN

• y

Figure 7.1. Diagrammatic representations of the events appearing in
(7.3.8) and (7.3.9). Lines indicate disjoint connections.

N ≥ 1)

F0(0, u0, w0, z1) = {0←→ u0} ◦ {0←→ w0} ◦ {w0 ←→ u0}(7.3.2)

◦ {w0 ←→ z1},
F ′(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ←→ ti} ◦ {ti ←→ zi} ◦ {ti ←→ wi}(7.3.3)

◦ {zi ←→ ui} ◦ {wi ←→ ui} ◦ {wi ←→ zi+1},
F ′′(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ←→ wi} ◦ {wi ←→ ti} ◦ {ti ←→ zi}(7.3.4)

◦ {ti ←→ ui} ◦ {zi ←→ ui} ◦ {wi ←→ zi+1},
FN(vN−1, tN , zN , x) = {vN−1 ←→ tN} ◦ {tN ←→ zN}(7.3.5)

◦ {tN ←→ x} ◦ {zN ←→ x},

and to write

F (vi−1, ti, zi, ui, wi, zi+1) = F ′(vi−1, ti, zi, ui, wi, zi+1) ∪ F ′′(vi−1, ti, zi, ui, wi, zi+1).(7.3.6)

The events F0, F
′, F ′′, FN are depicted in Figure 7.1. Note that

(7.3.7) FN(v, t, z, y) = F0(y, z, t, v).

By the definition of E ′ in (6.2.11), and as in (7.2.21),

(7.3.8) E ′(vN−1, y; C̃N−1)N ⊆
⋃

zN∈C̃N−1

⋃
tN∈Zd

FN(vN−1, tN , zN , y)N .

Indeed, viewing the connection from vN−1 to y as a string of sausages beginning at vN−1

and ending at y, for the event E ′ to occur there must be a vertex zN ∈ C̃N−1 that lies on
the last sausage, on a path from vN−1 to y. (In fact, both “sides” of the sausage must

contain a vertex in C̃N−1, but we do not need or use this here.) This leads to (7.3.8), with
tN representing the other endpoint of the sausage that terminates at y.
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E ′(vN−1, y; C̃N−1)N ⊆
⋃

zN∈C̃N−1

⋃
tN∈Zd

vN−1

tN zN
y

C̃N−1

E ′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊆
⋃

zi∈C̃i−1

⋃
ti,wi∈Zd

vi−1

ti zi
ui

wi

zi+1

C̃i−1

⋃ vi−1

ti zi
ui

wi

zi+1

C̃i−1

Figure 7.2. Diagrammatic representations of the inclusions in (7.3.8) and (7.3.9).

Assume, for the moment, that N ≥ 2. The condition in (7.3.8) that zN ∈ C̃N−1 is
a condition on the graph N − 1 that must be satisfied in conjunction with the event
E ′(vN−2, uN−1; C̃N−2)N−1. It is not difficult to see that for i ∈ {1, . . . , N − 1},

(7.3.9) E ′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊆
⋃

zi∈C̃i−1

⋃
ti,wi∈Zd

F (vi−1, ti, zi, ui, wi, zi+1)i.

See Figure 7.2 for a depiction of the inclusions in (7.3.8) and (7.3.9). We leave its proof
as an exercise. Further details are given in the original paper by Hara and Slade [133,
Lemma 2.5] or in the book by Madras and Slade [211, Lemma 5.5.8].

Exercise 7.3 (Bounding diagrams). Prove (7.3.9).

With an appropriate treatment for {x ⇐⇒ u0}0 ∩ {z1 ∈ C̃0}, (7.3.8) and (7.3.9) lead
to

{0⇐⇒ u0}0 ∩
(N−1⋂

i=1

E ′(vi−1, ui; C̃i−1)i

)
∩ E ′(vN−1, x; C̃N−1)N

(7.3.10)

⊆
⋃
~t, ~w,~z

(
F0(0, u0, w0, z1)0 ∩

(N−1⋂
i=1

F (vi−1, ti, zi, ui, wi, zi+1)i
)
∩ FN(vN−1, tN , zN , x)N

)
,
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where ~t = (t1, . . . , tN), ~w = (w0, . . . , wN−1) and ~z = (z1, . . . , zN). Therefore,

Π(N)(x) ≤
∑[

N−1∏
i=0

J(ui, vi)

]
P(F0(0, u0, w0, z1))(7.3.11)

×
N−1∏
i=1

P(F (vi−1, ti, zi, ui, wi, zi+1))P(FN(vN−1, tN , zN , x)),

where the summation is over z1, . . . , zN , t1, . . . , tN , w0, . . . , wN−1, u0, . . . , uN−1, v0, . . . , vN−1.
The probability in (7.3.11) factors because the events F0, . . . , FN are events on different
percolation models, and these different percolation models are independent. In the next
section, we explain how such a huge sum can be conveniently organized.

7.4. Bounds on the lace expansion: diagrammatic estimates

Each probability in (7.3.11) can be estimated using the BK inequality. The result is
that each of the connections {a←→ b} present in the events F0, F and FN is replaced by a
two-point function τp(a, b). This results in a large sum of products of two-point functions.
We call such a large product a diagram.

To organize the arising large sum of products of two-point functions, we recall (7.2.3)
and let

τ̃p(x, y) = (J ? τp)(x, y) = 2dp(D ? τp)(y − x),(7.4.1)

and define the simple diagrams

A3(s, u, v) = τp(s, v)τp(s, u)τp(u, v),(7.4.2)

B1(s, t, u, v) = τ̃p(t, v)τp(s, u),(7.4.3)

B2(u, v, s, t) = τp(u, v)τp(u, t)τp(v, s)τp(s, t)(7.4.4)

+
∑
a∈Zd

τp(s, a)τp(a, u)τp(a, t)δv,sτp(u, t).

The two terms in B2 arise from the two events F ′ and F ′′ in (7.3.6). We write them
as B(1)

2 and B(2)

2 , respectively. The above quantities are represented diagrammatically in
Figure 7.3. In the diagrams, a line joining a and b represents τp(a, b). In addition, small
bars are used to distinguish a line that represents τ̃p, as in B1.

Application of the BK inequality yields

P(F0(0, u0, w0, z1)) ≤ A3(0, u0, w0)τp(w0, z1),(7.4.5) ∑
vN−1

J(uN−1, vN−1)P(FN(vN−1, tN , zN , x)) ≤ B1(wN−1, uN−1, zN , tN)

τp(wN−1, zN)
A3(x, tN , zN).(7.4.6)
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A3(s, u, v) B1(s, t, u, v) =

B2(u, v, s, t) = +

s

t

u

v

tu

v = s
s

tu

v

=

Figure 7.3. Diagrammatic representations of A3(s, u, v), B1(s, t, u, v) and B2(u, v, s, t).

For F ′ and F ′′, application of the BK inequality yields∑
vi−1

J(ui−1, vi−1)P(F ′(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B(1)

2 (zi, ti, wi, ui)τp(wi, zi+1),(7.4.7) ∑
vi−1,ti

J(ui−1, vi−1)P(F ′′(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, wi)

τp(wi−1, zi)
B(2)

2 (zi, wi, wi, ui)τp(wi, zi+1).(7.4.8)

Since the second and the third arguments of B(2)

2 are equal by virtue of the Kronecker
delta in (7.4.4), we can combine (7.4.7)–(7.4.8) to obtain∑

vi−1,ti

J(ui−1, vi−1)P(F (vi−1, ti, zi, ui, wi, zi+1))

≤
∑
ti

B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B2(zi, ti, wi, ui)τp(wi, zi+1).(7.4.9)

Upon substitution of the bounds on the probabilities in (7.4.5), (7.4.6) and (7.4.9)
into (7.3.11), the ratios of two-point functions form a telescoping product that disappears.
After relabelling the summation indices, (7.3.11) becomes

Π(N)(x) ≤
∑
~u,~w,~z,~t

A3(0, u0, w0)
N−1∏
i=1

[
B1(wi−1, ui−i, zi, ti)B2(zi, ti, wi, ui)

]
×B1(wN−1, uN−1, zN , tN)A3(zN , tN , x).(7.4.10)

The bound (7.4.10) is valid for all N ≥ 1, and the summation is over all the vertices
u0, . . . , uN−1, w0, . . . , wN−1, z1, . . . , zN , t1, . . . , tN (with x fixed). For N = 1, 2, the right
side is represented diagrammatically in Figure 7.4. In the diagrams, unlabelled vertices
are summed over Zd.
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Figure 7.4. The diagrams bounding (a) Π(1)(x) and (b) Π(2)(x).

Exercise 7.4 (Verification of (7.4.10) for N = 1). Verify that (7.4.10) for N = 1
agrees with (7.2.26).

The sum in (7.4.10) still looks quite daunting. In the next section, we explain how its
sum over x can be bounded in terms of triangle diagrams. Furthermore, we also bound
the sum over x when involving a factor [1− cos(k · x)].

7.5. Bounds on the lace expansion: reduction to simple diagrams

In this section, we bound the sum over x of the bound in (7.4.10) in terms of products

of triangle diagrams, implying that Π̂(N)
p (0) is exponentially small in N whenever these

triangles are small. We further bound the sum
∑

x[1− cos(k · x)]Π(N)
p (x) in terms of three

simple diagrams that depend on k.
Recall that B(2)

2 denotes the second term of (7.4.4). For k ∈ (−π, π]d and a1, a2 ∈ Zd,
we also define

Hp(a1, a2; k)(7.5.1)

=
∑
u,v,s,t

[1− cos(k · (t− u))]B1(0, a1, u, s)B
(2)

2 (u, s, s, t)B1(s, t, v, v + a2),

and

(7.5.2) Hp(k) = max
a1,a2∈Zd

Hp(a1, a2; k).

The remainder of this section is devoted to the proof of the following proposition that
provides bounds on the lace-expansion coefficients for N ≥ 2:

Proposition 7.4 (Diagrammatic estimates for N ≥ 1). For N ≥ 1,

(7.5.3)
∑
x∈Zd

Π(N)(x) ≤ ∆p(2∆̃p∆p)
N ,

and∑
x∈Zd

[1− cos(k · x)]Π(N)(x) ≤ (2N + 1)
[
∆pWp(k)

(
2∆̃p + [1 + 2dp]N∆p

)
(2∆̃p∆p)

N−1

+ (N − 1)
(
∆̃2
pWp(k) +Hp(k)

)
(∆p)

2(2∆̃p∆p)
N−2
]
.(7.5.4)
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The bound for N = 1 is similar to that in (7.2.14), so we restrict to N ≥ 2. We prove
the two inequalities in (7.5.3) and (7.5.4) separately, the proof of (7.5.3) is in Section
7.5.1, that of (7.5.4) in Section 7.5.2.

Before we start with the proof, let us take a closer look on the structure at the bounds
in Proposition 7.4. Mind that the triangle diagram ∆p, as defined in (7.2.1), is always
larger than 1, since 1 appears as a summand for the “trivial” contribution y = z = 0.
On the other hand, ∆̃p requires at least one displacement (since one of the τ terms is
replaced by τ̃), and therefore can be smaller than 1. Indeed, in order for the upper bound
in (7.5.3) to be convergent, it is quite handy that the ∆̃p and ∆p appear together, since we

need that 2∆̃p∆p < 1 in order for the geometric sum (over N) to converge. Similarly, in
(7.5.4), it should be noted that every summand contains either a Wp(k) or a term Hp(k),
since only these two diagrams carry the k-dependence, which we certainly want to keep
in the bounds.

7.5.1. Proof of (7.5.3). For N ≥ 1, let

(7.5.5) Ψ(N)(wN , uN) =
∑
~u,~w,~z,~t

A3(0, u0, w0)
N∏
i=1

[
B1(wi−1, ui−1, zi, ti)B2(zi, ti, wi, ui)

]
,

where we recall that the summation is over all u0, . . . , uN−1, w0, . . . , wN−1, z1, . . . , zN ,
t1, . . . , tN (now with wN , uN fixed) For convenience, we define Ψ(0)(u0, w0) = A3(0, u0, w0),
so that, for N ≥ 1,

Ψ(N)(wN , uN) =
∑

uN−1,wN−1,zN ,tN

Ψ(N−1)(wN−1, uN−1)B1(wN−1, uN−1, zN , tN)

×B2(zN , tN , wN , uN).(7.5.6)

Since

(7.5.7)
∑
x

A3(zN , tN , x) =
∑
x

B(1)

2 (zN , tN , x, x) ≤
∑
wN ,uN

B2(zN , tN , wN , uN),

for any zN , tN , it follows from (7.4.10) that

(7.5.8)
∑
x

Π(N)(x) ≤
∑
wN ,uN

Ψ(N)(wN , uN),

and bounds on Π(N) can be obtained from bounds on Ψ(N). We prove bounds on Ψ(N), and
hence on Π(N), by induction on N .

The induction hypothesis is that

(7.5.9)
∑
wN ,uN

Ψ(N)(wN , uN) ≤ ∆p(2∆̃p∆p)
N .

For N = 0, (7.5.9) is true since

(7.5.10)
∑
w0,u0

A3(0, w0, u0) ≤ ∆p.
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For the induction step, we use (7.5.6) to get∑
wN ,uN

Ψ(N)(wN , uN) ≤
( ∑
uN−1,wN−1

Ψ(N−1)(uN−1, wN−1)
)

×
(

max
uN−1,wN−1

∑
zN ,tN ,wN ,uN

B1(wN−1, uN−1, zN , tN)B2(zN , tN , wN , uN)
)
.(7.5.11)

If we assume (7.5.9) is valid for N − 1, then it follows for N once we prove that

(7.5.12) max
uN−1,wN−1

∑
zN ,tN ,wN ,uN

B1(wN−1, uN−1, zN , tN)B2(zN , tN , wN , uN) ≤ 2∆̃p∆p.

It remains to prove (7.5.12). There are two terms, due to the two terms in (7.4.4),
and we bound each term separately. The first term is bounded as

max
uN−1,wN−1

∑
zN ,tN ,wN ,uN

τ̃p(tN − uN−1)τp(zN − wN−1)τp(tN − zN)

× τp(wN − tN)τp(uN − wN)τp(uN − zN)

= max
uN−1,wN−1

∑
zN ,tN

τ̃p(tN − uN−1)τp(zN − wN−1)τp(tN − zN)

×
( ∑
wN ,uN

τp(wN − tN)τp(uN − wN)τp(uN − zN)
)

= ∆̃p∆p.(7.5.13)

The second term is bounded similarly, making use of translation invariance, by

max
uN−1,wN−1

∑
zN ,tN ,wN ,uN ,a

τ̃p(tN − uN−1)τp(zN − wN−1)δtN ,wN

× τp(tN − a)τp(uN − zN)τp(zN − a)τp(uN − a)

= max
uN−1,wN−1

∑
a,zN ,uN

(
(τ̃p ? τp)(uN−1 − a)τp(zN − wN−1)

)
×
(
τp(uN − zN)τp(zN − a)τp(uN − a)

)
= max

uN−1,wN−1

∑
a′,zN ,u

′
N

(
(τ̃p ? τp)(uN−1 − zN − a′)τp(zN − wN−1)

)
×
(
τp(u

′
N)τp(−a′)τp(u′N − a′)

)
≤
(

max
a′,uN−1,wN−1

∆̃p(uN−1 − wN−1 − a′)
)( ∑

a′,u′N

τp(u
′
N)τp(a

′)τp(u
′
N − a′)

)
= ∆̃p∆p,(7.5.14)

where a′ = a − zN , u
′
N = uN − zN . This completes the proof of (7.5.12) and hence of

(7.5.3).

7.5.2. Proof of (7.5.4). Next, we estimate
∑

x[1 − cos(k · x)]Π(N)(x). In a term in
(7.4.10), there is a sequence of 2N+1 two-point functions along the “top” of the diagram,
such that the sum of the displacements of these two-point functions is exactly equal to
x. For example, in Figure 7.4(a) there are three displacements along the top of the
diagram, and in Figure 7.4(b) there are five in the first diagram and four in the second.
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We regard the second diagram as also having five displacements, with the understanding
that the third is constrained to vanish. With a similar general convention, each of the
2N−1 diagrams bounding Π(N) has 2N +1 displacements along the top of the diagram. We
denote these displacements by d1, . . . , d2N+1, so that x =

∑2N+1
j=1 dj. We distribute the

factor 1− cos(k · x) among the displacements dj, as we explain now.

We apply Lemma 7.3 with t = k ·x =
∑2N+1

j=1 k ·dj to obtain a sum of 2N+1 diagrams

like the ones for Π(N)(x), except now in the jth term, the jth line in the top of the diagram
represents [1 − cos(k · dj)]τp(dj) rather than τp(dj), or [1 − cos(k · dj)]τ̃p(dj) rather than
τ̃p(dj).

We distinguish three cases: (a) the displacement dj is in a line of A3, (b) the displace-
ment dj is in a line of B1, (c) the displacement dj is in a line of B2.

Case (a): the displacement is in a line of A3. We consider the case where the
weight [1− cos(k · dj)] falls on the last of the factors A3 in (7.4.10). This contribution is
equal to

(7.5.15)
∑
u,v

Ψ(N−1)(u, v)
∑
w,x,y

B1(u, v, w, y)τp(y−w)
[
1−cos

(
k ·(x−y)

)]
τp(x−y)τp(x−w).

Applying (7.2.10) to τp(x− y), we have

(7.5.16) max
u,v

∑
w,x,y

B1(u, v, w, y)τp(y−w)
[
1−cos

(
k·(x−y)

)]
τp(x−y)τp(x−w) ≤ ∆̃pWp(k).

It then follows from (7.5.9) that (7.5.15) is bounded above by ∆p(2∆̃p∆p)
N−1∆̃pWp(k).

By symmetry, the same bound applies when the weight falls into the first factor of A3,
i.e, when we have a factor [1− cos(k · d1)]. Thus case (a) leads to an upper bound

(7.5.17) 2∆p(2∆̃p∆p)
N−1∆̃pWp(k).

Case (b): the displacement is in a line of B1. Suppose that the factor [1−cos(k ·
dj)] falls on the ith factor B1 in (7.4.10). Depending on i, it falls either on τ̃p or on τp in
(7.4.3). We write the right hand side of (7.4.10) with the extra factor as

(7.5.18)
∑
x

∑
s,t,u,v

Ψ(i−1)(s, t)B̃1(s, t, u, v)Ψ̄(N−i)(u− x, v − x).

In (7.5.18),

(7.5.19) B̃1(s, t, u, v) =

{
τp(u− s)

[
1− cos

(
k · (v − t)

)]
τ̃p(v − t) if i is odd;[

1− cos
(
k · (u− s)

)]
τp(u− s)τ̃p(v − t) if i is even,

and Ψ̄(N−i) denotes a small variant of Ψ(N−i), defined inductively by Ψ̄(0) = Ψ(0) and

(7.5.20) Ψ̄(i)(x, y) =
∑
s,t,u,v

B2(x, y, s, t)B1(s, t, u, v)Ψ̄(i−1)(u, v).

It can be verified that Ψ̄(N−i) also obeys (7.5.9):

Exercise 7.5 (Bound on Ψ̄(N)). Prove that Ψ̄(N) also obeys (7.5.9).
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The distinction between even and odd values of i in (7.5.19) stems from the fact that
we distribute the displacement along the top line of the diagram, and after every B2 term,
the two factors τp and τ̃p of B1 interchange top and bottom position; see also Fig. 7.4 (b).

If i is odd, then we let a1 = t− s, a2 = v− u, and x′ = u− x. With this notation, the
contribution to (7.5.18) due to (7.5.19) is bounded above by(∑

s,a1

Ψ(i−1)(s, s+ a1)
)(∑

x′,a2

Ψ̄(N−i)(x′, x′ + a2)
)(

max
s,a1,a2

∑
u

B̃1(s, s+ a1, u, u+ a2)
)

=
(∑

s,t

Ψ(i−1)(s, t)
)(∑

x,y

Ψ̄(N−i)(x, y)
)
Wp(k)

≤ ∆p(2∆̃p∆p)
i−1∆p(2∆̃p∆p)

N−iWp(k) = ∆p(2∆̃p∆p)
N−1∆pWp(k),

(7.5.21)

where we have used (7.5.9) and the identical bound on Ψ̄(N) following from Exercise 7.5.
If i in (7.5.19) is even, then we proceed as in (7.5.21) to obtain(∑

s,a1

Ψ(i−1)(s, s+ a1)
)(∑

x′,a2

Ψ̄(N−i)(x′, x′ + a2)
)(

max
s,a1,a2

∑
u

B̃′1(s, s+ a1, u, u+ a2)
)

=
(∑

s,t

Ψ(i−1)(s, t)
)(∑

x,y

Ψ̄(N−i)(x, y)
)
W ′
p(k)

≤ ∆p(2∆̃p∆p)
i−1∆p(2∆̃p∆p)

N−iWp(k) = ∆p(2∆̃p∆p)
N−1∆pW

′
p(k),

(7.5.22)

where

(7.5.23) W ′
p(k) = max

s,a1,a2

∑
u

B̃′1(s, s+ a1, u, u+ a2).

To bound W ′
p(k), we use (7.2.10) for τp(u− s), write

τ̃p(u− s) =
∑
y

2dpD(y)τp(u− s− y),

estimate the sum over y with a supremum and use
∑

y 2dpD(y) = 2dp to obtain

(7.5.24) W ′
p(k) ≤ 2dpWp(k).

Since there are N choices of factors B1, case (b) leads to an overall upper bound

(7.5.25) N [1 + 2dp]∆p(2∆̃p∆p)
N−1∆pWp(k).

Case (c): the displacement is in a line of B2. It is sufficient to estimate

max
∑
a,b,u,v
s,t,w,y,x

Ψ(i−1)(a, b)Ψ̄(N−i−1)(w − x, y − x)[1− cos(k · d)]

×B1(a, b, u, v)B2(u, v, s, t)B1(s, t, w, y),(7.5.26)

where the maximum is over the choices d = s − v or d = t − u. We separately consider
the contributions due to B(1)

2 and B(2)

2 of (7.4.4), beginning with B(2)

2 .
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Recall the definition of H(a1, a2; k) in (7.5.1). The contribution to (7.5.26) due to B(2)

2

can be rewritten, using x′ = w − x, a2 = y − w, a1 = b− a, as∑
a,a1,a2,x′

Ψ(i−1)(a, a+ a1)Ψ̄
(N−i−1)(x′, x′ + a2)H(a1, a2; k)

≤ Hp(k)
(∑

x,y

Ψ(i−1)(x, y)
)(∑

x,y

Ψ̄(N−i−1)(x, y)
)

≤ Hp(k)(∆p)
2(2∆̃p∆p)

N−2.(7.5.27)

Since there are N − 1 factors B2 to choose, this contribution to case (c) contributes at
most

(7.5.28) (N − 1)Hp(k)(∆p)
2(2∆̃p∆p)

N−2.

It is not difficult to check that the contribution to case (c) due to B(1)

2 is at most

(7.5.29) (N − 1)(∆̃2
pWp(k))(∆p)

2(2∆̃p∆p)
N−2.

The desired estimate (7.5.4) then follows from Lemma 7.3, (7.5.17), (7.5.25) and
(7.5.28)–(7.5.29).

This completes the proof of Proposition 7.4. �

7.5.3. Proof of (7.2.15). We close the bounds in this section by improving the bound
on Π(1)

p in (7.2.15). In terms of the definitions in (7.4.2) and (7.4.3), (7.2.26) is equivalent
to

(7.5.30) Π(1)

p (x) ≤
∑

u,w0,t1,z1

A3(0, u, w0)B1(u,w0, t1, z1)A3(t1, z1, x).

We define A′3(u, v, x) by

(7.5.31) A′3(u, v, x) = A3(u, v, x)− δu,xδv,x.

Then, ∑
x

[1− cos(k · x)]Π(1)

p (x)(7.5.32)

≤
∑
x

[1− cos(k · x)]B1(0, 0, x, x)

+
∑

x,u,w0,t1,z1

[1− cos(k · x)]A′3(0, u, w0)B1(u,w0, t1, z1)A3(t1, z1, x)

+
∑
x,t1,z1

[1− cos(k · x)]B1(0, 0, u, v)A′3(t1, z1, x).

The first term equals Wp(0; k). The second and third terms are bounded above by 3 ·
3∆̃p∆pWp(k) and 2 · 2∆̃pWp(k) ≤ 4∆̃p∆pWp(k), respectively, using (7.2.16) (with J = 3
and J = 2) and the methods of Section 7.5.2.
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7.6. Outlook on the remainder of the argument

In this chapter, we have provided bound on the complicated functions Π̂(N)
p (k) and

Π̂(N)
p (0)− Π̂(N)

p (k) in terms of the five simple diagrams ∆̃p,∆p,Wp(0; k),Wp(k) and Hp(k).
While being relatively simple, these diagrams still involve the two-point function τp(x) or
its Fourier transform τ̂p(k). Should we have bounds on the two-point function τp, then
these simple diagrams could easily be bounded. The next chapter explains how this can
be done in detail.



CHAPTER 8

Bootstrap analysis of the lace expansion

In this chapter, we complete the proof of the infrared bound in Theorem 5.1. For this,
we analyze the lace-expansion recurrence relation in Fourier space, and reduce its asymp-
totics to necessary bounds on the lace-expansion coefficients that have been obtained in
the previous chapter. This chapter is organized as follows. In Section 8.1, we start by
giving an overview of the bootstrap argument. In Section 8.2, we introduce the three
bootstrap functions f1(p), f2(p) and f3(p) and explain their merits. In Section 8.3, we
derive bounds on the simple diagrams that were introduced in Chapter 7 to bound the
lace-expansion coefficients. In Section 8.4, we show that the bootstrap argument can be
successfully carried out. Finally, in Section 8.5, we summarize some consequences of the
completed bootstrap argument that are interesting in its own right.

8.1. Overview of the bootstrap argument

In this chapter, we answer the following question:

How to prove asymptotics for τ̂p(k) when

(8.1.1) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]

and Π̂p(k) is bounded in terms of τ̂p(k) itself?

By Lemmas 7.1 and 7.2, as well as Proposition 7.4, we see that in order to prove our
main aim formulated in (7.1.17), it suffices to prove the following diagrammatic bounds:

Prove that there exists a constant C independent of the dimension
d such that, for all d sufficiently large and uniformly in p < pc,

(8.1.2) ∆̃p ≤ C/d, ∆p ≤ 1 + C/d, Wp(0; k) ≤ (C/d)[1− D̂(k)]

and

(8.1.3) Wp(k) ≤ C[1− D̂(k)], Hp(k) ≤ C[1− D̂(k)].

Indeed, the diagrams appearing on the right hand sides of (8.1.2) and (8.1.3) are
themselves formulated in terms of τp(x) or τ̂p(k). The downside seems that we have set
forth to bound τ̂p(k), and are now faced with even more complicated objects that τ̂p(k)!
However, on the bright side, these diagrams are much simpler than the original objects
of study Π̂p(k).

89
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The proof makes use of a clever bootstrap or forbidden-region argument, that has been
used successfully in order to analyse the lace expansion. It appeared first in the study
of self-avoiding walk by Slade in [243], and for percolation and lattice trees and lattice
animals in the works by Hara and Slade [133, 134]. Earlier work on the lace expansion
for self-avoiding walk by Brydges and Spencer [65] made use of an induction argument in
terms of a finite memory instead. We start by discussing this bootstrap argument.

At the heart of the proof is the following lemma:

Lemma 8.1 (The bootstrap / forbidden region argument). Let f be a continuous
function on the interval [0, pc), let 0 < a < b < ∞, and assume that f(0) ≤ a. Suppose
for each p ∈ (0, pc) that if f(p) ≤ b, then in fact f(p) ≤ a holds. Then, it is true that
f(p) ≤ a for all p ∈ [0, pc).

Proof. Suppose there exists p ∈ (0, pc) with f(p) > a. Since we assumed that for no
p there is f(p) ∈ [a, b), we conclude that f(p) > b. The intermediate value theorem for
continuous functions implies the existence of p′ ∈ (0, pc) with f(p′) ∈ (a, b), which yields
a contradiction. �

The bootstrap argument in Lemma 8.1 is often used in analyzing the lace expansion,
see e.g. the Madras and Slade book [211, Section 6.1]. We now explain why it is so useful.
In Chapter 7, we have analyzed the lace-expansion coefficients, and have proved that they
satisfy bounds in terms of the two-point function τ̂p(k). However, our whole aim is to prove
bounds on the two-point function. In particular, we are on our way to prove Theorem 5.1,
which proves the infrared bound on the two-point function τ̂p(k) in k-space. Therefore,
the bounds presented in Proposition 7.4 might, at first glance, look completely useless
since we have no initial control over the two-point function at our disposal. However, if
we were to have a bound on the two-point function, and possibly some related objects,
then the bounds in Proposition 7.4 might be used to obtain excellent bounds on the lace-
expansion coefficients. In turn, such bounds could then lead to improved bounds on τ̂p(k)
through (8.1.1).

The bootstrap argument allows us to do precisely that. We introduce a bootstrap
function p 7→ f(p) that provides us with initial bounds on the two-point function, as well
as several related objects. These objects are chosen in such a way that they allow us
to analyse the quantities appearing in the bounds on the lace-expansion coefficients in
Proposition 7.4. Thus, the initial bound f(p) ≤ b allows us to give sharp bounds on Π̂p(k).
We can then feed these sharp bounds into the asymptotic identity for τ̂p(k) in(8.1.1) and
obtain an improved bound on the two-point function that reads that f(p) ≤ a in fact
does hold. When the bootstrap function that we have chosen is indeed continuous, then
we conclude that f(p) ≤ a must hold for all p ∈ [0, pc). We thus turned the initial weak
bounds into strong bounds.

One can think of the bootstrap lemma as a form of induction in the continuum. Let
(an)n≥0 be a sequence for which an can be bounded in terms of (ak)

n−1
k=0 , and for which

a0 is well understood. Then, from the recursive properties of the sequence (an)n≥0, an
induction step can sometimes be used to prove that bounds on (ak)

n−1
k=0 imply that the same

bound on an also holds. Then, in fact, the assumed bound in the induction hypothesis
holds for every n.
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In the bootstrap argument, induction cannot be used, since the function p 7→ f(p)
maps the continuum set [0, pc) to [0,∞). However, the pattern in Lemma 8.1 is similar.
The initialization of the induction is replaced by the verification that f(0) ≤ a, while
the induction step is replaced with the verification that, for some b > a, the weak bound
f(p) ≤ b implies the stronger bound f(p) ≤ a. The problem of dealing with the continuous
set [0, pc) is resolved by verifying that p 7→ f(p) is continuous on [0, pc).

We conclude this section by giving a simple example where the bootstrap argument
can be used to prove an inequality. Let u : [0,∞) → [0,∞) be a function that satisfies
u(0) = 1 and, for all t ≥ 0,

(8.1.4) ∂tu(t) =
√
u(t).

Of course, we can solve this equation to yield u(t) = (t/2 + 1)2, but that is not our point.
Suppose that we wish to prove a good upper bound on u(t) for every t ≥ 0. We could
define

(8.1.5) f(t) = sup
s∈[0,t]

u(s)

(s/2 + 1)2
.

We take b = 1.1 and a =
√

1.1. Then, assume that t is such that f(t) ≤ b. Take s ≤ t.
Improving the bootstrap bound follows if we can show that f(s) ≤ a for every s ∈ [0, t].
Integrating (8.1.4) from 0 to s and using that u(0) = 1 gives rise to

(8.1.6) u(s)− 1 =

∫ s

0

√
u(r) dr.

Now, in the integral we can apply our assumption that u(r) ≤ b(r/2+1)2 that is provided
by the weak bootstrap assumption, and this leads us to

(8.1.7) u(s)− 1 ≤
∫ s

0

√
b(r/2 + 1)2 dr =

√
b

∫ s

0

(r/2 + 1) dr.

Noting that
√
b = a and performing the integral, we arrive at

(8.1.8) u(s)− 1 ≤ a(s2/4 + s),

so that, using a ≥ 1,

(8.1.9) u(s) ≤ a(s2/4 + s) + 1 ≤ a(s2/4 + s+ 1) = a(s/2 + 1)2.

Since this is true for every s ≤ t, we thus obtain that f(t) = sups∈[0,t]
u(s)

(s/2+1)2 ≤ a, as

required.

Of course, the above method is cumbersome for the relatively simple problem at hand.
However, when we would have more involved inequalities, such as

(8.1.10) ∂tu(t) ≤
√
u(t) + ε(u(t))1/4, or ∂tu(t) ≤

√
u(t− ε),

then such results could possibly even be interesting. Here, the main point is that we see
how weak bounds can imply stronger bounds, and this fact implies that the strong bounds
always hold. Naturally, in order to apply the bootstrap argument, we need to choose
the bootstrap functions in such a way that they allow us to bound the lace-expansion
coefficients. In the next section, we explain how this can be done.



92 8. BOOTSTRAP ANALYSIS OF THE LACE EXPANSION

Exercise 8.1 (Example of bootstrap 1). Formulate a bound on the solution u(t) to

∂tu(t) ≤
√
u(t) + ε(u(t))1/4 with u(0) = 1 and prove it using an appropriate bootstrap

argument.

Exercise 8.2 (Example of bootstrap 2). Formulate a bound on the solution u(t) to

∂tu(t) ≤
√
u(t− ε) with u(0) = 1 and prove it using an appropriate bootstrap argument.

8.2. The bootstrap functions

In this section, we introduce the bootstrap functions that we are going to apply. We
start with some notation. To this end, we introduce the quantity

(8.2.1) λp := 1− 1

χ(p)
∈ [0, 1].

Clearly, λp = 1 precisely when p = pc(Zd), and λp ↗ 1 when p↗ pc by Theorem 3.2(3).
Recall that

(8.2.2) Ĉλ(k) =
1

1− λD̂(k)
.

Then λp satisfies the equality

(8.2.3) τ̂p(0) = Ĉλp(0).

Exercise 8.3 (Relation λp and χ(p)). Prove (8.2.3).

The proof of Theorem 5.1 is motivated by the intuition that τ̂p(k) and Ĉλp(k) are
comparable in size and, moreover, the discretized second derivative

(8.2.4) ∆kτ̂p(l) := τ̂p(l − k) + τ̂p(l + k)− 2τ̂p(l)

is bounded by

Ûλp(k, l) := 200 Ĉ1(k)−1(8.2.5)

×
{
Ĉλp(l − k)Ĉλp(l) + Ĉλp(l)Ĉλp(l + k) + Ĉλp(l − k)Ĉλp(l + k)

}
.

More precisely, we show that the function f : [0, pc)→ R, defined by

(8.2.6) f(p) := max
{
f1(p), f2(p), f3(p)

}
,

with

(8.2.7) f1(p) := 2dp, f2(p) := sup
k∈(−π,π]d

τ̂p(k)

Ĉλp(k)
,

and

(8.2.8) f3(p) := sup
k,l∈(−π,π]d

|∆kτ̂p(l)|
Ûλp(k, l)

,

satisfies a good bound, given that d is sufficiently large. We aim to perform a bootstrap
argument on the function p 7→ f(p) in (8.2.6), for p ∈ [0, pc). The precise form of f(p) in
(8.2.6) may look somewhat daunting, so we start by explaining why the functions f1, f2

and f3 are useful:
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Intuitive explanation of f(p). The function f(p) can be understood as bounding
three percolation quantities in terms of their random walk equivalents. Indeed, the func-
tion f1(p) allows us to bound factors of p, appearing for example in (7.2.2)-(7.2.3). The
critical value for the random walk Green’s function is 1, and f1(p) ≤ K tells us that the
percolation threshold is at most a factor K off.

The function f2(p) is what we are after. Indeed, f2(p) ≤ K implies that

(8.2.9) τ̂p(k) ≤ KĈλp(k) ≤ 2K

1 + λp
Ĉ1(k) =

K

1 + λp

1

1− D̂(k)
,

where we use that obviously λp ≤ 1 and we rely on the inequality

(8.2.10) Ĉλ(k) ≤ 2

1 + λ
Ĉ1(k),

which follows directly from |D̂(k)| ≤ 1 and (8.2.2). Thus, the bound on f2(p) implies the
infrared bound in Theorem 5.1 with A(d) = 2K/(1+λ). Again, the bound f2(p) ≤ K can
be interpreted as saying that the percolation two-point function is bounded by a constant
times the random walk Green’s function.

The function f3(p) is for two reasons the most difficult to explain. First, since it is
unclear why we wish a bound on ∆kτ̂p(l), and secondly why such a bound should involve

Ûλp(k, l) in (8.2.5). We start by explaining how the bound f3(p) ≤ K can help us. We
recall from Lemma 7.1 that

(8.2.11)
∑
x∈Zd

[1− cos(k · x)]Π(0)

p (x) ≤ Wp(0; k),

where

(8.2.12) Wp(0; k) =
∑
x∈Zd

[1− cos(k · x)]τp(x)τ̃p(x) = (τp,k ? τ̃p)(0),

with

(8.2.13) τp,k(x) = [1− cos(k · x)]τp(x).

By the Fourier inversion formula, we can rewrite

(8.2.14) Wp(0; k) =

∫
(−π,π]d

τ̂p,k(l)ˆ̃τp(l)
dl

(2π)d
.

The whole point is that

(8.2.15) τ̂p,k(l) = −1
2
∆kτ̂p(l),

so that a bound on the discrete derivative of τ̂p helps in bounding Π̂p(0)− Π̂p(k). We next
explain this in more detail.

Exercise 8.4 (Discrete second derivative τ̂p). Prove (8.2.15).

Using that ˆ̃τp(l) = 2dpD̂(l)τ̂p(l), we obtain

(8.2.16)
∑
x∈Zd

[1− cos(k · x)]Π(0)

p (x) ≤ dp

∫
(−π,π]d

2|∆kτ̂p(l)||D̂(l)|τ̂p(l)
dl

(2π)d
.
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Now we can use our bounds on f1, f2 and f3 and |D̂(l)| ≤ 1 in order to bound the resulting
integral as

(8.2.17)
∑
x∈Zd

[1− cos(k · x)]Π(0)

p (x) ≤ K3

∫
(−π,π]d

Ûλp(k, l)|D̂(l)|Ĉλp(l)
dl

(2π)d
.

This is a random walk integral, which is small when the dimension is large. See also
Exercise 5.4. As a result, we obtain that

(8.2.18) Π̂(0)

p (0)− Π̂(0)

p (k) =
∑
x∈Zd

[1− cos(k · x)]Π(0)

p (x) ≤ Cc(RW)

2,3 K3[1− D̂(k)].

With a little more effort, we can improve this bound to (cK/d)[1−D̂(k)] for some constant
cK independent of d. This explains how the bound f3(p) can be used to obtain the required
bounds on the lace-expansion coefficients as formulated in (7.1.16).

We next explain that Ûλp(k, l) can be interpreted as an upper bound on ∆kĈλp(l), so as

to show that |∆kτ̂p(l)|/Ûλp(k, l) can be interpreted as a bound of a percolation quantity in

terms of a random walk quantity. Using ∆kĈλp(l) directly could not work, since ∆kĈλp(l)

might be equal to zero at different places than ∆kτ̂p(l). The fact that Ûλp(k, l) can be seen

as a (multiple of) an upper bound on ∆kĈλp(l) is a consequence of the following lemma,
that is also crucial for the improvement of the bound on f3:

Lemma 8.2 (Slade [246]). Suppose that a(x) = a(−x) for all x ∈ Zd, and let

(8.2.19) Â(k) =
1

1− â(k)
.

Then, for all k, l ∈ [−π, π)d,∣∣∆kÂ(l)
∣∣ ≤ (

Â(l − k) + Â(l + k)
)
Â(l)

(
|̂a|(0)− |̂a|(k)

)
+ 8Â(l − k) Â(l) Â(l + k)

(
|̂a|(0)− |̂a|(l)

) (
|̂a|(0)− |̂a|(k)

)
,(8.2.20)

where |̂a| denotes the Fourier transform of the absolute value of a. In particular,

(8.2.21)
∣∣∆kĈλ(l)

∣∣ ≤ [1− D̂(k)]
[
Ĉλ(l) Ĉλ(l+k)+ Ĉλ(l) Ĉλ(l−k)+8Ĉλ(l−k) Ĉλ(l+k)

]
.

The proof of Lemma 8.2 uses several bounds on trigonometric quantities, and can be
found in Slade’s lecture notes [246, Lemma 5.7]. The main ingredients can also be found
in [59, Lemma 5.3 and (5.32-5.33)].

Proof. Let â± = â(l ± k) and write â = â(l). We define

âcos(l, k) =
∑
x

a(x) cos(l · x) cos(k · x) =
1

2
[â− + â+],(8.2.22)

âsin(l, k) =
∑
x

a(x) sin(l · x) sin(k · x) =
1

2
[â− − â+].(8.2.23)

Then

(8.2.24) − 1

2
∆kâ(l) = â(l)− âcos(l, k).
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Direct computation using (8.2.4) gives

−1

2
∆kÂ(l) =

1

2
Â(l)Â(l + k)Â(l − k)

[
[2â− â+ − â−] + [2â+â− − ââ− − ââ+]

]
= Â(l)Â(l + k)Â(l − k)

[
[â(l)− âcos(l, k)] + [â+â− − â(l)âcos(l, k)]

]
,(8.2.25)

using (8.2.22) in the last step. By definition,

â−â+ =
(1

2
[â+ + â−]

)2 −
(1

2
[â− − â+]

)2
= âcos(l, k)2 − âsin(l, k)2.(8.2.26)

Substitution in (8.2.25) gives that for all k, l ∈ (−π, π]d,

−1

2
∆kÂ(l) = Â(l + k)Â(l − k)Â(l)

[
[â(l)− âcos(l, k)] + [âcos(l, k)2 − â(l)âcos(l, k)]

]
− Â(l − k)Â(l)Â(l + k)âsin(l, k)2

= Â(l + k)Â(l − k)Â(l)[â(l)− âcos(l, k)][1− âcos(l, k)]

− Â(l − k)Â(l)Â(l + k)âsin(l, k)2

=
1

2
[Â(l − k) + Â(l + k)]Â(l)[â(l)− âcos(l, k)]

− Â(l − k)Â(l)Â(l + k)âsin(l, k)2,(8.2.27)

since 1− âcos(l, k) = 1
2
[1− â(l − k)] + 1

2
[1− â(l + k)], so that

(8.2.28) Â(l + k)Â(l − k)[1− âcos(l, k)] =
1

2
[Â(l − k) + Â(l + k)].

Now we use that a(x) = a(−x) to write

1

2
|∆kâ(l)| = |â(l)− âcos(l, k)| =

∣∣∑
x

[1− cos(k · x)] cos(l · x)a(x)
∣∣(8.2.29)

≤
∑
x

[1− cos(k · x)]|a(x)| = |̂a|(0)− |̂a|(k).

Also, by the Cauchy-Schwarz inequality and the elementary estimate 1 − cos2 t = (1 +
cos t)(1− cos t) ≤ 2[1− cos t],

âsin(k, l)2 ≤
∑
x

sin2(k · x)|g(x)|
∑
y

sin2(l · y)|a(y)|

=
∑
x

[1− cos2(k · x)]|a(x)|
∑
y

[1− cos2(l · y)]|a(y)|

≤ 4
∑
x

[1− cos(k · x)]|a(x)|
∑
y

[1− cos(l · y)]|a(y)|

= 4
(
|̂a|(0)− |̂a|(l)

) (
|̂a|(0)− |̂a|(k)

)
.(8.2.30)

We obtain (8.2.20) by combining (8.2.27) with (8.2.29) and (8.2.30). The bound in (8.2.21)

follows immediately, by using that |̂a|(l) = λD̂(l) with λ ≤ 1. �

By Lemma 8.2, we can interpret f3(p) as giving a bound on |∆kτ̂p(l)| /
∣∣∆kĈλp(l)

∣∣.
Since ∆kĈλp(l) is a somewhat involved object that can have zeros, it is technically more
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useful to make use of a bound on |∆kτ̂p(l)| /Ûλp(k, l) instead. It can also be viewed as a

double derivative. For k small, the discrete double derivative ∆kĈλp(l) extracts a small

factor 1 − D̂(k) at the expense of changing the single Green’s function into two Green’s
functions. Thus, we think of the double derivative as adding an extra two-point function.

As it turns out, the fact that f(p) ≤ K allows us to use Proposition 7.4 to prove
general bounds on the lace-expansion coefficients. These bounds provide the necessary
conditions to be able to improve the bootstrap. See Proposition 8.3 in the next section.
We explore the consequences of the bootstrap bounds in detail now

8.3. Consequences of the bootstrap bound

In this section, we investigate the consequences of the bound assumed in the bootstrap
argument. The main result is the following proposition, that proves strong bounds on the
lace-expansion coefficients when f(p) ≤ K:

Proposition 8.3 (Consequences of the bootstrap bound). Let M = 0, 1, 2, . . .. If
p < pc and f(p) of (8.2.6) obeys f(p) ≤ K, then there are positive constants cK and
d0 = d0(K) such that for d ≥ d0,

(8.3.1)
∑
x∈Zd
|ΠM(x)| ≤ cK/d,

and

(8.3.2)
∑
x∈Zd

[1− cos(k · x)]|ΠM(x)| ≤ (cK/d)[1− D̂(k)],

and for M sufficiently large (depending on K and p),

(8.3.3)
∑
x∈Zd
|RM(x)| ≤ cK(cK/d)Mχ(p),

Consequently, τ̂p(k) can be written as

(8.3.4) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]
, with Π̂p(k) =

∞∑
N=0

(−1)N Π̂(N)(k).

In the remainder of this section, we prove Proposition 8.3. The main ingredient is the
following lemma:

Lemma 8.4 (Bounds on the lace expansion). Let N = 0, 1, 2, . . ., and assume that
d ≥ d0 > 6. For each K > 0, there is a constant c̄K such that if f(p) of (8.2.6) obeys
f(p) ≤ K, then

(8.3.5)
∑
x∈Zd

Π(N)(x) ≤ (c̄K/d)N∨1

and

(8.3.6)
∑
x∈Zd

[1− cos(k · x)]Π(N)(x) ≤ [1− D̂(k)](c̄K/d)(N−1)∨1.



8.3. CONSEQUENCES OF THE BOOTSTRAP BOUND 97

Before proving Lemma 8.4, we show that it implies Proposition 8.3:

Proof of Proposition 8.3 subject to Lemma 8.4. The bounds (8.3.1)–(8.3.2) are immediate
consequences of Lemma 8.4. The constant cK can be taken to be equal to 4c̄K , where the
factor 4 stems from summing the geometric series.

For the remainder term RM(x), we conclude from (6.3.2) and f1(p) ≤ K that

(8.3.7) |RM(x)| ≤ K
∑
u,v

Π(M)(u)D(v − u)τp(x− v),

and hence
∑

x |RM(x)| ≤ KΠ̂(M)(0)χ(p). The claim now follows from (8.3.5). The lace-

expansion equation in (8.3.4) follows, since R̂M(k)→ 0 uniformly in k and Π̂p(k) in (8.3.4)
is well defined. �

Lemma 8.4 follows from Proposition 7.4 combined with the following three lemmas.
For these three lemmas, we recall the quantities defined in (7.2.2)–(7.2.1) and (7.5.1)–
(7.5.2), and we also define

(8.3.8) ˜̃∆p =

∫
(−π,π]d

D̂(k)2τ̂p(k)3 dk

(2π)d
=
(
D ∗D ∗ τp ∗ τp ∗ τp

)
(0).

Lemma 8.5 (Triangle bounds from the bootstrap assumptions). Fix p ∈ (0, pc), as-
sume that f(p) of (8.2.6) obeys f(p) ≤ K, and assume that d ≥ d0 > 6. There is a
constant c′K, independent of p, such that

˜̃∆p ≤ c′K/d, ∆̃p ≤ c′K/d, ∆p ≤ 1 + c′K/d.(8.3.9)

The bound on ˜̃∆p also applies if τ̂p(k)3 in (8.3.8) is replaced by τ̂p(k) or τ̂p(k)2.

Proof. We begin with ˜̃∆p. We use f2(p) ≤ K and Proposition 5.5 to obtain

(8.3.10) ˜̃∆p ≤
∫

(−π,π]d
D̂(k)2K3Ĉλp(k)3 dk

(2π)d
≤ K3c(RW)

2,3 /d ≤ c′K/d

whenever c′K ≥ K3c(RW)

2,3 . The conclusion concerning replacement of τ̂p(k)3 by τ̂p(k) or
τ̂p(k)2 can be obtained by going to x-space and using τp(x) ≤ (τp?τp)(x) ≤ (τp?τp?τp)(x).

For ∆̃p, we extract the term in (7.2.2) due to y = z = 0 and u = x, which is
2dpD(x) ≤ K/(2d) using f1(p) ≤ K. This gives

(8.3.11) ∆̃p(x) ≤ K/(2d) +
∑

u,y,z:(y,z−y,x+z−u) 6=(0,0,0)

τp(y)τp(z − y)KD(u)τp(x+ z − u).

Therefore, by (7.2.10),

(8.3.12) ∆̃p ≤ K/(2d) + 3K2 max
x

∑
y,z∈Zd

τp(y)(D ? τp)(z − y)(D ? τp)(x+ z),

where the factor 3 comes from the 3 factors τp whose argument can differ from 0. In terms
of the Fourier transform, this gives

(8.3.13) ∆̃p ≤ K/(2d) + 3K2 max
x

∫
(−π,π]d

D̂(k)2τ̂p(k)3e−ik·x dk

(2π)d
≤ K/(2d) + 3K2 ˜̃∆p.

Our bound on ˜̃∆p then gives the desired estimate for ∆̃p.
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The bound on ∆p is a consequence of ∆p ≤ 1 + 3∆̃p. Here the term 1 is due to the
contribution to (7.2.1) with y = z − y = x − z = 0, so that x = y = z = 0. If at least
one of y, z− y, x− z is nonzero, then we can use (7.2.10) for the corresponding two-point
function. �

Lemma 8.6. Fix p ∈ (0, pc), assume that f(p) of (8.2.6) obeys f(p) ≤ K, and that
d ≥ d0 > 6. There is a constant c′K, independent of p, such that

Wp(0; k) ≤ (c′K/d)[1− D̂(k)], Wp(k) ≤ c′K [1− D̂(k)].(8.3.14)

Proof. For the bound on Wp(0; k), we use (7.2.10) to obtain

τ̃p(x) = 2dpD(x) +
∑
v : v 6=x

2dpD(v)τ(x− v).

≤ 2dpD(x) + [2dp]2(D ? D ? τp)(x).(8.3.15)

We insert (8.3.15) into the definition (7.2.5) of Wp(0; k) to get

Wp(0; k) ≤ 2dp
∑
x

[1− cos(k · x)]D(x)τp(x)

+ [2dp]2
∑
x

[1− cos(k · x)]τp(x)(D ? D ? τp)(x).(8.3.16)

We begin with the first term in (8.3.16), which receives no contribution from x = 0.
Using (7.2.10) and (8.3.15) again, we obtain

2dp
∑
x 6=0

[1− cos(k · x)]D(x)τp(x)

≤ [2dp]2
∑
x

[1− cos(k · x)]D(x)2 + [2dp]2
∑
x

[1− cos(k · x)]D(x)
∑
v 6=x

D(v)τp(x− v)

≤ [2dp]2
∑
x

[1− cos(k · x)]D(x)2 + [2dp]3
∑
x

[1− cos(k · x)]D(x)(D ? D)(x)

+ [2dp]3
∑
x

[1− cos(k · x)]D(x)(D ? D ? τp)(x).

(8.3.17)

The first term on the right side is bounded by (K2/(2d))[1− D̂(k)]. The second term can
be bounded similarly, using maxx(D?D)(x) ≤ 1/(2d). For the last term in (8.3.17), we use
Parseval’s identity, together with the fact that the Fourier transform of [1−cos(k ·x)]D(x)

is D̂(l)− D̂cos(k, l) by (8.2.22), to obtain

(8.3.18)
∑
x

[1−cos(k ·x)]D(x)(D?D?τp)(x) =

∫
(−π,π]d

[D̂(l)−D̂cos(k, l)]D̂(l)2τ̂p(l)
dl

(2π)d
.

It follows as in (8.2.29) that for all k, l ∈ (−π, π]d,

(8.3.19) |D̂(l)− D̂cos(k, l)| =
∣∣∣∑

x

[1− cos(k · x)] cos(l · x)D(x)
∣∣∣ ≤ 1− D̂(k),
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Applying the bound on ˜̃∆p (with τ̂p(k)3 replaced by τ̂p(k)) and using Proposition 5.5, this
is bounded by

(8.3.20) [1− D̂(k)]

∫
(−π,π]d

D̂(l)2τ̂p(l)
dl

(2π)d
≤ (Kc(RW)

2,1 /d)[1− D̂(k)].

This completes the bound on the first term of (8.3.16).
For the second term in (8.3.16), we again use Parseval’s identity to obtain∑

x

[1− cos(k · x)]τp(x)(D ? D ? τp)(x)(8.3.21)

=

∫
(−π,π]d

[
τ̂p(l)−

1

2
(τ̂p(l + k) + τ̂p(l − k))

]
D̂(l)2τ̂p(l)

dl

(2π)d
.

By the assumed bounds on f2(p) and f3(p), this is at most

200K2[1− D̂(k)]

∫
(−π,π]d

D̂(l)2Ĉλp(l)(8.3.22)

×
[
Ĉλp(l − k)Ĉλp(l) + Ĉλp(l)Ĉλp(l + k) + Ĉλp(l − k)Ĉλp(l + k)

] dl

(2π)d
.

All the arising integrals are bounded by c(RW)

2,3 /d by Exercise 5.4. This completes the bound

on the second term of (8.3.16), and thus the proof that Wp(0; k) ≤ (c′K/d)[1− D̂(k)].
Finally, we estimate Wp(k). Note that no factor 1/d appears in the desired bound.

By (7.2.5)–(7.2.6),

Wp(k) = 2dpmax
y∈Zd

∑
x,v∈Zd

[1− cos(k · x)]D(v)τp(x− v)τp(x+ y).(8.3.23)

Let

(8.3.24) Dk(x) = [1− cos(k · x)]D(x), τp,k(x) = [1− cos(k · x)]τp(x).

Applying Lemma 7.3 with t = k · v + k · (x− v) and J = 2, we obtain

Wp(k) ≤ 4dpmax
y∈Zd

∑
x,v∈Zd

[1− cos(k · v)]D(v)τp(x− v)τp(y − x)

+ 4dpmax
y∈Zd

∑
x,v∈Zd

D(v)[1− cos(k · (x− v))]τp(x− v)τp(y − x)

≤ 2K max
y∈Zd

(Dk ? τp ? τp)(y) + 2K max
y∈Zd

(D ? τp,k ? τp)(y).(8.3.25)

For the first term, we have

(Dk ? τp ? τp)(y) =

∫
(−π,π]d

e−il·yD̂k(l)τ̂p(l)
2 dl

(2π)d

≤ K2

∫
(−π,π]d

|D̂k(l)|Ĉλp(l)2 dl

(2π)d
.(8.3.26)

By (8.3.19) combined with Proposition 5.5,

(8.3.27) max
y∈Zd

(Dk ? τp ? τp)(y) ≤ [1− D̂(k)]K2

∫
(−π,π]d

Ĉλp(l)
2 dl

(2π)d
≤ K2c(RW)

0,2 [1− D̂(k)].
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The remaining term to estimate in (8.3.25) is

(8.3.28) max
y∈Zd

(D ? τp,k ? τp)(y) = max
y∈Zd

∫
(−π,π]d

e−il·yD̂(l)τ̂p(l)τ̂p,k(l)
dl

(2π)d
.

Since

(8.3.29) τ̂p,k(l) = τ̂p(l)−
1

2
(τ̂p(l + k) + τ̂p(l − k)),

we can use the bounds on f2(p) and f3(p) to see that (8.3.28) is at most

200K2[1− D̂(k)]

∫
(−π,π]d

|D̂(l)|Ĉλp(l)(8.3.30)

×
[
Ĉλp(l − k)Ĉλp(l) + Ĉλp(l)Ĉλp(l + k) + Ĉλp(l − k)Ĉλp(l + k)

] dl

(2π)d
.

The above sums can all be bounded using the methods employed for the previous terms,
Exercise 5.4 and Proposition 5.5. �

Lemma 8.7. Fix p ∈ (0, pc), assume that f(p) of (8.2.6) obeys f(p) ≤ K, and assume
that d ≥ d0 > 6. Then, there is a constant c′K, independent of p, such that

(8.3.31) Hp(k) ≤ (c′K/d)[1− D̂(k)].

Proof. Recall the definition of Hp(a1, a2; k) in (7.5.1). In terms of the Fourier trans-
form, recalling (8.3.24),

H(a1, a2; k) =

∫
(−π,π]3d

e−il1·a1e−il2·a2D̂(l1)τ̂p(l1)2D̂(l2)τ̂p(l2)2τ̂p,k(l3)

× τ̂p(l1 − l2)τ̂p(l2 − l3)τ̂p(l1 − l3)
dl1 dl2 dl3

(2π)3d
.(8.3.32)

We use f(p) ≤ K to replace τ̂p(k) by KĈλp(k) and (recalling (8.3.29)) τ̂p,k(l3) by

200K[1− D̂(k)]
[
Ĉλp(l3 − k)Ĉλp(l3) + Ĉλp(l3)Ĉλp(l3 + k) + Ĉλp(l3 − k)Ĉλp(l3 + k)

]
.

(8.3.33)

This gives an upper bound for (8.3.32) consisting of a sum of three terms.
The last of these terms can be bounded by

200K8[1− D̂(k)]

∫
(−π,π]3d

|D̂(l1)|Ĉλp(l1)2|D̂(l2)|Ĉλp(l2)2(8.3.34)

× Ĉλp(l3 − k)Ĉλp(l3 + k)Ĉλp(l1 − l2)Ĉλp(l2 − l3)Ĉλp(l1 − l3)
dl1 dl2 dl3

(2π)3d
.

Using Hölder’s inequality with p = 3 and q = 3/2, (8.3.34) is bounded above by 200K8[1−
D̂(k)] times(∫

(−π,π]3d
|D̂(l1)|3/2Ĉλp(l1)3|D̂(l2)|3/2Ĉλp(l2)3Ĉλp(l3 + k)3/2Ĉλp(l1 − l3)3/2 dl1 dl2 dl3

(2π)3d

)2/3

×
(∫

(−π,π]3d
Ĉλp(l1 − l2)3Ĉλp(l2 − l3)3Ĉλp(l3 − k)3 dl1 dl2 dl3

(2π)3d

)1/3

.(8.3.35)
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For α ≥ 0, let

(8.3.36) S(α)

p =

∫
(−π,π]d

|D̂(l)|αĈλp(l)3 dl

(2π)d
.

The Cauchy–Schwarz inequality implies that for all k and l1,

(8.3.37)

∫
(−π,π]d

Ĉλp(l3 + k)3/2Ĉλp(l1 − l3)3/2 dl3
(2π)d

≤ S(0)

p .

Therefore, (8.3.35) is bounded above by

(8.3.38) [1− D̂(k)]
(
S(0)

p

)5/3(
S(3/2)

p

)4/3
.

To complete the proof, we note that by Hölder’s inequality,

(8.3.39) S(3/2)

p ≤
(
S(2)

p

)3/4(
S(0)

p

)1/4
.

Thus (8.3.38) is bounded above by [1 − D̂(k)]S(2)
p (S(0)

p )2. These factors can be bounded
using (5.4.2). This gives a bound of the desired form. Routine bounds can be used to
deal with the other two terms in a similar fashion.

Exercise 8.5 (Bounding the remaining cases). Show that the remaining two contri-

butions from (8.3.33) in (8.3.32) are also bounded by (c′K/d)[1− D̂(k)].

�

Proof of Lemma 8.4. This is an immediate consequence of Proposition 7.4 and Lem-
mas 8.5–8.7. The bound (7.2.14) is used for (8.3.6) when N = 1 (as (7.5.4) is not
sufficient since it misses a factor 1/d). �

8.4. The bootstrap argument completed

In this section we prove that the bootstrap argument can be applied successfully. This
is formulated in the following proposition:

Proposition 8.8 (Successful application of the bootstrap). There exist constants
const and d0 > 6 with const independent of the dimension, such that the bound

(8.4.1) f(p) ≤ 1 + const /d

holds uniformly for p < pc and d ≥ d0.

In the remainder of this section, we prove Proposition 8.8 and, by doing so, complete
the proof of Theorem 5.1 by completing the bootstrap argument. This is achieved by
proving that the function f defined in (8.2.6) obeys the hypotheses of Lemma 8.1. We
therefore have to show that

(1) f(0) ≤ 3;
(2) f is continuous on [0, pc); and
(3) f(p) ≤ 4 implies f(p) ≤ 3 for p ∈ (0, pc).

The latter is referred to as the improvement of the bounds. We verify these conditions
one by one.
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(1) Verification of f(0) ≤ 3. Let us first check that f(0) ≤ 3. Clearly, f1(0) = 0.

Note that Π̂0(k) ≡ 0, where Π̂0(k) is Π̂p(k) with p = 0. This leads to τ̂0(k) ≡ 1 and
λ0 = 0, hence f2(0) = 1 and f3(0) = 0.

(2) Verification of continuity of p 7→ f(p) for p ∈ [0, pc). Next we prove continuity
of f . Continuity of f on [0, pc) is equivalent to proving continuity on [0, pc − ε] for every
ε > 0. To prove the continuity on [0, pc − ε], we rely on the continuity of the supremum
of a family of equicontinuous functions, cf. Lemma 4.3.

Lemma 8.9 (Continuity). The function f defined in (8.2.6) is continuous on [0, pc).

Proof. It is sufficient to show that f1, f2 and f3 are continuous. The continuity of f1

is obvious. We show that f2 is continuous on the closed interval [0, pc − ε] for any ε > 0
by taking derivatives with respect to p and bounding it uniformly in k on [0, pc − ε]. To
this end, we consider the derivative

(8.4.2)
d

dp

τ̂p(k)

Ĉλp(k)
=

1

Ĉλp(k)2

[
Ĉλp(k)

dτ̂p(k)

dp
− τ̂p(k)

dĈλ(k)

dλ

∣∣∣∣
λ=λp

dλp
dp

]
.

We proceed by showing that each of the terms on the right hand side is uniformly bounded
in k and p ∈ [0, pc− ε], and hence the derivative is bounded. First we recall the definition
of λp in (8.2.1) to see that

(8.4.3)
1

2
≤ 1

1− λpD̂(k)
= Ĉλp(k) ≤ Ĉλp(0) = χ(p).

Furthermore, χ(p) ≤ χ(pc − ε), and the latter is finite by the fact that pc = pT (recall
Theorem 3.1). For every k ∈ [−π, π)d, the two-point function is bounded from above by

(8.4.4) τ̂p(k) ≤ τ̂p(0) = χ(p) ≤ χ(pc − ε),

For the derivative of the two-point function, we bound

(8.4.5)

∣∣∣∣ d

dp
τ̂p(k)

∣∣∣∣ =
∣∣∣ ∑
x∈Zd

eik·x d

dp
τp(x)

∣∣∣ ≤∑
x∈Zd

d

dp
τp(x) =

d

dp

∑
x∈Zd

τp(x) = χ′(p),

where the exchange in the order of sum and derivative is validated by the fact that both∑
x∈Zd eik·xτp(x) and

∑
x∈Zd τp(x) are uniformly convergent series of functions. By the

mean-field bound χ′(p) ≤ 2dpχ(p)2 (4.2.4), (8.4.5) is bounded above by 2dχ(pc − ε)2.

Moreover, we obtain from (8.2.2) that |dĈλ(k)/dλ| ≤ Ĉλ(k)2, and, for λ = λp, this is
in turn bounded by χ(pc− ε)2, cf. (8.4.3). Finally, |dλp/dp| = χ′(p)/χ(p)2 ≤ 2d by (8.2.1)

and (4.2.4). Uniform boundedness of the derivative d
dp

τ̂p(k)

Ĉλp (k)
implies that p 7→ τ̂p(k)

Ĉλp (k)
is an

equicontinuous family of functions indexed by k ∈ [−π, π)d. Therefore, by Lemma 4.3, we
conclude that p 7→ f2(p) is continuous on [0, pc − ε] for every ε > 0, and hence on [0, pc).

We treat f3 in exactly the same way as f2, and leave the proof of continuity as an
exercise: �

Exercise 8.6 (Continuity of f3). Verify that p 7→ f3(p) is continuous for p ∈ [0, pc−ε]
for every ε > 0.
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(3) Improvement of the bounds. The following proposition covers the remaining
hypotheses of Lemma 8.1 and thus proves the final ingredient needed for the proof of
Proposition 8.8:

Proposition 8.10 (Improvement of the bounds). If the assumptions of Proposition
8.8 are satisfied for some sufficiently large d0, and if f(p) ≤ 4 for all p ∈ (0, pc), then
there exists a constant such that f(p) ≤ 1 + const /d for all p ∈ (0, pc) and d ≥ d0. In
particular, f(p) ≤ 3 if d0 is large enough.

Proof of Proposition 8.10. Fix p ∈ (0, pc) arbitrarily and assume that f(p) ≤ 4.
Our strategy is to show that fi(p) for i = 1, 2, 3 is smaller than (1 + const /d) uniformly
in p and thus, by taking d ≥ d0 with d0 large, f(p) ≤ 3.

We next improve the bounds on f1, f2 and f3 one at a time. We start with f1 and f2:

(3.1-3.2) Improvement of the bounds for f1 and f2. The main result is in the
following lemma:

Lemma 8.11 (Improvement of the bounds for f1 and f2). If the assumptions of Propo-
sition 8.8 are satisfied for some sufficiently large d0, and if f(p) ≤ 4 for all p ∈ (0, pc),
then there exists a constant c > 0 such that f1(p) ≤ 1 + c/d and f2(p) ≤ 1 + c/d for all p
and d ≥ d0.

Proof. The bound on f1 is easy. First note that

(8.4.6) λp = 1− τ̂p(0)−1 = 1− 1− 2dp[1 + Π̂p(0)]

1 + Π̂p(0)
≤ 1.

By (8.2.1) and and c4 as in Proposition 8.3 (with K = 4),

f1(p) = 2dp = λp +
Π̂p(0)

1 + Π̂p(0)

≤ λp + 2|Π̂p(0)|
≤ 1 + 2 c4/d.(8.4.7)

The bound on f2 is slightly more involved. We write τ̂p(k) = N̂(k)/F̂ (k), with

(8.4.8) N̂(k) =
1 + Π̂p(k)

1 + Π̂p(0)
, F̂ (k) =

1− 2dpD̂(k)[1 + Π̂p(k)]

1 + Π̂p(0)
.

Recall from (8.2.2) that Ĉλp(k) = [1− λpD̂(k)]−1 and, by (6.1.3) and (8.2.1),

(8.4.9) λp = 1− 1− 2dp[1 + Π̂p(0)]

1 + Π̂p(0)
=

Π̂p(0) + 2dp[1 + Π̂p(0)]

1 + Π̂p(0)
.

This yields

τ̂p(k)

Ĉλp(k)
= N̂(k)

[1− λpD̂(k)]

F̂ (k)
= N̂(k) + N̂(k)

[1− λpD̂(k)− F̂ (k)]

F̂ (k)
(8.4.10)

= N̂(k) + τ̂p(k)
[
1− λpD̂(k)− F̂ (k)

]
,
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where

1− λpD̂(k)− F̂ (k)

=
[1 + Π̂p(0)]−

{
Π̂p(0) + 2dp[1 + Π̂p(0)]

}
D̂(k)− 1 + 2dp[1 + Π̂p(k)]D̂(k)

1 + Π̂p(0)

=
[1− D̂(k)]Π̂p(0) + 2dp[Π̂p(k)− Π̂p(0)]D̂(k)

1 + Π̂p(0)
.(8.4.11)

By taking c4/d ≤ 1/2, we obtain the bound

(8.4.12)
1 + `c4/d

1− c4/d
≤ 1 + (2`+ 2) c4/d, ` = 0, 1, 2, . . . ,

which we frequently use below. For example, together with d ≥ d0 > 6, it enables us to
bound ∣∣N̂(k)

∣∣ =

∣∣∣∣∣1 + Π̂p(k)

1 + Π̂p(0)

∣∣∣∣∣ ≤ 1 + |Π̂p(k)|
1− |Π̂p(0)|

≤ 1 + 4 c4/d.

Together with (8.4.11) and f1(p) = 2dp ≤ 4, we obtain in the same fashion that∣∣∣1− λpD̂(k)− F̂ (k)
∣∣∣ ≤ [1− D̂(k)] |Π̂p(0)|+ 2dp|Π̂p(k)− Π̂p(0)|

1− |Π̂p(0)|

≤ 5(c4/d)[1− D̂(k)]

1− c4/d
≤ 12 (c4/d) Ĉλp(k)−1.

By our assumption τ̂p(k) ≤ 4Ĉλp(k) (which follows from f(p) ≤ 4) and the above inequal-
ities, we can bound (8.4.10) from above by∣∣∣∣∣ τ̂p(k)

Ĉλp(k)

∣∣∣∣∣ ≤ 1 + 4 c4/d+ 12 · 4 (c4/d)
∣∣∣Ĉλp(k) Ĉλp(k)−1

∣∣∣(8.4.13)

= 1 + 52 c4/d.

for every k ∈ (−π, π]d. This improves the bound on f2. �

(3.3) Improvement of the bound for f3. The improvement of f3, which closes the
cycle of bounds that we need to prove, is technically the most challenging.

In the improvement of f3, we make crucial use of Lemma 8.2. We further rely on the
following bounds on discrete derivatives:

|∂±k â(l)| ≤
∑
x

|Re(eil·x[e±ik·x − 1])a(x)|(8.4.14)

≤
∑
x

[
[1− cos(k · x)] + | sin(k · x)|| sin(l · x)|

]
|a(x)|

≤
∑
x

[1− cos(k · x)]|a(x)|

+

{
4
∑
x

[1− cos(k · x)]|a(x)|
∑
y

[1− cos(l · y)]|a(y)|

}1/2

,
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using the same technique as in (8.2.30) for the third inequality. The improvement of f3

is formulated in the following lemma:

Lemma 8.12 (Improvement of the bounds for f3). If the assumptions of Proposition
8.8 are satisfied for some sufficiently large d0, and if f(p) ≤ 4 for all p ∈ (0, pc), then
there exists a constant c > 0 such that f3(p) ≤ 1 + c/d for all p ∈ (0, pc) and d ≥ d0.

Proof. Keeping track of the precise constants appearing in the proof is fairly messy,
and not needed for the result. We therefore relay on the Laundau symbol O( · ) in the
sequel.

We start the proof by writing

(8.4.15) τ̂p(k) =
b̂(k)

1− â(k)
, where b̂(k) = 1 + Π̂p(k), â(k) = 2dpD̂(k)[1 + Π̂p(k)].

A straightforward calculation (see also [75, (4.18)]) shows that

∆kτ̂p(l) =
∆k b̂(l)

1− â(l)
+

∑
σ∈{1,−1}

(
â(l + σk)− â(l)

) (
b̂(l + σk)− b̂(l)

)
(1− â(l)) (1− â(l + σk))

(8.4.16)

+ b̂(l) ∆k

[
1

1− â(l)

]
.

We now bound all three summands in (8.4.16), and start with the first one:∣∣∣∣∣ ∆k b̂(l)

1− â(l)

∣∣∣∣∣ =

∣∣∣∣∣∆k b̂(l)

b̂(l)

∣∣∣∣∣ |τ̂p(l)| =
∣∣∣∣∣∆k Π̂p(l)

1 + Π̂p(l)

∣∣∣∣∣ |τ̂p(l)|(8.4.17)

≤
∣∣∣∆k Π̂p(l)

∣∣∣ 6(1 +O(1/d)
)
Ĉλp(l),

where the last bound uses (8.3.1) and c′4/d ≤ 1/2 to bound the denominator, and (8.4.13).
We apply (8.2.29) with a(x) = Πp(x), combine it with (8.4.17) and (8.3.2), and use

Ĉλp(l ± k) ≥ 1/2 (cf. (8.4.3)) and the definition of Ûλp(l, k) in (8.2.5) to obtain

(8.4.18)

∣∣∣∣∣ ∆k b̂(l)

1− â(l)

∣∣∣∣∣ ≤ O(1/d) [1− D̂(k)]Ĉλp(l) ≤ O(1/d) Ûλp(l, k).

The second term in (8.4.16) is bounded as follows. First, since

(8.4.19) |eil·x(ei(±k·x) − 1)| ≤ | sin(k · x)|+ 1− cos(k · x),

we obtain ∣∣b̂(l ± k)− b̂(l)
∣∣ =

∣∣Π̂p(l ± k)− Π̂p(l)
∣∣(8.4.20)

≤
∑
x

| sin(k · x)|
∣∣Πp(x)

∣∣+
∑
x

[1− cos(k · x)]
∣∣Πp(x)

∣∣.
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The second term on the right hand side of (8.4.20) is bounded by O(1/d) [1 − D̂(k)]; on
the first term we apply the Cauchy-Schwarz inequality and (8.3.2):∑

x

| sin(k · x)|
∣∣Πp(x)

∣∣ ≤ (∑
x 6=0

|Πp(x)|
)1/2(∑

x6=0

sin(k · x)2 |Πp(x)|
)1/2

≤ O(1/d)1/2
(∑
x 6=0

[1− cos(k · x)2] |Πp(x)|
)1/2

≤ O(1/d)1/2
(

2
∑
x6=0

[1− cos(k · x)] |Πp(x)|
)1/2

≤ O(1/d) Ĉλp(k)−1/2.(8.4.21)

Furthermore,

â(l ± k)− â(l) = 2dp
(
D̂(l ± k)− D̂(l)

)
Π̂p(l)(8.4.22)

+ 2dpD̂(l)
(

Π̂p(l ± k)− Π̂p(l)
)
.

In a similar fashion as (8.4.20)–(8.4.21), we bound∣∣∣Π̂p(l ± k)− Π̂p(l)
∣∣∣ ≤ O(1/d) Ĉλp(k)−1/2,

and ∣∣∣D̂(l ± k)− D̂(l)
∣∣∣ ≤ (∑

x

D(x)
)1/2(∑

x

[1− cos(k · x)]D(x)
)1/2

(8.4.23)

+
∑
x

[1− cos(k · x)]D(x)

= 1 · [1− D̂(k)]1/2 + [1− D̂(k)]

≤ 2Ĉλp(k)−1/2 + 2Ĉλp(k)−1 ≤ O(1) Ĉλp(k)−1/2,

where the last line uses (8.2.10). The combination of (8.4.20)–(8.4.24) and (8.4.7) yields

(8.4.24)
(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

)
≤ O(1/d) [1− D̂(k)].

On the other hand, by (8.4.13)–(8.4.15) and for all σ ∈ {−1, 0, 1},

(8.4.25)
1

1− â(l + σk)
=

1

b̂(l + σk)
τ̂p(l + σk) ≤ (1 +O(1/d)) Ĉλp(l + σk).

Combining (8.4.24) and (8.4.25) yields(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

)
(1− â(l)) (1− â(l ± k))

≤ O(1/d) [1− D̂(k)] Ĉλp(l) Ĉλp(l ± k)

≤ O(1/d) Ûλp(l, k).(8.4.26)

For the third term in (8.4.16) we argue that |b̂(l)| = 1 + |Π̂p(l)| ≤ 1 + c4/d by (8.3.1).
In order to apply Lemma 8.2 to bound ∆k(1− â(l))−1, we estimate

(8.4.27) Â(l) :=
1

1− â(l)
=

1

b̂(l)
τ̂p(l) ≤ (1 + 2c4/d) (1 + 51c4/d) Ĉλp(l) ≤ (1 +Cβ)Ĉλp(l)
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since d ≥ d0 > 6 and (8.4.13), and

|̂a|(0)− |̂a|(k) = 2dp
∑
x

[1− cos(k · x)]
∣∣D(x) + (D ? Πp)(x)

∣∣
≤ 2dp[1− D̂(k)] +

∑
x

[1− cos(k · x)]
∣∣(D ? Πp)(x)

∣∣
≤ (2(1 + c4/d) + 4c4/d) [1− D̂(k)] ≤ 5 [1− D̂(k)],

where the last line uses again (8.2.10) and, as usual, requires a certain smallness of 1/d
(here we need c4/d ≤ 1/2). Plugging these estimates into (8.2.20) yields

∆k
1

1− â(l)
≤ (1 + C/d)3 · 8 · 52 · [1− D̂(k)]

×
{
Ĉλp(l − k)Ĉλp(l) + Ĉλp(l)Ĉλp(l + k) + Ĉλp(l − k)Ĉλp(l + k)

}
,(8.4.28)

so that finally

(8.4.29)
|∆kτ̂p(l)|
Ûλp(k, l)

≤ 1 + const /d,

as required. �

In conclusion f3(p) ≤ 1 + const /d, and thus we obtain the improved bound f(p) ≤
1 + const /d. Thus, Lemmas 8.11 and 8.12 complete the proof of Proposition 8.10. �

Proof of Proposition 8.8. Note first that f is continuous on (0, pc) by Lemma
8.9. Hence the hypotheses of Lemma 8.1 are satisfied by Proposition 8.10 and the fact
that f(0) = 1. Therefore, by taking d0 large enough, we can make f(p) ≤ 3 for all p < pc.
Moreover, Proposition 8.10 shows that, if f(p) ≤ 4 for some p ∈ [0, pc), then in fact
f(p) ≤ 1 +O(1/d). Hence f(p) ≤ 1 +O(1/d) uniformly for p < pc. �

8.5. Consequences of the completed bootstrap

In this section, we state some consequences of the completed bootstrap argument that
are crucial later on. These consequences are formulated in the following corollary:

Corollary 8.13 (Bound pc and triangle from completed bootstrap). For percolation,
there exist d0 > 6 and C > 0 such that for d ≥ d0 > 6, and all p ≤ pc,

(8.5.1) τ̂p(k) =
1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]
,

where

(8.5.2) Π̂p(k) =
∞∑
N=0

(−1)N Π̂(N)

p (k).

Consequently,

(8.5.3) 1 ≤ 2dpc ≤ 1 + C/d, and ∆p ≤ 1 + C/d.
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Proof. First fix p < pc. The bound on ∆p follows directly from Lemma 8.5. Lemma
8.4 implies that the sum over N in (8.5.2) exists, and RM(x) vanishes as M → ∞. As a
result, (8.5.1) follows. This completes the proof for p < pc.

To extend the argument to p = pc, we see that the bounds on Π̂(N)
p (k) hold uniformly

in p < pc. By dominated convergence, Πp(x) converges to Πpc(x) for fixed x ∈ Zd as

p ↗ pc. Πpc has a well-defined Fourier transform, so also Π̂p(k) converges to Π̂pc(k) as
p↗ pc. For k 6= 0, we define

(8.5.4) τ̂pc(k) =
1 + Π̂pc(k)

1− 2dpcD̂(k)[1 + Π̂pc(k)]
,

which is well defined. For p = pc and since τ̂pc(0) = χ(pc) =∞, we obtain that pc satisfies

1−2dpc[1+Π̂pc(0)] = 0. Then, by (8.3.6) in Lemma 8.4, the right hand side of (8.5.4) has
an integrable singularity for k = 0 when d > 2. Thus, we can use dominated convergence
to obtain that

τpc(x) = lim
p↗pc

τp(x) = lim
p↗pc

∫
(−π,π]d

e−ik·xτ̂p(k)
dk

(2π)d
(8.5.5)

= lim
p↗pc

∫
(−π,π]d

e−ik·x 1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]

dk

(2π)d

=

∫
(−π,π]d

e−ik·x lim
p↗pc

1 + Π̂p(k)

1− 2dpD̂(k)[1 + Π̂p(k)]

dk

(2π)d

=

∫
(−π,π]d

e−ik·x 1 + Π̂pc(k)

1− 2dpcD̂(k)[1 + Π̂pc(k)]

dk

(2π)d
.

In particular, this shows that τ̂pc(k) is well defined and τpc(x) is its Fourier inverse. Thus,
(8.5.1) extends to p = pc.

Having established the existence of the lace expansion for p = pc, we can now use it
to investigate pc = pc(Zd). The lower bound on pc(Zd) is proved in Exercise 2.6. For the
upper bound, we use (6.1.6) (which is now established rigorously) to obtain

(8.5.6) 2dpc =
1

1 + Π̂pc(0)
≤ 1

1−O(1/d)
= 1 +O(1/d).

�

Exercise 8.7 (Finer asymptotics of pc(Zd)). Use (8.5.3) and Lemma 8.4 to prove that

(8.5.7) Π̂pc(0) = −Π̂(1)

pc (0) +O(1/d2) = − 1

2d
+O(1/d2).

In turn, use this in the implicit equation 2dpc = [1+Π̂pc(0)]−1 for pc in (6.1.6) to improve
the bound on pc in (8.5.3) to the statement that there exists a constant C such that

(8.5.8) 1 ≤ (2d− 1)pc ≤ 1 + C/d2.

Exercise 8.8 (Asymptotics of pc for spread-out percolation). Fix d > 6. Adapt the
proof of the bound on pc in (8.5.3) to prove that there exists a constant C such that
spread-out percolation satisfies

(8.5.9) 1 ≤ [(2L+ 1)− 1]dpc ≤ 1 + C/Ld.



CHAPTER 9

Proof that δ = 2 and β = 1 under the triangle condition

In this chapter, we use the finiteness of the triangle diagram in order to establish that
certain critical exponents take on their mean-field values.

We again rely on the differential inequalities in Lemma 3.5. We complement these
two mean-field differential inequalities by a differential inequality involving the triangle,
as stated as Lemma 9.1 in Section 9.1. We then prove that δ = 2 in Section 9.2, and use
the inequalities proved for δ to derive that β = 1 in Section 9.3. We complete this chapter
by a proof of the differential inequality in Lemma 9.1 in Section 9.4.

9.1. A differential inequality involving the triangle

We investigate the magnitization M(p, γ) once more, and formulate an extra differen-
tial inequality that involves the triangle diagram. We recall that

(9.1.1) M(p, γ) = Ep[1− (1− γ)|C (0)|] = Pp,γ(0←→ G).

Exercise 9.1 (Monotonicity of M). Prove that γ 7→ M(p, γ) and p 7→ M(p, γ) are
non-decreasing. Prove also that γ 7→M(p, γ) is concave.

The extra differential inequality is crucial to prove that the one-sided bounds on the
critical exponents β and δ are actually equalities.

For p ∈ [0, pc], we let

(9.1.2) 4max
p = sup

x∈Zd
[4p(x)− δx,0] = sup

x∈Zd

[
τ ?3p (x)− δ0,x

]
.

Since at least one of the three τp factors needs to have a non-zero displacement in order
for τ ?3p (x)− δ0,x to be non-zero, we can use (7.2.10) and (7.2.2) to bound

(9.1.3) 4max
pc ≤ 3 sup

x∈Zd
(τ ?2pc ? τ̃pc)(x) = 3∆̃pc .

Thus, by Lemma 8.5 and the fact that it now holds for all p ∈ [0, pc],

(9.1.4) 4max
pc = O(1/d).

The differential inequality that we rely on is the following:

Lemma 9.1 (Differential inequalities revisited [58, Lemma 5.5]). Fix p ∈ [0, pc] and
0 < γ < 1. Then

(9.1.5) M(p, γ) ≥ κ(p)(1− γ)M(p, γ)2∂M(p, γ)

∂γ
,

where

(9.1.6) κ(p) =

[(
2d

2

)
p2(1− p)2d−2

[
(1−4max

p )2 −4max
p

]
− p−4max

p

]
2dp.

109
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The differential inequality (9.1.5), which is a variant of an inequality derived by Barsky
and Aizenman [27], is used to prove our upper bounds on M(pc, γ). In turn, the upper
bound on M(pc, γ) is the input in an extrapolation argument to prove the upper bound
on θ(p) for p > pc. This extrapolation inequality bounds M(p, 0+) = θ(p) in terms of
M(pc, γ) for an appropriate γ > 0. We give a proof of (9.1.5) in Section 9.4. While the
formula for κ(p) may look quite involved, the fact that 2dpc = 1 + O( 1

2d
) implies that

κ(pc) = (1/2e)(1 +O(1/d)) in high dimensions:

Exercise 9.2 (Asymptotics of κ in high dimensions). Prove that κ(pc) = (1/2e)(1 +
O(1/d)) in high dimensions, and thus κ(pc) > 0.

We start by proving that δ = 2 in Section 9.2, and use the inequalities proved for δ to
derive that β = 1 in Section 9.3.

9.2. The cluster tail critical exponent δ

Here we give the Aizenman-Newman argument [13] to identify the critical exponent
δ = 2. The main result is the following theorem:

Theorem 9.2 (δ = 2 when the triangle condition holds). For percolation, there exist
d0 > 6 and 0 < cδ < Cδ <∞ such that for d ≥ d0 > 6 and all n ≥ 1

(9.2.1)
cδ√
n
≤ Ppc(|C (0)| ≥ n) ≤ Cδ√

n
.

In particular, the critical exponent δ exists in the bounded-ratio sense and takes on the
mean-field value δ = 2.

In order to prove Theorem 9.2, we start by proving an upper bound on the magne-
tization in the generating function sense. This provides a matching upper bound on the
magnetization to that proved in Corollary 4.5, and also rather directly implies (9.2.1).
This upper bound is stated in the following lemma:

Lemma 9.3 (Upper bound on δ assuming the triangle condition [58, (5.38)]). For
percolation, there exists a d0 > 6 such that for d ≥ d0 > 6 and all γ ∈ [0, 1],

(9.2.2) M(pc, γ) ≤
√

12γ.

In particular, the critical exponent δ exists for the generating function as in (4.3.1) and
takes on the mean-field value δ = 2.

Proof. We assume that the triangle condition is satisfied and that the bound on
pc(Zd) in (8.5.3) in Lemma 8.13 holds. Under these conditions, 2dpc = 1 + O(1/d), so
(9.1.5) implies that

(9.2.3) M(pc, γ) ≥ 1

2e

[
1−O(1/d)

]
(1− γ)

∂M(pc, γ)

∂γ
M(pc, γ)2.

For p = pc, we divide this by M(pc, γ) > 0 and thus obtain

(9.2.4)
1

2

∂M2

∂γ
≤ 2e

1− γ
[
1−O(1/d)

]
.
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We further integrate (9.2.4) w.r.t. the second argument of M over the interval [0, γ] and
use M(pc, 0) = θ(pc) = 0, to see that

(9.2.5) M2(pc, γ) ≤ 4eγ

1− γ
[
1−O(1/d)

]
.

For γ ∈ [0, 1
12

], this implies (9.2.2), provided d is sufficiently large. Finally, we note that we

can remove the restriction γ ∈ [0, 1
12

], since trivially, M(pc, γ) ≤ 1 ≤
√

12γ if γ ≥ 1
12

. �

Proof of upper bound in Theorem 9.2. For the upper bound, we follow [58,
Lemma 6.2(ii)] and use that

(9.2.6) Ppc(|C (0)| ≥ n) ≤ e

e− 1
M(pc, 1/n),

since 1− e−1 ≤ 1− (1− 1/n)` whenever ` ≥ n. Thus, the upper bound in (9.2.1) follows
with Cδ =

√
12e/(e− 1). �

Proof of lower bound in Theorem 9.2. We start by noting that, for all 0 ≤
γ < γ̃ < 1,

Ppc(|C (0)| ≥ n) ≥M(pc, γ)− γ

γ̃
eγ̃nM(pc, γ̃).(9.2.7)

Indeed, to prove (9.2.7), we note that [1−(1−γ)`] ≤ `γ. Also, `γ̃ ≤ e`γ̃−1 = e`γ̃(1−e−`γ̃),
which, combined with e−γ̃ ≥ 1− γ̃, gives `γ̃ ≤ e`γ̃(1− (1− γ̃)`). Therefore,

M(pc, γ) =
∑
`≥1

(1− (1− γ)`)Ppc(|C (0)| = `)

≤ γ
∑
`≤n

`Ppc(|C (0)| = `) +
∑
`≥n

Ppc(|C (0)| = `)

≤ γ

γ̃
eγ̃nM(pc, γ̃) + Ppc(|C (0)| ≥ n).(9.2.8)

We apply (9.2.7) with γ̃ = 1/n. Since

(9.2.9) M(pc, 1/n) ≤
√

12/n

by (9.2.2), (9.2.7) implies that

(9.2.10) Ppc(|C (0)| ≥ n) ≥M(pc, γ)−
√

12nγe.

Further, Corollary 4.5, together with (8.5.3) in Lemma 8.13, implies that for d ≥ d0

sufficiently large, M(pc, γ) ≥ 1
3

√
γ, and hence

(9.2.11) Ppc(|C (0)| ≥ n) ≥ 1

3

√
γ −
√

12nγe ≥ 1

3

√
γ
(
1− 30

√
γn
)
.

The choice γ = 1
602n

gives the lower bound of (9.2.1) with cδ = 1/6. �

Let us remark that Hara and Slade [140] have provided much stronger results that the
ones obtained here. Indeed, they have shown the following result:
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Theorem 9.4 (δ = 2 in sharp sense in high dimensions). There exist d0 > 6 and
0 < Cβ <∞ such that for d ≥ d0 > 6,

(9.2.12) Ppc(|C (0)| = n) =
Cβ√
8πn3

(1 +O(n−ε)).

In particular, the critical exponent δ exists in the asymptotic sense and takes on the
mean-field value δ = 2.

We return to the Hara and Slade paper [140] in Section 15.1 below, where we discuss
super-process limits of critical percolation clusters. Unfortunately, Theorem 9.4 only holds
in sufficiently high dimensions, even for spread-out models.

9.3. The percolation-function critical exponent β

Here we give the Barsky-Aizenman argument [27] to identify the critical exponent
β = 1, see also [58, Section 5].

Theorem 9.5 (β = 1 when the triangle condition holds). For percolation, there exist
d0 > 6 and 0 < cβ < Cβ <∞ such that for d ≥ d0 > 6 and all p ≥ pc(Zd),

(9.3.1) cβ(p− pc) ≤ θ(p) ≤ Cβ(p− pc).

In particular, the critical exponent β exists in the bounded-ratio sense and takes on the
mean-field value β = 1.

Proof. The lower bound is proved in Theorem 3.2(2), so we focus on the upper
bound, which is expected to be true only above the upper critical dimension.

Following Barsky and Aizenman [27], we apply the extrapolation principle used by
Aizenman and Barsky [9] (recall Chapter 3), to extend (9.2.2) to (9.3.1). The extrap-
olation principle was first used by Aizenman and Fernandez in the context of the Ising
model [11] (see also the survey by Fernandez, Frölich and Sokal [102]). We find it most
convenient to reparametrize and use the variable h = − log(1 − γ) rather than γ, and
define

M̃(p, h) = M(p, 1− e−h) for h ≥ 0.

We take p = pc + ε/(2d) with ε > 0 small. Assuming that ε ≤ 1, the differential
inequality (3.4.4) implies that

(9.3.2)
∂M̃

∂p
≤ 2dAM̃

∂M̃

∂h
,

where A = (1− pc − 1/(2d))−1 = 1 +O(1/d).

Exercise 9.3 (Proof of differential inequality for M̃). Prove (9.3.2) using (3.4.4).

For fixed m ∈ [0, 1] and fixed p ∈ (0, 1), we can solve the equation M̃(p, h) = m for

h = h(p), so that M̃(p, h(p)) = m. Differentiation of this identity with respect to p gives

(9.3.3)
∂M̃

∂p
+
∂M̃

∂h

∂h

∂p

∣∣∣∣
M̃=m

= 0.
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•

•

p
pc

P1 = (pc + ε2d−1, h)

P2 = (pc, Am1ε
′)

h

M̃ ≤ m1

M̃ = m1

Figure 9.1. The extrapolation geometry.

Therefore, by (9.3.2),

(9.3.4) 0 ≤ − ∂h

∂p

∣∣∣∣
M̃=m

=

∂M̃
∂p

∂M̃
∂h

≤ 2dAm.

The upper and lower bounds of (9.3.4) imply that a contour line M̃ = m1 in the (p, h)-
plane (with p-axis horizontal and h-axis vertical) passing through a point P1 = (p1, h1) is

such that M̃(P ) ≤ m1 for all points P in the first quadrant that lie on or below the line
of slope 0 through P1; see Figure 9.1.

Key inequality for extrapolation. The key observation in the extrapolation in-
equality argument is that if P2 = (p2, h2) is on the line through P1 with slope −2dAm1,

with p2 < p1, then P2 lies above the contour line M̃ = m1, so if we set m2 = M̃(P2), then
m2 ≥ m1. Indeed, the fact that m2 ≥ m1 is crucially used below. We now complete the
argument of the upper bound on β.

Fix h, and fix ε > 0. Let P1 = (pc + ε/(2d), h), and define m1 = m1(ε) = M̃(P1). Let

(9.3.5) ε′ = ε+
h

Am1

,

further define P2 = (pc, Am1ε
′) and m2 = M̃(P2). The point P2 lies on the line through

P1 with slope −2dAm1. Therefore, as observed above, m1 ≤ m2. Applying (9.2.2) gives

M̃(pc + ε/(2d), h) = m1 ≤ m2 = M̃(pc, Am1ε
′) ≤
√

12(1− e−Am1ε′)1/2

=
√

12
(
1− e−Am1ε + e−Am1ε[1− e−h]

)1/2

≤
√

12(Am1ε+ γ)1/2,(9.3.6)

with γ = 1− e−h. The inequality

(9.3.7) m2
1 ≤ 12(Am1ε+ γ)
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has roots

(9.3.8) m± = 6Aε±
√

12γ + (6Aε)2.

The root m+ is positive and m− is negative. Thus,

(9.3.9) M(pc + ε/(2d), γ) = m1 ≤ m+ ≤ 6Aε+
√

12γ + (6Aε)2 ≤ 12Aε+
√

12γ,

using
√
a+ b ≤

√
a+
√
b in the last step.

We let γ ↘ 0 in (9.3.9), to obtain (recall Exercise 3.4)

(9.3.10) θ(pc + ε/(2d)) = M(pc + ε/(2d), 0+) ≤ 12Aε.

This completes the proof of (9.3.1), since we can choose A arbitrarily close to 1 by choosing
d ≥ d0 with d0 sufficiently large. �

We close this section with the open problem of proving that β = 1 in the asymptotic
sense. Possibly, a lace-expansion argument might be necessary for this. However, the
application of the lace expansion in the supercritical regime is highly non-trivial:

Open Problem 9.1 (β = 1 in the asymptotic sense). Prove that
β = 1 in the asymptotic sense, possibly by using a lace-expansion
argument.

9.4. Proof of the differential inequality involving the triangle

We follow the presentation by Borgs et al. in [58, Appendix 5.3]. Let {v ⇐⇒ G } denote
the event that there exist x, y ∈ G , with x 6= y, such that there are disjoint connections
v ←→ x and v ←→ y. Let F(u,v) denote the event that the bond (u, v) is occupied and
pivotal for the connection from 0 to G , with {v ⇐⇒ G }. Let F =

⋃
(u,v) F(u,v), and note

that the union is disjoint. Since 0←→ G when F occurs,

(9.4.1) M(p, γ) = Pp,γ(0←→ G ) ≥ Pp,γ(F ) =
∑
(u,v)

Pp,γ(F(u,v)),

and it suffices to prove that Pp,γ(F ) is bounded below by the right side of (9.1.5).
For x, y ∈ Zd, we define a “green-free” analogue of the two-point function by

(9.4.2) τp,γ(x, y) = Pp,γ(x←→ y, x←→/ G ),

so that

(9.4.3) χ(p, γ) =
∑
x∈Zd

τp,γ(0, x)

and χ(p, 0) = χ(p). Given a subset A ⊆ Zd, we define τAp,γ(x, y) to be the probability that

(i) x←→ y in Zd\A, and (ii) x←→/ G in Zd\A, which is to say that x←→/ G after every
bond with an endpoint in A is made vacant. We write Ĩ{u,v}[E] to be the indicator that
E occurs after {u, v} is made vacant. Then we have the following generalization of the
Cutting-Bond Lemma 6.4:

Lemma 9.6. For every p ∈ [0, pc] and γ > 0,

Pp,γ(F(u,v)) = pEp,γ
[
τ C̃ (u,v)(v)
p,γ (0, u)Ĩ{u,v}[v ⇐⇒ G ]

]
.(9.4.4)
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Proof. We first observe that the event F(u,v) is given by

F(u,v) =
{

0←→ u in Zd\C̃ (u,v)(v)
}
∩
{

0←→/ G in Zd\C̃ (u,v)(v)
}

∩ {{u, v} occupied}
∩
{
v ⇐⇒ G after {u, v} is made vacant

}
.(9.4.5)

The bond {u, v} has an endpoint in C̃ (u,v)(v), and hence the event that {u, v} is occupied
is independent of the other events above. Therefore,

Pp,γ(F(u,v)) = p
∑

A : A3v

Ep,γ
[
1{C̃ (u,v)(v)=A}Ĩ

{u,v}[v ⇐⇒ G ]1{(0←→u and 0←→/ G ) in Zd\A}
]
.

(9.4.6)

The two events in the first line depend only on bonds with an endpoint in A (but not on
{u, v}) and vertices in A, while those in the second line depend only on bonds with no
endpoint in A (so not on {u, v}) and on vertices in Zd\A. Therefore,

(9.4.7) Pp,γ(F(u,v)) = p
∑

A : A3v

Ep,γ
[
1{C̃ (u,v)(v)=A}Ĩ

{u,v}[v ⇐⇒ G ]
]
τAp,γ(0, u),

which implies the desired result. �

Proof of Lemma 9.1. We use the identities

(9.4.8) τ C̃ (u,v)(v)
p,γ (0, u) = τp,γ(0, u)−

(
τp,γ(0, u)− τ C̃ (u,v)(v)

p,γ (0, u)
)

and

(9.4.9) Ĩ{u,v}[v ⇐⇒ G ] = 1{v⇐⇒G } −
(
1{v⇐⇒G } − Ĩ{u,v}[v ⇐⇒ G ]

)
.

It follows from Lemma 9.6 and (9.4.3) that

Pp,γ(F ) = 2dpχ(p, γ)Pp,γ(0⇐⇒ G )(9.4.10)

− p
∑
(u,v)

τp,γ(0, u)Ep,γ
[
1{v⇐⇒G } − Ĩ{u,v}[v ⇐⇒ G ]

]
− p

∑
(u,v)

Ep,γ
[(
τp,γ(0, u)− τ C̃ (u,v)(v)

p,γ (0, u)
)
Ĩ{u,v}[v ⇐⇒ G ]

]
.

We write (9.4.10) as X1 −X2 −X3, bound X1 from below, and bound X2 and X3 from
above.

Lower bound on X1. We prove that

(9.4.11) Pp,γ(0⇐⇒ G ) ≥
(

2d

2

)
p2(1− p)2d−2M2(p, γ)

[
(1−4max

p )2 −4max
p

]
,

which implies that

(9.4.12) X1 ≥ 2dpχ(p, γ)

(
2d

2

)
p2(1− p)2d−2M2(p, γ)

[
(1−4max

p )2 −4max
p

]
.

Let Ee,f be the event that the bonds (0, e) and (0, f) are occupied, all other bonds incident
on 0 are vacant, and that in the reduced graph G− = (Zd−, E−) obtained by deleting the
origin and each of the 2d bonds incident on 0 from Zd the following three events occur:
e←→ G , f ←→ G , and C (e)∩C (f) = ∅. Let P−p,γ denote the joint bond/vertex measure
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of G−. We note that the event {0⇐⇒ G } contains the event
⋃
e,f Ee,f , where the union

is over unordered pairs of neighbors e, f of the origin, and the union is disjoint. Then

Pp,γ(0⇐⇒ G ) ≥ Pp,γ
(⋃
e,f

Ee,f
)

=
∑
e,f

Pp,γ(Ee,f )

= p2(1− p)2d−2
∑
e,f

P−p,γ(e←→ G , f ←→ G , C (e) ∩ C (f) = ∅).(9.4.13)

Let W = We,f denote the event whose probability appears on the right side of (9.4.13).
Conditioning on the set C (e) = A ⊂ Zd−, we see that

(9.4.14) P−p,γ(W ) =
∑

A : A3e

P−p,γ(C (e) = A, e←→ G , f ←→ G , C (e) ∩ C (f) = ∅).

This can be rewritten as

P−p,γ(W ) =
∑
A:A3e

P−p,γ(C (e) = A, e←→ G , f ←→ G in Zd− \ A),(9.4.15)

where {f ←→ G in Zd− \ A} is the event that there exists x ∈ G such that f ←→ x
in Zd− \ A. The intersection of the first two events on the right hand side of (9.4.15) is
independent of the third event, and hence

P−p,γ(W ) =
∑

A : A3e

P−p,γ(C (e) = A, e←→ G ) P−p,γ(f ←→ G in Zd− \ A).(9.4.16)

Let M−(x) = P−p,γ(x ←→ G ), for x ∈ Zd−. Then, by the BK inequality and the fact that
the two-point function on G− is bounded above by the two-point function on G,
(9.4.17)

P−p,γ(f ←→ G in Zd− \ A) = M−(f)− P−p,γ(f
A←→ G ) ≥M−(f)−

∑
y∈A

τp,0(f, y)M−(y).

By definition and the BK inequality,

M−(x) = M(p, γ)− Pp,γ(x←
{0}−−→ G ) ≥M(p, γ)(1− τp,0(0, x))

≥M(p, γ)(1−4max
p ).(9.4.18)

In the above, we also used τp,0(0, x) ≤ τ ?3p (x) ≤ 4p(x).
It follows from (9.4.16)–(9.4.18) and the upper bound M−(x) ≤M(p, γ) that

P−p,γ(W ) ≥M(p, γ)
∑

A : A3e

P−p,γ(C (e) = A, e←→ G )
[
(1−4max

p )−
∑
y∈A

τp,0(f, y)
]

= M(p, γ)
[
M−(e)(1−4max

p )−
∑
y∈Zd−

τp,0(f, y)P−p,γ(e←→ y, e←→ G )
]
.(9.4.19)

It is not difficult to show, using the BK inequality, that

(9.4.20) P−p,γ(e←→ y, e←→ G ) ≤
∑
w∈Zd−

τp,0(e, w)τp,0(w, y)M−(w),
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and hence, by (9.4.18)–(9.4.19),

P−p,γ(W ) ≥M(p, γ)
[
M−(e)(1−4max

p )−
∑

y,w∈Zd−

τp,0(f, y)τp,0(e, w)τp,0(w, y)M−(w)
]

≥M2(p, γ)
[
(1−4max

p )2 −4max
p

]
.(9.4.21)

This completes the proof of (9.4.11), and hence of (9.4.12).

Upper bound on X2. This is the easiest term. By definition,

(9.4.22) X2 = p
∑
(u,v)

τp,γ(0, u)Ep,γ
[
1{v⇐⇒G } − Ĩ{u,v}[v ⇐⇒ G ]

]
.

For the difference of indicators to be nonzero, the double connection from v to G must
be realized via the bond {u, v}, which therefore must be occupied. The difference of
indicators is therefore bounded above by the indicator that the events {v ←→ G }, {u←→
G } and {{u, v} occupied} occur disjointly. Thus, by the BK inequality,

(9.4.23) Ep,γ
[
1{v⇐⇒G } − Ĩ{u,v}[v ⇐⇒ G ]

]
≤ pM2(p, γ),

and hence,

(9.4.24) X2 ≤ 2dp2M2(p, γ)χ(p, γ).

Upper bound on X3. By definition,

(9.4.25) X3 = p
∑
(u,v)

Ep,γ
[(
τp,γ(0, u)− τ C̃ (u,v)(v)

p,γ (0, u)
)
Ĩ{u,v}[v ⇐⇒ G ]

]
.

The difference of two-point functions is the expectation of

1{0←→u,0←→/ G } − 1{0←→u in Zd\C̃ (u,v)(v),0←→/ G }

+ 1{0←→u in Zd\C̃ (u,v)(v),0←→/ G } − 1{(0←→u,0←→/ G ) in Zd\C̃ (u,v)(v)}

≤ 1

{0←
C̃(u,v)(v)−−−−−→u,0←→/ G }

,(9.4.26)

since the second line is non-positive and the first line equals the third line. Since the
indicator in (9.4.25) is bounded above by 1{v⇐⇒G }, it follows that

(9.4.27) X3 ≤ p
∑
(u,v)

Ep,γ
[
Pp,γ(0←

C̃ (u,v)(v)−−−−−→ u, 0←→/ G ) 1{v⇐⇒G }

]
.

To investigate Pp,γ(0←
C̃ (u,v)(v)−−−−−→ u, 0←→/ G ), we state a more general lemma investigat-

ing disjoint occurrence of events while being green-free.

Let E be an event specifying that finitely many pairs of sites are connected, possibly
disjointly. In particular, E is increasing. We say that E occurs and is green free if E
occurs and the clusters of all the sites for which connections are specified in its definition
do not intersect the random set G of green sites. For such events, Hara and Slade [140,
Lemma 4.3] prove the following BK inequality, in which the upper bound retains a green-
free condition on one part of the event only:
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Lemma 9.7 (Green-free BK-inequality [140, Lemma 4.3]). Let E1, E2 be events of the
above type. Then, for γ ≥ 0 and p ∈ [0, 1],

Pp,γ((E1 ◦ E2) occurs and is green-free)

≤ Pp,γ(E1 occurs and is green-free)Pp(E2).(9.4.28)

Proof. We follow the original proof by Hara and Slade [140] almost verbatim. Given
an increasing event F , we write [F ]n to denote that F occurs in Λn. Then, we show that

Pp,γ([(E1 ◦ E2) occurs and is green-free]n)

≤ Pp,γ([E1 occurs and is green-free]n)Pp([E2]n).(9.4.29)

Lemma 9.7 follows by sending n→∞.
Given a bond-vertex configuration, we let C (G )n denote the set of vertices that are

connected to the green set in Λn. Conditioning on C (G )n gives

Pp,γ([(E1 ◦ E2) occurs and is green-free]n)

=
∑
C

Pp,γ
(
C (G )n = C , [(E1 ◦ E2) occurs and is green-free]n

)
,(9.4.30)

where the sum is over all subsets C ⊆ Λn. When C (G )n = C , bonds touching but not
in C are vacant and we can replace the event [(E1 ◦E2) occurs and is green-free]n by the
event [(E1 ◦ E2) occurs in Zd \ C ]n. It is here that we use the specific form of the events
E1 and E2 of finite intersections of (possibly disjoint occurrence of) connections between
pairs of vertices. Thus,

Pp,γ([(E1 ◦ E2) occurs and is green-free]n)

=
∑
C

Pp,γ(C (G )n = C )Pp,γ
(
[(E1 ◦ E2) occurs in Zd \ C ]n

)
.(9.4.31)

Now we apply the usual BK inequality (in the reduced lattice consisting of all the vertices
in Λn that do not touch C ) to obtain

Pp,γ([(E1 ◦ E2) occurs and is green-free]n)

≤
∑
C

Pp,γ(C (G )n = C )Pp,γ([E1 occurs in Zd \ C ]n)Pp,γ([E2 occurs in Zd \ C ]n).

(9.4.32)

Since E2 is increasing, Pp,γ([E2 occurs in Zd \ C ]n) ≤ Pp([E2]n), so that

Pp,γ([(E1 ◦ E2) occurs and is green-free]n)

≤
∑
C

Pp,γ(C (G )n = C )Pp,γ([E1 occurs in Zd \ C ]n)Pp([E2]n)

= Pp,γ([E1 occurs and is green-free ]n)Pp([E2]n),(9.4.33)

as required. �
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By Lemma 9.7,

Pp,γ(0
A←→ u, 0←→/ G ) ≤

∑
y∈A

Pp,γ((0←→ y) ◦ (y ←→ u) occurs and is green-free)

≤
∑
y∈Zd

τp,γ(0, y)τp,0(y, u)1{y∈A}.(9.4.34)

The important point in (9.4.34) is that the condition 0←→/ G on the left side is retained
in the factor τp,γ(0, y) on the right side (but not in τp,0(y, u)). With (9.4.27), this gives

(9.4.35) X3 ≤ p
∑
(u,v)

∑
y∈Zd

τp,γ(0, y)τp,0(y, u)Ep,γ
[
1{v⇐⇒G }1{y∈C̃ (u,v)(v)}

]
.

Since

(9.4.36) 1{v⇐⇒G }1{y∈C̃ (u,v)(v)} ≤
∑
w∈Zd

1{v←→w}◦{w←→y}◦{w←→G }◦{v←→G },

a further application of BK gives

X3 ≤ p
∑
y∈Zd

τp,γ(0, y)
∑
(u,v)

τp,0(y, u)
∑
w∈Zd

τp,0(v, w)τp,0(y, w)M2(p, γ)

= pM2(p, γ)χ(p, γ)
∑
(0,e)

∆̃p(e) ≤ 2dp4max
p M2(p, γ)χ(p, γ),(9.4.37)

where we have used that ∆̃p(e) ≤ 4max
p for every (0, e) in the last step.

The combination of (9.4.12), (9.4.24) and (9.4.37) completes the proof of (9.1.5). �





Part 3

Mean-field behavior: recent results





CHAPTER 10

The non-backtracking lace expansion

In the previous chapter, we have concluded the argument that percolation has mean-
field behavior in sufficiently high dimensions. The analysis, however, is not very explicit
about what dimension suffices in order to make the analysis work. In this chapter, we
explain that d ≥ 11 suffices.

This chapter is organized as follows. In Section 10.1, we state the main results for
d ≥ 11. In Section 10.2, we introduce non-backtracking random walk, and explain that
this is a better approximation to the percolation two-point function than the random walk
Green function. In Section 10.3, we explain the non-backtracking lace expansion, which
makes this perturbation statement precise. In Section 10.4, we show how the bootstrap
argument in Chapter 8 can be performed in the new setting. The proof in this chapter is
computer assisted, and we close this chapter in Section 10.5 by discussing the numerical
aspects of the analysis.

10.1. Mean-field behavior for d ≥ 11

Hara and Slade in [138] wrote that d ≥ 19 is sufficient to carry out the lace expansion
as outlined in Chapters 6–8, though the actual calculations leading to this number have
never been published. This magic number 19 circulated in the community for many
years, and few people understood how it came about. We would like to emphasize that
the dimension d = 19 has no special meaning at all, except for the fact that the numerical
arguments, at the time, worked for d ≥ 19. The reason is that the lace-expansion analysis,
as presented in Chapters 6–8, follows a perturbation approach: the two-point function
τpc(x) is compared to the critical random walk Green’s function C1(x). This approach
simply fails for percolation when the triangle diagram4pc is too large. On the other hand,
Theorem 4.1 implies that percolation displays mean-field behavior in any dimension for
which the triangle diagram4pc is finite. Thus the main problem in establishing mean-field
behavior for all d > 6 is as follows:

We know how to prove that the triangle diagram 4pc is small in
large dimensions, but we do not know how to prove that it is finite.

We now present results obtained by Fitzner and the second author [105, 106] on the
minimal dimension above which percolation can be rigorously proved to display mean-
field behavior. This not only improves the earlier d ≥ 19 to d ≥ 11, it also rigorously
justifies that 11 is sufficient for the lace-expansion analysis. A key to this improvement
is based on a new perturbation ansatz: instead of comparing the percolation two-point
function to simple random walk, a comparison is made to non-backtracking random walk

123
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yielding a non-backtracking lace expansion (as explained in more detail below). Here is
the result, which improves Theorem 5.1:

Theorem 10.1 (Infrared bound [105, 106]). For percolation with d ≥ 11, there exists
a constant A(d) (the “amplitude”) such that

(10.1.1) τ̂p(k) ≤ A(d)

1− D̂(k)
,

uniformly for p ≤ pc.

The infrared bound of course also immediately implies that β = γ = 1 and δ = 2, so
that Theorem 10.1 shows the mean-field behavior of percolation for d ≥ 11. Below, we
also state some other consequences of Theorem 10.1.

The method in [105, 106] requires a detailed analysis of both the critical value as well
as the amplitude A(d). As a side result, the following bounds are also obtained:

Theorem 10.2 (Bounds on critical value and amplitude [105, 106]). For percolation
with d ≥ 11, the following upper bounds hold:

d 11 12 13 14 15 20
(2d− 1)pc(Zd) ≤ 1.01315 1.00861 1.006268 1.0048522 1.00391 1.00179

A(d) ≤ 1.02476 0.995 0.986 0.98243 0.98088 0.98115

Table 10.1. Numerical estimates of the critical percolation threshold
pc(Zd) and the amplitude A(d) for several d.

We know that (2d − 1)pc(Zd) ≥ 1 (recall Exercise 2.6). Therefore, the bound on
pc(Z11) in Theorem 10.2 is at most 1.32% off. The bounds on pc(Zd) are probably not
optimal. Below are numerical estimates (non-rigorous, obtained via simulation) that have
appeared in the literature:

d 7 8 9 10

pc(Zd) ≈ 0.0786752 0.06770839 0.05949601 0.05309258
(2d− 1)pc(Zd) ≈ 1.02278 1.01562585 1.01143217 1.00875902

d 11 12 13

pc(Zd) ≈ 0.04794969 0.04372386 0.04018762
(2d− 1)pc(Zd) ≈ 1.00694349 1.00564878 1.0046905

Table 10.2. Numerical values of pc(Zd) taken from Grassberger [117, Ta-
ble I]. Related numerical values can be found in [177, Table 3.6] and [6].

We now explain in some more detail how Theorems 10.1–10.2 are proved. The proof for
d ≥ 19 by Hara and Slade [133] that we mentioned before relied on numerical computations
like those used in their seminal paper [135] showing that five-dimensional self-avoiding
walk (SAW) is diffusive. The result for SAW is optimal, in the sense that it is expected
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to be false in d ≤ 4. See e.g. the recent work by Bauerschmidt, Brydges and Slade in [31]
and the references therein for results in dimension d = 4.

For percolation, the upper critical dimension is believed to be dc = 6, and therefore,
Theorem 10.1 is expected to hold for all d > 6. However, the numerical control over the
lace expansion, as performed in Chapter 6, was insufficient to prove Theorem 10.1 all the
way down to d ≥ dc + 1 = 7. The Hara-Slade methods did prove mean-field behavior for
d ≥ 19, already a very impressive result. In private communication with Hara, we have
learned that he has been able to extend the methodology to d ≥ 15 since, but that his
method is restricted to d ≥ 15 since it makes use of the finiteness of the heptagon (for
example, τ ?7pc (0)). This analysis has not appeared in the literature.

The analysis of Fitzner and van der Hofstad in [105, 106] heavily relies on the methods
of Hara and Slade in [133, 136], in particular to compute the random walk’s Green function
numerically, as we explain in the sequel. It also contains novel ideas, particularly since it
relies on a perturbation around non-backtracking walk rather than simple random walk.
We next define non-backtracking random walk.

10.2. Non-backtracking walk

In this section, we introduce non-backtracking random walk, and relate its Green’s
function to that of simple random walk. We follow [105, Section 1.2.2] closely. We start
by introducing some notation. An n-step path π = (π0, . . . , πn) ∈ (Zd)n is a simple random
walk (SRW) path when |πi − πi−1| = 1, i = 1, . . . , n. Let bSRW

n (x) denote the number of
n-step SRW paths starting in 0 and ending in x ∈ Zd, i.e., with π0 = 0 and πn = x. We
exclusively use the Greek letters ι and κ for values in {−d,−d + 1, . . . ,−1, 1, 2, . . . , d}
and denote the unit vector in direction ι by eι ∈ Zd, e.g. (eι)i = sign(ι)δ|ι|,i. Clearly, by
summing over the direction −eι in the first step,

(10.2.1) bSRW

n (x) =
∑

ι∈{±1,...,±d}

bSRW

n−1(x+ eι),

from which we immediately obtain that

(10.2.2) bSRW

n (x) = (2d)nD?n(x).

If an n-step SRW path π satisfies πi 6= πi+2 for all i = 0, 1, 2, . . . , n− 2, then we call π a
non-backtracking path. In order to analyze non-backtracking walk (NBW), we derive an
equation similar to (10.2.1). The same equation does not hold for NBW as it neglects the
condition that the walk does not revisit the origin after the second step. For this reason,
we introduce the condition that a walk should not go in a certain direction ι with its first
step.

Let bn(x) be the number of n-step NBW paths with π0 = 0, πn = x. Further, we define
bιn(x) as the number of n-step NBW paths π with πn = x and π1 6= eι. Summing over the
direction −eι of the first step we obtain, for n ≥ 1,

bn(x) =
∑

ι∈{±1,...,±d}

bιn−1(x+ eι).(10.2.3)

Further, we distinguish between the case that the walk visits −eι in the first step or not
to obtain, for n ≥ 1,

bn(x) = b−ιn (x) + bιn−1(x+ eι).(10.2.4)
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The NBW two-point functions Bz and Bι
z are defined as the generating function of bn and

bιn, respectively, i.e., for every z ∈ C for which the generating function converges,

Bz(x) =
∞∑
n=0

bn(x)zn, Bι
z(x) =

∞∑
n=0

bιn(x)zn.(10.2.5)

We later come back to the question for which z ∈ C the definitions in (10.2.5) actually
do make sense. Using (10.2.3) and (10.2.4) for the two-point functions gives

Bz(x) =δ0,x + z
∑

ι∈{±1,...,±d}

Bι
z(x+ eι), Bz(x) = B−ιz (x) + zBι

z(x+ eι).(10.2.6)

Taking the Fourier transform, we obtain

B̂z(k) =1 + z
∑

ι∈{±1,...,±d}

B̂ι
z(k)e−ikι , B̂z(k) = B̂−ιz (x) + zB̂ι

z(k)e−ikι .(10.2.7)

Here, for a clear distinction between scalar-, vector- and matrix-valued quantities, we
always write C2d-valued functions with a vector arrow (e.g. ~v) and matrix-valued functions
with bold capital letters (e.g. M). We use {−d,−d+ 1, . . . ,−1, 1, 2, . . . , d} for the index
set for the elements of a vector or a matrix. Further, for k ∈ [−π, π]d and negative index
ι ∈ {−d,−d+ 1, . . . ,−1}, we write kι = −k|ι|.

In the following lemma, we relate the NBW and SRW two-point or Green’s functions
to each other:

Lemma 10.3 (NBW Green’s functions). The NBW and SRW Green’s functions are
related by

B̂z(k) =
1− z2

1 + (2d− 1)z2

1

1− 2dz
1+(2d−1)z2 D̂(k)

=
1− z2

1 + (2d− 1)z2
Ĉ 2dz

1+(2d−1)z2
(k),(10.2.8)

so that B̂z(k) converges as long as |z| < 1/(2d−1), and for z = zc = 1/(2d−1) for k 6= 0.
Further,

(10.2.9) B̂1/(2d−1)(k) =
2d− 2

2d− 1
Ĉ1(k) =

2d− 2

2d− 1
· 1

1− D̂(k)
.

The link between the NBW and the SRW Green’s functions allows for a computation
of NBW two-point function values in x- and in k-space. This is a crucial ingredient
behind the proof in [105, 106]. These ideas are also applied to lattice trees and animals.
A detailed analysis of the NBW, based on the ideas behind Lemma 10.3 can be found in
[104].

Note that the representation in Lemma 10.3 shows that working with NBW has two
benefits. Foremost, the critical point of the NBW is 1/(2d − 1) rather than that for the
generating function of the SRW sequence bSRW

n (x), which is 1/(2d). Secondly, we see that,
at the critical point, the NBW Green’s function is a factor (2d− 2)/(2d− 1) smaller than
its SRW counterpart. When we wish to go to dimensions that are not too large, such
factors can be quite useful, and we make as much use of them as possible. The extra factor
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(2d − 2)/(2d − 1) also partly explains the surprising non-monotonicity of the bounds on
A(d) in Table 10.2.

Lemma 10.3 allows to use the methodology of Hara and Slade in [133, 136], which is
a crucial ingredient in the proof in [105, 106]. In particular, Hara and Slade develop a
rigorous numerical scheme to bound simple random walk integrals such as

(10.2.10) In,l(x) = (D?l ? C?n
1 )(x) =

∫
(−π,π]d

e−ik·x D̂(k)l

[1− D̂(k)]n
dk

(2π)d
.

These integrals are used to bound similar integrals, but then for the percolation two-point
function τp(x), using a bootstrap argument. We can see that In,l(x) for n = 3 is closely
related to a simple-random walk triangle diagram.

Proof of Lemma 10.3. It is most convenient to prove the lemma using matrix
notation. We denote the identity matrix by I ∈ C2d×2d and the all-one vector by
~1 = (1, 1, . . . , 1)T ∈ C2d. All our vectors are column vectors. Moreover, we define the

matrices J, D̂(k) ∈ C2d×2d by

(J)ι,κ = δι,−κ and (D̂(k))ι,κ = δι,κe
ikι ,(10.2.11)

so that

(10.2.12) J =

 1
...

1

 , D̂(k) =

eikd

. . .

eik−d


provided that the indices are decreasingly ordered. The following identities are valid for
these matrices:

(10.2.13) D̂(k)J = JD̂(−k), (D̂(k))−1 = D̂(−k), and JJ = I.

Exercise 10.1 (Matrix inverses for NBW). Prove (10.2.13).

We define the vector
~̂
Bz(k) with entries (

~̂
Bz(k))ι =

~̂
Bι
z(k) and rewrite (10.2.7) as

B̂z(k) = 1 + z~1T D̂(−k)
~̂
Bz(k), B̂z(k)~1 = J

~̂
Bz(k) + zD̂(−k)

~̂
Bz(k).(10.2.14)

We use JJ = I and D̂(k)D̂(−k) = I to rewrite the last equation as

(10.2.15) B̂z(k)~1 = JD̂(k)D̂(−k)
~̂
Bz(k) + zJJD̂(−k)

~̂
Bz(k) = J(D̂(k) + zJ)D̂(−k)

~̂
Bz(k).

Using (10.2.13) again, this implies

(10.2.16)
~̂
Bz(k) = B̂z(k)

[
I + zD̂(k)J

]−1

J~1.

We use J~1 = ~1 and then combine (10.2.16) with the first equation in (10.2.14) to obtain

B̂z(k) =
1

1− z~1T
[
D̂(k) + zJ

]−1
~1
.(10.2.17)

We use again (10.2.13) to compute that[
D̂(k) + zJ

]−1

=
1

1− z2

(
D̂(−k)− zJ

)
,(10.2.18)
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so that, using ~1T D̂(−k)~1 = 2dD̂(k), we conclude that

B̂z(k) =
1

1− 2dz D̂(k)−z
1−z2

=
1− z2

1 + (2d− 1)z2 − 2dzD̂(k)
.(10.2.19)

Lemma 10.3 follows directly from (10.2.19). �

We next explain that the percolation two-point function satisfies an equation similar
to (10.2.17).

10.3. The Non-Backtracking Lace Expansion (NoBLE)

In this section, we explain the shape of the Non-Backtracking Lace Expansion (No-
BLE), which is a perturbative expansion of the two-point function. Next to the usual two-
point function τp(x), we use a slight adaptation of it. For a direction ι ∈ {±1,±2, . . . ,±d},
we define

τ ιp(x) = Pp(0←→ x occurs when all bonds containing eι are made vacant)(10.3.1)

where, for w ∈ Zd, we use the superscript w in Pwp to denote that all bonds with endpoints
equal to w are conditioned to be vacant. In the following, we drop the subscript p when
possible, and write, e.g., τ(x) = τp(x) and τ ι(x) = τ ιp(x).

The analysis in [105, 106] relies on two expansion identities relating τp(x) and τ ιp(x),
which are perturbations of (10.2.6). More precisely, the NoBLE is a perturbative expan-
sion for τp(x) and τ ιp(x) that reads as follows: For every x ∈ Zd, ι ∈ {±1,±2, . . . ,±d},
and M ≥ 1, the following recursion relations hold for p < pc:

τ(x) = δ0,x + µp
∑
y∈Zd,κ

(δ0,y + Ψκ
M(y))τκ(x− y + eκ) + ΞM(x),(10.3.2)

τ(x) = τ ι(x) + µpτ
−ι(x− eι) +

∑
y∈Zd,κ

Πι,κ
M (y)τκ(x− y + eκ) + Ξι

M(x),(10.3.3)

where the sum over κ is over {±1, . . . ,±d}, and we define

Πι,κ
M (y) =

M∑
N=0

(−1)NΠ(N),ι,κ(y), ΞM(x) = RM(x) +
M∑
N=0

(−1)NΞ(N)(x),(10.3.4)

Ψκ
M(x) =

M∑
N=0

(−1)NΨ(N),κ(y), Ξι
M(x) = Rι

M(x) +
M∑
N=0

(−1)NΞ(N),ι(x),(10.3.5)

µp = pP(e1 6∈ C (0) | {0, e1} vacant)(10.3.6)

Let us informally describe how these lace-expansion relations come about. We aim to per-
turb around the non-backtracking walk, for which the Green’s function satisfies (10.2.7).
Here (10.3.2) is a perturbation of the first identity in (10.2.7), while (10.3.3) is a per-
turbation of the second identity in (10.2.7). We again rely on descriptions using pivotal
bonds.
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Informal explanation of (10.3.2). The starting point for (10.3.2) is (6.2.18), com-
bined with (6.2.8), which, for convenience, we restate as

P(0←→ x) = δ0,x + Π(0)(x) +
∑
(u,v)

J(u, v)E
(
1{0⇐⇒u} τ

C̃ (u,v)(0)(v, x)
)
.(10.3.7)

The main change with respect to the expansion in Chapter 6 is that (6.2.6) is replaced
by (6.2.6) is replaced by

τA(v, x) = τu(v, x)−
(
τu(v, x)− τA(v, x)

)
(10.3.8)

= 1{v 6∈C̃ (u,v)(0)}

[
τu(x− v)− P

(
{v ←A−→ x} in Zd \ {u}

)]
for any A 3 u. and this identity is used everywhere where we arrive at a restricted
two-point function.

Exercise 10.2 (Percolation inclusion-exclusion revisited). Prove (10.3.8).

By definiton, C̃ (u,v)(0) contains u but not v, and therefore, we can apply (10.3.8) for

A = C̃ (u,v)(0) and get

τ(x) = δ0,x + Π(0)(x) +
∑
(u,v)

(
δ0,u + Π(0)(u)

)
J(u, v)τu(v, x)

−
∑
(u,v)

J(u, v)E0

(
1{0⇐⇒u} P1

({
v ←

C̃
(u,v)
0 (0)
−−−−−→ x

}
in Zd \ {u}

))
.(10.3.9)

Note that τu(v, x) = τ ι(x−v) whenever u−v = eι. Therefore, the second term in (10.3.9)
is precisely of the form of the second term in (10.3.2).

Repeating the above ideas, in a similar way as in Chapter 6, but now relying on
(10.3.8) instead of (6.2.19), leads to (10.3.2). This completes our informal explanation of
(10.3.2). We omit further details.

Informal explanation of (10.3.3). Fix x ∈ Zd and ι ∈ {±1,±2, . . . ,±d}. We note
that

(10.3.10) τ(x) = τ ι(x) + P(0
eι←→ x),

where we recall that 0
eι←→ x denotes that all occupied paths from 0 to x pass through eι.

The second contribution can arise in two ways. Either the bond (0, eι) is occupied and
pivotal for the connection from 0 to x, or not. This leads to

τ(x) = τ ι(x) + P((0, eι) occ. and piv. for 0←→ x)(10.3.11)

+ P(0
eι←→ x, (0, eι) not piv. for 0←→ x).

In the second term, we have found our pivotal bond, and can repeat as for (10.3.2), again
each time using (10.3.8) instead of (6.2.19). In the third term in (10.3.11), we look for a
cutting bond b that is (1) pivotal for 0←→ x; and (2) is such that all other requirements,

i.e., 0
eι←→ x and (0, eι) not being pivotal for 0 ←→ x, occur before the cutting bond

b. The main contribution to this event arises when b is incident to eι, but is different
from (0, eι). It is in this term that the contribution µp = pP(e1 6∈ C (0) | (0, e1) vacant)
originates. We refrain from giving more details.
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Lace-expansion diagrams consist of percolation paths or two-point functions that sat-
isfy several self-intersection restrictions. For example, Π̂(0)

p (0) =
∑

x Pp(0⇐⇒ x) enforces
a loop in the percolation configuration consisting of two disjoint paths connecting 0 and x.
Similarly, when we bound Π̂(0)

p (0) ≤
∑

x τp(x)2, we can display this as two lines connecting
0 and x, where now the lines correspond to two-point functions. We conclude that the
lace-expansion coefficients enforce the existence of several loops in configurations, or in
their two-point function upper bounds.

The effect of the change of the NoBLE compared to the classical lace expansion is that
loops that are present in the lace-expansion coefficients are now suddenly all loops of size
at least 4. Since loops of size at least 4 decay like O(1/d2) rather than O(1/d) as loops of
length at least two, this is a serious improvement. For example, the largest contribution
to Π̂pc(0), which is from Π̂(1)

pc (0), is O(1/d) for the classical lace expansion as derived in

Chapter 6. In the NoBLE it is O(1/d2):

Exercise 10.3 (Main term lace-expansion coefficient). Prove that Π̂(1)
pc (0) = O(1/d).

In general, the philosophy in high dimensions is that when bounds become better
in very high dimension, they probably also improve in slightly lower dimensions. Thus,
the effect of the change of the NoBLE compared to the classical lace expansion can be
expected to lead to (slightly) improved numerical bounds also when d is not too large.
It is this effect that allows for a decrease in the numerical dimension above which the
expansion works for the NoBLE compared to the classical lace expansion.

Using the NoBLE expansion of (10.3.2)-(10.3.3), we now discuss the NoBLE equation
that stands at the heart of the NoBLE analysis. The NoBLE equation rewrites τ̂(k) in a
form that is a perturbation of (10.2.17). We take the Fourier transforms of (10.3.2) and
(10.3.3) to obtain

τ̂(k) = 1 + Ξ̂M(k) + µp
∑
κ

(1 + Ψ̂κ
M(k))e−ikκ τ̂κ(k),(10.3.12)

τ̂(k) = τ̂ ι(k) + µpe
−ikι τ̂−ι(k) +

∑
κ

Π̂ι,κ
M (k)e−ikκ τ̂κ(k) + Ξ̂ι

M(k).(10.3.13)

We write ~̂τ(k) ∈ R2d for the (column-)vector with entries

(10.3.14) (~̂τ(k))ι = (τ̂ ι(k)).

and note that, by D̂(k)J = JD̂(−k) (recall Exercise 10.1),

(10.3.15) e−ikι τ̂−ι(k) =
(
JD̂(k)~̂τ(k)

)
ι

=
(
D̂(−k)J~̂τ(k)

)
ι
.

Defining the vectors
~̂
Ψ(k),

~̂
ΞM(k) and the matrix Π̂M(k), with entries

(10.3.16) (
~̂
Ψ(k))κ = Ψ̂κ(k), (

~̂
ΞM(k))ι = Ξ̂ι

M(k), (Π̂M(k))ι,κ = Π̂ι,κ(k),

we can rewrite (10.3.13) as

τ̂(k)~1 = ~̂τ(k) + µpD̂(k)J~̂τ(k) + Π̂M(k)D̂(−k)~̂τ(k) +
~̂
ΞM(k),(10.3.17)

so that

~̂τ(k) = D̂(k)
[
D̂(k) + µpJ + Π̂M(k)

]−1 ×
(
τ̂(k)~1− ~̂ΞM(k)

)
.(10.3.18)
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In turn, by (10.3.12), the above gives rise to the relation

τ̂(k) =1 + Ξ̂M(k) + µp(~1
T +

~̂
ΨT
M(k))D̂(−k)~̂τ(k)

=1 + Φ̂M,p(k) + τ̂(k)(~1T +
~̂
ΨT
M(k))

[
D̂(k) + µpJ + Π̂M(k)

]−1~1,(10.3.19)

with

Φ̂M,p(k) = Ξ̂M(k) + µp(~1
T +

~̂
ΨT
M(k))

[
D̂(k) + pJ + Π̂M(k)

]−1~̂
ΞM(k).(10.3.20)

Exercise 10.4 (Proof (10.3.19)). Verify that (10.3.19) holds with Φ̂M,p(k) as in (10.3.20).

Thus, we can solve (10.3.19) as

τ̂(k) =
1 + Φ̂M(k)

1− µp(~1T +
~̂
ΨT
M(k))

[
D̂(k) + µpJ + Π̂M(k)

]−1~1
.(10.3.21)

Equation (10.3.21) is the NoBLE equation, and is the workhorse behind the proof of
Theorems 10.1 and 10.2. The goal of the NoBLE is to show that (10.3.21) is indeed a

small perturbation of (10.2.17). This amounts to proving that Φ̂M(k),
~̂
ΨT
M(k) and Π̂M(k)

are small, which is only true in sufficiently high dimensions. As in Chapter 8, we again
rely on a bootstrap argument, now with different bootstrap functions. In the next section,
we give some more details.

10.4. The NoBLE bootstrap argument

As customary for lace-expansion analyses, the NoBLE analysis in [106] uses a boot-
strap argument, which we explain next. We define the following set of bootstrap functions:

f1(p) := max {(2d− 1)p, cµ(2d− 1)µp} ,(10.4.1)

f2(p) := sup
k∈(−π,π]d

τ̂p(k)

B̂1/(2d−1)(k)
=

2d− 1

2d− 2
sup

k∈(−π,π]d
[1− D̂(k)]τ̂p(k),(10.4.2)

f3(p) := max
(n,l,S)∈S

supx∈S
∑

y ‖y‖2
2τp(y)(τ ?np ? D?l)(x− y)

cn,l,S
,(10.4.3)

and

(10.4.4) f(p) := max{c1f1(p), c2f2(p), c3f3(p)},
where ci > 0, cµ > 1 and cn,l,S > 0 are some well-chosen constants and S is some finite
set of indices of the form (n, l, S) for a finite number of values of n, l ∈ N and a finite
number of different sets S ⊆ Zd. The constants c• are introduced because the individual
terms in f1(p) and f3(p) are incomparable in size. The c• are chosen such that all terms
contributing to f1(p) and f3(p) are of roughly the same size.

The choice of sets S ⊆ Zd significantly improves the numerical accuracy of the method.
For example, much better estimates are obtained in the case where x = 0, since this
leads to closed diagrams, than for x 6= 0. For x being a neighbor of the origin, we can
use symmetry to improve our bounds significantly. To obtain the infrared bound for
percolation in d ≥ 11, we use

(10.4.5) S =
{

(0, 0,X ), (1, 0,X ), (1, 1,X ), (1, 2,X ), (1, 3,X ), (1, 4, {0})
}
,
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with X = {x ∈ Zd : ‖x‖2 > 1}.
Let us relate the above NoBLE bootstrap functions to the classical ones in (8.2.7)–

(8.2.8). The functions f1 and f2 are minor modifications of f1 and f2 in (8.2.7). The
function f3 is quite different. Indeed, instead of bounding objects in Fourier space, (10.4.3)
bounds objects in terms of x-space. This is closer in spirit to the analysis of Hara and Slade
for SAW [135]. The proof of Hara and Slade relies on the triangle and weighted bubbles
for their bootstrap functions, and turns out to be numerically much more efficient. This
can be understood by (8.2.21) in Lemma 8.2, which contains quite some negative terms in
the trigonometric approach. Unfortunately, we seem unable to make use of these negative
terms, which is wasteful and makes the trigonometric approach numerically rather bad.
This explains why x-space is used in (10.4.3) instead.

10.5. The numerical analysis

In this section, we explain how the numerical computations are performed using Math-
ematica notebooks that are available at the webpage of Fitzner [103]. The procedure starts
by evaluating the notebook SRW.nb. This produces two files named SRWCountData.nb and
SRWIntegralsData.nb, containing counts of SRWs of a given number of steps ending at
various locations in Zd, and numerical values for SRW integrals, respectively. Running
this program currently takes several hours.1 Then, we evaluate the notebook General.nb.
After this, we are ready to perform the NoBLE analysis for percolation by evaluating the
notebook Percolation.nb. See Figure 10.1 for the first output after evaluating it. Let
us now explain this output in more detail.

Figure 10.1. Output of the Mathematica notebook Percolation in
dimension d = 11.

The green dots mean that the bootstrap has been successful for the parameters as
chosen. This means that, using the NoBLE and relying on the bounds that fi(p) ≤ Γi
provide (the ‘assumed bounds’), we can improve the bound to fi(p) ≤ γi with γi < Γi

1Alternatively, these two files can also be downloaded directly from [103], and put in the directory
where Mathematica looks for them. The command $InitialDirectory in Mathematica will tell you
what this directory is.
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for each i = 1, 2, 3 (the ‘concluded bounds’). The table in Figure 10.1 gives the values
of Γi on the first line of the table, and the proved bound on fi(p) that the bootstrap
functions imply on the second line of the table. These bounds are uniform in p. The
bound on fi(p) is called successful when the bound on fi(p) is smaller than Γi. As we
see, the bounds on fi(p) in Figure 10.1 are all successful, and then the analysis of the
improvement of the bootstrap argument is completed. When evaluating the notebook, it
is possible that some red dots appear, and this means that these improvements were not
successful. In this case, either the NoBLE can not be made to work in the dimension that
we are investigating, or the constants involved (i.e., Γi for i = 1, 2, 3) need to be adapted
so as to make the argument work.

Let us give some more details on the table in Figure 10.1. The first 3 dots in the
first table are the verifications that fi(1/(2d − 1)) ≤ γi for i = 1, 2, 3. The next three
dots show that the improvement has been successful for all p < pc(Z11). The values for
Γ1,Γ2,Γ3 are indicated in the first few lines. For example, Γ1 = 1.01314412 means that
(2d− 1)p ≤ 1.01314412. In the check, it turns out that γ1 can be taken to be 1.01314411.
Since this it true for all p < pc(Z11), we obtain that (2d − 1)pc(Z11) ≤ 1.01314411. This
explains the value in the table in Theorem 10.2. Similarly, Γ2 = 1.076. This implies that
A(11) ≤ 1.076 × 20/21 = 1.02476. Anyone interested in obtaining improved constants
can play with the notebook to optimize them.

The second table in Figure 10.1 gives more details on the improvement of f3(p), which,
as indicated in (10.4.3), consists of several contributions, over which the maximum is
taken. The notebook Percolation.nb also includes a routine that optimizes the choices
of Γ1,Γ2 and Γ3. This makes it easier to find values for which the analysis works.

Exercise 10.5 (Bounds pc and A(d) in d = 16). Play with the Mathematica notebooks
to find good upper bounds on pc(Zd) and A(d) for dimension d = 16.

The NoBLE analysis unfortunately does not work all the way down to dimension 6.
This is primarily due to the fact that we still need that the lace expansion converges,
which, numerically, is a stronger requirement than the triangle being finite. However, we
have removed an important contribution to the triangle. Extending the analysis to all
d ≥ dc + 1 = 7 is a major open problem for high-dimensional percolation:

Open Problem 10.1 (Percolation mean-field behavior all the way
to dimension 6). Extend the infrared bound in Theorem 10.1 to all
dimensions d > 6.





CHAPTER 11

Further critical exponents

In this chapter, we discuss the existence of some further critical exponents. In Section
11.1, we discuss the correlation-length exponents ν, ν2, as well as the gap exponent ∆. In
Section 11.2, we discuss the two-point function exponent η in more detail, by discussing
its sharp existence in Fourier space, as well as its existence in x-space. In Section 11.3, we
discuss the arm exponents ρin and ρex. We close this chapter in Section 11.4 by showing
that η = 0 and ρex = 1/2 cannot simultaneously occur when d < 6, thus clarifying the
role of the upper-critical dimension.

11.1. Correlation-length exponents ν and ν2 and gap exponent ∆

We have proven in Theorem 4.1 that the triangle conditions implies that the critical
exponents γ, β and δ take on their mean-field values. In fact, these are not the only
critical exponents relying on the triangle condition; the following theorem gives two more
examples:

Theorem 11.1 (ν2 = 1/2 and ∆ = 2 [133, 222]). For percolation in dimension d ≥ 11
and k = 1, 2, 3, . . . , there exist constants C1, C2, C3, C4 > 0 such that for any p < pc,

C1 |pc − p|−1/2 ≤ ξ2(p) ≤ C2 |pc − p|−1/2 ,(11.1.1)

C3 |pc − p|−2 ≤
Ep
[
|C (0)|k+1

]
Ep
[
|C (0)|k

] ≤ C4 |pc − p|−2 .(11.1.2)

Thus, ν2 = 1/2 and ∆ = 2 in the bounded-ratio sense.

The bound (11.1.2) is a direct consequence of the triangle condition, as proven by
Nguyen [222]. The former bound (11.1.1) comes as well from the triangle condition, as
pointed out by Hara and Slade [133], see also Exercise 11.1 below. Since the triangle
condition holds for d ≥ 11 by Theorem 10.1, Theorem 11.1 follows.

Indeed, even the divergence of the correlation length is characterized in the subcritical
regime:

Theorem 11.2 (ν = 1/2 [130]). For every d ≥ 19, there exists constants C5, C6 > 0
such that for all p ∈ [pc/2, pc),

(11.1.3) C5 |pc − p|−1/2 ≤ ξ(p) ≤ C6 |pc − p|−1/2 .

Consequently, the critical exponent ν equals 1/2 in the bounded-ratio sense.

This theorem is due to Hara [130], in which d0 needs to be sufficiently large. In
personal communication, Hara confirms that the methods in [131] imply that d ≥ 19 is
enough. Whether the results are valid for d ≥ 11 using [105, 106] is unclear to us.

135
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We next explain Theorem 11.2. To this end, denote by mp := ξ(p)−1 the mass asso-
ciated with p. The proof proceeds by multiplying the identity (5.3.1) by emx1 yielding

(11.1.4) τ (m)

p (x) = δ0,x + 2dp(D(m) ? τ (m)

p )(x) + 2dp(Π(m)

p ? D(m) ? τ (m)

p )(x) + Π(m)

p (x),

where f (m)(x) := f(x)emx1 . Furthermore, let χ(m)(p) :=
∑

x∈Zd τ
(m)
p (x). Hara’s proof is

based on two main pillars: the first one is the observation that χ(m)(p)↗∞ as m↗ mp,
the second is that the couples Π and Π(m), τ and τ (m), D and D(m) are all very close to
each other (in Fourier space). With these observations at hand, Hara demonstrates that

(11.1.5) m2
p/(3d) ≤ χ(p) ≤ m2

p/d,

which, together with γ = 1 due to Corollary 5.2, implies the result. Mind that in the
proof p (< pc) is kept fixed, and a bootstrap argument in m is applied (with m playing
the role of p in our proof in Chapter 8).

Exercise 11.1 (You prove ν2 = 1/2). Prove ξ2(p)2 ∼ χ(p) for p ∈ (p̄, pc) in bounded-
ratio sense for some p̄ < pc and conclude that (11.1.1) holds. To this end, express (1.1.12)
for p < pc in Fourier terms as

(11.1.6) ξ2(p)2 = −
d∑
j=1

∂jj τ̂p(0)

τ̂p(0)
,

where ∂j represents the partial derivative w.r.t. the jth component, and ∂jj the double

derivative. Argue that ∂jD̂(0) = 0 and ∂jΠ̂p(0) = 0, and show that

(11.1.7) ξ2(p) = −
d∑
j=1

(
∂jjΠ̂p(0)

1 + Π̂p(0)
+ 2dp τ̂p(0)

∂jjD̂(0)(1 + Π̂p(0)) + ∂jjΠ̂p(0)

1 + Π̂p(0)

)
.

Finally, derive the conclusion using Proposition 8.3.

Mind that all the exponents derived so far characterize critical behavior either at the
critical point (exponent δ) or in the subcritical regime (exponents γ, ν, ν2, ∆t). The only
exception is the exponent β in (1.2.1), which, however, is linked to behavior at pc via the
extrapolation technique in the proof of Theorem 9.5.

The sparsity of results about critical behavior in the supercritical regime (i.e., when
p ↘ pc) is rooted in the lace-expansion technology. In order to see this, let us recall the
main steps in the lace-expansion proof: First we derive the expansion, secondly we derive
bounds on the lace-expansion coefficients Π(x) valid throughout the entire subcritical
regime, and finally, uniformity of these bounds allows us to deduce the same bounds at
the critical point.

Generally speaking, the lace expansion is a fantastic tool to control critical behavior
at, or close to, pc, but it fails in the supercritical regime. One difficulty that arises in
this context is that events of the form {x←→ y, |C (x)| <∞} are not increasing (rather,
intersections of increasing and decreasing events), so that the lace expansion in the form of
Chapter 6 cannot be carried out for such events. Indeed, it is an important open problem
to control (almost) critical behavior in the supercritical regime:
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Open Problem 11.1 (‘Super’critical exponents). Prove that the
(super-)critical exponents γ′, ν ′, and ν ′2, as defined in (1.2.6)–(1.2.8),
exist and that their values coincide with γ, ν and ν2, respectively.

11.2. The two-point-function critical exponent η

Here we informally explain the proof that η = 0 holds in the asymptotic sense, both
in k-space, as proven by Hara and Slade [140] and in our paper with Hulshof [146], as well
as in x-space by Hara in [131], improving the result to d ≥ 11 using the NoBLE work of
Chapter 10, without giving all details.

Let us start by sharpening the infrared bound in Theorem 5.1 to sharp asymptotics:

Theorem 11.3 (η = 0 asymptotically in k-space [140, 146]). For percolation with d
sufficiently large, there exists a constant A = A(d) and ε > 0 such that

(11.2.1) τ̂pc(k) =
A

|k|2
(1 +O(|k|ε)).

Consequently, the critical exponent η exists in the asymptotic sense and takes on the
mean-field value η = 0.

Theorem 11.3 is proved by Hara and Slade in [140, Theorem 1.1], where also the
dependence on γ in τ̂p,γ(k) was included. The latter is a much more difficult problem
than the asymptotics of τ̂pc(k) alone. Further, it also follows from our results with Hulshof
[146], where we prove that there exists ε > 0 such that

(11.2.2)
∑
x

|x|2+ε|Πpc(x)| <∞.

From this bound, (11.2.1) easily follows by Taylor expansion:

Exercise 11.2 (Sharp asymptotics of η through Taylor expansion). Prove that (11.2.2)
implies (11.2.1), and compute the constant B in terms of Πpc(x).

We continue by discussing η in x-space. The main results is the following:

Theorem 11.4 (η = 0 in x-space [106, 131, 132]). For percolation with d ≥ 11, there
exists a constant A2 = A2(d) such that

(11.2.3) τpc(x) =
A2

|x|d−2
(1 +O(|x|−2/d)).

Consequenty, the critical exponent η exists in the asymptotic sense and takes on the mean-
field value η = 0.

Theorem 11.4 has proved to be a very important result. Indeed, the x-space asymp-
totics for τpc(x) has been used as an assumption in various papers. We see examples in
Section 11.3 below. Thus, it can be seen as one of the crucial results in high-dimensional
percolation.

Both Theorem 11.4 as well as Theorem 11.3 are valid for the spread-out model as
discussed in Section 5.2 for d > 6 and L > L0, with L0 sufficiently large (depending on
d).
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We informally discuss the proof by Hara in [131]. We note that, by (7.1.1),

(11.2.4) τp(x) =
(
(1 + Πp) ? Vp

)
(x).

The proof again relies on a bootstrap argument, now using

(11.2.5) f(p) = max
x∈Zd

(|x| ∨ 1)d−2τp(x).

The fact that p 7→ f(p) is continuous is left as an exercise:

Exercise 11.3 (Continuity of bootstrap function). Prove that the bootstrap function
f(p) in (11.2.5) is continuous for p ∈ [0, pc − ε] for every ε > 0. [Hint: Use the fact that
x 7→ τp(x) is exponentially small for |x| → ∞.]

Assuming the bootstrap bound that f(p) ≤ Γ, we obtain that

(11.2.6) τp(x) ≤ Γ(|x| ∨ 1)−(d−2),

which in turn can be used to prove that the lace expansion coefficients Πp(x) are even
smaller. For example, by (11.2.6),

(11.2.7) Π(0)

p (x) ≤ Γ2(|x| ∨ 1)−2(d−2).

In particular, for d > 6,

(11.2.8)
∑
x

|x|2Π(0)

p (x) <∞,

which is a good sign when trying to obtain Gaussian behavior. In the following exercise,
you are asked to extend this to N = 1:

Exercise 11.4 (Bound on Π(1)
p (x)). Extend the proof of (11.2.7) to N = 1 by proving

that (11.2.6) implies that there exists a constant C <∞ such that

(11.2.9) Π(1)

p (x) ≤ C(|x| ∨ 1)−2(d−2).

The key ingredient in Hara’s proof is an analysis showing that if U(x) is the Fourier
inverse of

(11.2.10) Û(k) =
1

1− Ĵ(k)
,

where J satisfies the following restrictions:

(1) |J(x)| = O((|x| ∨ 1)−(d+2+α) for some α > 0;
(2)

∑
x J(x) = 1;

(3) 1− Ĵ(k) ≥ K0|k|2;

then

(11.2.11) U(x) = A(|x| ∨ 1)−(d−2) +O((|x| ∨ 1)−(d−2+(α∧2)/d).

The asymptotics in (11.2.11) may not appear a surprising result, as they typically apply
to random walk Green’s function (see e.g., the extremely sharp asymptotics proved by
Uchiyama in [256]). However, the point is that Hara does not require that J(x) ≥ 0,
so that U(x) does not have the interpretation of a random walk Green’s function. As a
result, an analytical proof is necessary. This proof is based on the integral representation

(11.2.12) U(x) =

∫ ∞
0

It(x)dt, where It(x) =

∫
[−π,π]d

eik·xe−t[1−Ĵ(k)] dk

(2π)d
.
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This is combined with a careful analysis of It(x), showing that It(x) is close to a Gaussian
density when t ≥ T is large, while it is small when t ≤ T is small. The truncation value T
is chosen as T = ε|x|2. The analysis of It(x) by Hara is similar in spirit to that performed
for spread-out random walk by Hara, the second author and Slade in [132].

Exercise 11.5 (Representation Green’s function). Verify that (11.2.12) holds.

Using the bootstrap argument, Hara proves that there exists Γ <∞ such that (11.2.6)

holds for p = pc. In turn, we have that V̂pc(k) = [1− 2dpcD̂(k)[1 + Π̂pc(k)]]−1, so that it is
of the form (11.2.10) with J(x) = 2dpc(D ? [δ0,x + Πpc ])(x). By the bootstrap argument,
it follows that (see also (11.2.7)–(11.2.9))

(11.2.13) |Πpc(x)| ≤ C(|x| ∨ 1)−2(d−2)

for a constant C > 0, which implies that, for another constant C ′ > 0,

(11.2.14) |J(x)| ≤ C ′(|x| ∨ 1)−2(d−2).

This implies the main assumption above with α = 2(d − 2) − (d + 2) = d − 6 ≥ 2 for
d ≥ 11. Therefore, (11.2.11) implies that Vpc(x) = A(|x|∨1)−(d−2) +O((|x|∨1)−(d−2+2/d)).
In turn, it can be seen that this asymptotics for Vpc(x), together with (11.2.13), implies

(11.2.15) τp(x) =
(
(1+Πp)?Vp

)
(x) = A(1+Π̂pc(0))(|x|∨1)−(d−2) +O((|x|∨1)−(d−2+1/d)).

Exercise 11.6 (Convolution bound). Prove that if V (x) = A(|x|∨1)−(d−2) +O((|x|∨
1)−(d−2+α)) for some α > 0, and |g(x)| ≤ K(|x| ∨ 1)−(d+α), then

(11.2.16) (g ? V )(x) = Aĝ(0)(|x| ∨ 1)−(d−2) +O((|x| ∨ 1)−(d−2+α)).

The original proof by Hara [131] applies to d ≥ 19. The extension to d ≥ 11 follows
from the NoBLE analysis by Fitzner and the second author, which is discussed in Chapter
10.

11.3. Arm exponents ρin and ρex

The term arm exponent refers to the critical exponent characterising the decay rate
of the probability that the origin is connected to the boundary of a ball of radius n. We
speak of an intrinsic arm exponent when considering an n-ball in the intrinsic distance
dC (0), whereas for the extrinsic arm exponent we consider the ball in the `∞ (or some
other extrinsic) distance on Zd.

The identification of arm exponents in high dimension has been pioneered by Kozma
and Nachmias [199, 200]. Here we give the full analysis of the proof that ρin = 1 and
sketch the main ideas in the proof that ρex = 1/2.

Theorem 11.5 (ρin = 1 and ρex = 1/2 [199, 200]). For percolation with d ≥ 11, there
exist constants 0 < cin < Cin <∞ and 0 < cex < Cex <∞ such that

(11.3.1)
cin

n
≤ Ppc(∃x ∈ Zd : dC (0)(0, x) ≥ n) ≤ Cin

n
,

and

(11.3.2)
cex

n2
≤ Ppc(0←→ ∂Λn) ≤ Cex

n2
.

Consequenty, the critical exponents ρin and ρex exist in the bounded-ratio sense and take
on the mean-field values ρin = 1 and ρex = 1/2.
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The proof of (11.3.1) is also valid for spread-out models. It further extends to long-
range percolation, as pointed out in joint work with Hulshof [146]. The proof of (11.3.2)
crucially relies on Theorem 11.4, and is limited to finite-range percolation. Very recently,
Hulshof [178] proved a version for long-range percolation with appropriately adjusted
exponent, see Section 15.4.

A remark is due on multi-arm or k-arm exponents. The k-arm exponent characterizes
polynomial decay of the k-arm event (=occurrence of k disjoint connections from the origin
to ∂Λn). Indeed, with a certain regularization around the origin, Kozma and Nachmias
[200, Theorem 3] prove that the k-arm exponent in the extrinsic metric equals 1/k times
the 1-arm exponent ρex. One might note that the upper bound follows readily from the
BK-inequality. The result might therefore be interpreted as saying that the BK-inequality
is (in a certain sense) sharp in high dimensions.

For comparison, we mention that in two dimension, ρex = 48/5 (cf. the seminal work
of Lawler, Schramm and Werner [203], see also Table 1.1 in Section 1.2), whereas ρin has
not been identified. Multi-arm exponents in two dimensions have been shown to exist by
Beffara and Nolin, but could not be computed explicitly [32].

Observe that Theorem 11.5 provides upper and lower bounds of the same order. One
would expect that that upper and lower bound (on the leading order term) coincide, which
however is not provided by the current proof techniques:

Open Problem 11.2 (Sharp arm exponents). Prove that the limits

ain := lim
n→∞

nPpc(∃x ∈ Zd : dC (0)(0, x) ≥ n)

and
aex := lim

n→∞
n2 Ppc(0←→ ∂Λn)

exist.

It follows from Theorem 11.5 that 0 < ain, aex <∞ provided that the limits exist.

11.3.1. Proof of the intrinsic exponent. We give a full proof of the intrinsic arm
exponent in (11.3.1) due to Kozma and Nachmias [199] with a considerable shortcut due
to Sapozhnikov [235]. Mind that the proof crucially uses other critical exponents that we
have derived earlier (in particular γ, ν, and δ). This gives rise to relations between the
critical exponents that are known as scaling and hyperscaling relations. Scaling relations
involve only the critical exponents, while hyperscaling relations also involve the dimension
d. The scaling relations are believed to hold for every dimension, while the hyperscaling
relations are expected to hold only below the upper critical dimension. We give an example
of such scaling relations in Section 11.4 below.

To describe the proof of the intrinsic one-arm exponent, we define the intrinsic ball
by

(11.3.3) B(n) :=
{
x ∈ Zd : dC (0)(0, x) ≤ n

}
.

The expected growth of B(n) is expressed in the following lemma:

Lemma 11.6 (Growth of intrinsic balls). For percolation in dimension d ≥ 11, there
exists constants c, C > 0 such that for all n ∈ N,

(11.3.4) cn < Epc |B(n)| < Cn.
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Proof. We start with the upper bound and follow Sapozhnikov [235]. Let p < pc.
We consider the following coupling of percolation with parameters p and pc: Starting with
a critical percolation configuration (edges are occupied with probability pc), make every
occupied edge vacant with probability 1− (p/pc). This construction implies that for any
x ∈ Zd, p < pc, and n ∈ N,

Pp
(
dC (0)(0, x) ≤ n

)
≥
(
p

pc

)n
Ppc(dC (0)(0, x) ≤ n).

Summing over x and using the inequality Pp(dC (0)(0, x) ≤ n) ≤ Pp(0←→ x), we obtain

Epc |B(n)| ≤
(
pc
p

)n
χ(p) ≤ C

(
pc
p

)n
(pc − p)−1,

where the last line comes from γ = 1 in Theorem 4.1, see also Corollary 5.2. The upper
bound follows by taking p = pc(1− 1

2n
).

For the lower bound, we follow [199] and first estimate Epc [dC (0)(0, x) | 0 ←→ x].
Indeed, if 0 ←→ x, then dC (0)(0, x) is no more than the number of y ∈ Zd such that the
events {0 ←→ y} and {y ←→ x} occur disjointly. Consequently, by the BK inequality
and Theorem 11.4,

Epc [dC (0)(0, x)1{0←→x}] ≤ C
∑
y∈Zd
|y|2−d |x− y|2−d ≤ C|x|4−d.

Hence, Theorem 11.4 implies that Epc [dC (0)(0, x) | 0 ←→ x] ≤ C|x|2. We thus may

conclude that if |x| ≤
√
n/2C then Ppc(dC (0)(0, x) ≤ n | 0←→ x) ≥ 1/2. Consequently,

Epc |B(n)| ≥
∑

x:|x|≤
√
n/2C

Ppc(dC (0)(0, x) ≤ n and 0←→ x)

≥ c

2

∑
x:|x|≤
√
n/2C

|x|2−d ≥ cn

for a small constant c > 0. �

Exercise 11.7 (Proof Lemma 11.6). Fill in the details in the proof of Lemma 11.6.

Proof of the lower bound in (11.3.1). The proof of the lower bound proceeds
via the well-known second-moment method. The second-moment method uses that, for
any non-negative random variable Z,

(11.3.5) P(Z > 0) ≥ (EZ)2/EZ2.

To this end, let λ = 2C/c, where C and c are the constants appearing in Lemma 11.6, so
that Lemma 11.6 yields

Epc |B(λn) \B(n)| ≥ cλn− Cn = Cn.

We now estimate the second moment of B(λn). Indeed,

{dC (0)(0, x) ≤ λn} ∩ {dC (0)(0, y) ≤ λn}

⊆
⋃
z

{dC (0)(0, z) ≤ λn} ◦ {dC (0)(z, x) ≤ λn} ◦ {dC (0)(z, y) ≤ λn}.
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Consequently, the BK inequality (1.3.4) yields

Epc|B(λn)|2 =
∑
x,y

Ppc(dC (0)(0, x) ≤ λn, dC (0)(0, y) ≤ λn)

≤
∑
x,y,z

Ppc(dC (0)(0, z) ≤ λn)Ppc(dC (0)(z, x) ≤ λn)Ppc(dC (0)(z, y) ≤ λn)

=
[∑
z∈Zd

Ppc(dC (0)(0, z) ≤ λn)
]3

≤ C ′n3,(11.3.6)

for some constant C ′ > 0. Consequently, the bound in (11.3.5) yields

Ppc
(
∃x ∈ Zd : dC (0)(0, x) ≥ λn

)
≥ Ppc

(
|B(λn) \B(n)| > 0

)
≥ c2n2

C ′n3
≥ c′

n
,

which proves the statement with cin = λc′. �

Exercise 11.8. Verify the steps in (11.3.6).

We proceed with the lower bound in (11.3.1):

Proof of the upper bound in (11.3.1). The upper bound uses a clever induction
argument. For subgraphs G ⊆ E(Zd) of the infinite lattice Zd, we define

H(n;G) :=
{
∂B(n;G) 6= ∅

}
for the “one-arm event” on the graph G. We further define

Γ(n) = sup
G⊆E(Zd)

Ppc(H(n;G)).

It turns out that working with Γ(n) rather than Ppc(H(n;Zd)) enables us to apply a
regeneration argument, which would not work for Ppc(H(n;Zd)) since it is not monotone.

To this end, choose A ≥ 1 large enough so that

(11.3.7) 33A2/3 + CδA
2/3 ≤ A,

where Cδ is from Theorem 9.2. We claim that, for any integer k ≥ 0,

(11.3.8) Γ(3k) ≤ A

3k
.

This readily implies the upper bound in (11.3.1). Indeed, for any n we choose k such that
3k−1 ≤ n < 3k and then

Ppc(H(n;Zd)) ≤ Γ(n) ≤ Γ(3k−1) ≤ A

3k−1
≤ 3A

n
.

The proof of (11.3.8) is via induction in k. The claim is trivial for k = 0 since A ≥ 1.
For the inductive step we assume (11.3.8) for k− 1 and prove it for k. Let |CG(0)| denote
the size of the cluster of 0 in the graph G. Depending on the size of |CG| for arbitrary
G ⊆ E(Zd), we estimate

(11.3.9) Ppc(H(3k;G)) ≤ Ppc
(
H(3k;G), |CG(0)| ≤ A−4/39k

)
+ Ppc

(
|CG(0)| > A−4/39k

)
.

For the second summand, we use that δ = 2 in Theorem 9.2 to obtain

(11.3.10) Ppc
(
|CG(0)| > A−4/39k

)
≤ Ppc

(
|CE(Zd)(0)| > A−4/39k

)
≤ CδA

2/33−k.
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For the former, on the other hand, we claim that

(11.3.11) Ppc
(
H(3k;G), |CG(0)| ≤ A−4/39k

)
≤ A−4/33k+1

(
Γ(3k−1)

)2
.

Indeed, if |CG(0)| ≤ A−4/39k, then there exists j ∈ [1
3
3k, 2

3
3k] such that |∂B(j;G)| ≤

A−4/33k+1. Denote the first such level by j. Then, on the right hand side, we get a factor
Γ(j) (which is bounded by Γ(3k−1)) from the probability of a connection from the origin
to level j, and A−4/33k+1 times the probability to go from level j to level 3k (each of these
probabilities is again bounded above by Γ(3k−1)), which shows (11.3.11). There are a few
technical points involved, which we have ignored in our proof.1

We combine (11.3.9), (11.3.10), (11.3.11) with the induction hypothesis, and finally
(11.3.7), to obtain

Γ(3k) ≤ A−4/33k+1

(
A

3k−1

)2

+
CδA

2/3

3k
=

33A2/3 + CδA
2/3

3k
≤ A

3k
,

thus proving (11.3.8). �

11.3.2. The extrinsic exponent. Similar to the intrinsic exponent, the lower bound
in (11.3.2) follows straightforwardly using the second moment method.

Exercise 11.9 (Lower bound in (11.3.2)). Prove the lower bound in (11.3.2) by ap-
plying the second moment method (11.3.5) to the random variable

Z = |{x ∈ Λ2n \ Λn : 0←→ x}| ,
and using Theorem 11.4.

For the upper bound of (11.3.2), an induction scheme similar to the proof of the
intrinsic exponent has been derived by Kozma and Nachmias [200], which we explain
briefly now.

It is instructive to revisit the proof of (11.3.8) first. For the induction step, we dis-
tinguished between two cases, depending on whether the size of the cluster is “large”
(which we bound by Theorem 9.2), or it is “small” (but then the ball has sparse interme-
diate shells, which make its probability small). A careful distinction between “large” and
“small” provides the finishing touch.

Similar ideas are at the basis for the upper bound of (11.3.2), but details are severely
more complicated. Here is a brief outline of the argument. Suppose {0←→ ∂Λ3n}. Then
there are three possibilities:

(1) The cluster of the origin is “not-too-small”, say |C (0)| ≥ n4/100. By Theorem
9.2, the probability of this is at most c/n2.

(2) There exists some j ∈ [n, 2n] such that

|{x ∈ ∂Λj : 0←→ x through Λj}| ≤ n2

(“a thin intermediate shell”). The probability of this is Ppc(0 ←→ Λc
j) ≤

Ppc(0 ←→ ∂Λn) for the connection to ∂Λj multiplied by n2 times the proba-
bility that x ∈ ∂Λj is connected to ∂Λ3n. Together, this gives an upper bound
n2Ppc(0←→ ∂Λn)2.

1Hint: one needs to condition on the precise form of B(j;G), and then exploit that Γ gives a uniform
bound on all subgraphs.
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(3) None of the two cases above, that is, a small cluster without thin intermediate
shells. The absence of thin intermediate shells suggests that |C (0)| is at least n4.
In particular, we expect that the probability

{
|C (0)| ≥ n4/100

}
is small, say at

most 1/20. Therefore, we expect an upper bound Ppc(0←→ ∂Λn) for this case.

Summarizing the three options, one (heuristically) obtains the inequality

Ppc(0←→ ∂Λ3n) ≤ c

n2
+ n2Ppc(0←→ ∂Λn)2 +

1

20
Ppc(0←→ ∂Λn),

from which it is possible to derive that Ppc(0 ←→ ∂Λn) < C/n2, as desired. Making the
reasoning in case (3) rigorous is the key part of [200] and uses so-called local regularization
arguments.

11.4. On the percolation upper critical dimension

In this secion, we investigate for which dimensions mean-field critical exponents can
occur. In general statistical physics models, there exists a so-called upper critical dimen-
sion, denoted by dc, such that mean-field critical exponents hold for d > dc. Often, at
the critical dimension, the mean-field critical exponents are expected to have logarithmic
corrections. There is very little work that rigorously proves such results. A remarkable
exception is self-avoiding walks, for which we refer to the recent work by Bauerschmidt,
Brydges and Slade [30] and the references therein.

Here we show that ρex = 1/2 and η = 0 in x-space imply d ≥ 6. This immediately
implies that dc ≥ 6. Since, at least for spread-out models as in Section 5.2, we know
that ρex = 1/2 and η = 0 in x-space hold (recall Theorems 11.4 and 11.5), this provides
very strong evidence for the statement that dc = 6. The main result in this section is the
following corollary:

Corollary 11.7 (The upper critical dimension satisfies dc ≥ 6). The mean-field
critical exponents ρex = 1/2 and η = 0 in x-space imply that d ≥ 6. As a result, the
percolation upper critical dimension dc satisfies dc ≥ 6.

The role of the critical dimension was already investigated early on by Chayes and
Chayes in [73], but their work involves many more critical exponents, some of which we do
not yet know the existence of, even in sufficiently high dimensions. Tasaki [253] proves a
hyperscaling inequality stating that dν ≥ 2∆−γ. Inserting the mean-field values ν = 1/2,
∆ = 2 and γ = 1 shows that d ≥ 6 is required for mean-field behavior. The current proof
is much simpler, so we stick to this.

Proof. Take n large, and let e = (1, 0, . . . , 0) denote the first basis vector in Zd.
When 0←→ 2ne, we must have that 0 is connected to ∂Λn and, at the same time, 2ne is
connected to 2ne+ ∂Λn. Thus,

(11.4.1) τpc(2ne) = Ppc(0←→ 2ne) ≤ Ppc
(
{0←→ ∂Λn} ∩ {2ne←→ (2ne+ ∂Λn)}

)
.

Since the events {0←→ ∂Λn} and {2ne←→ (2ne+∂Λn)} rely on the occupation statuses
of disjoint sets of bonds, these events are independent. Moreover, due to translation
invariance, the probabilities of these events are equal, so that we arrive at

(11.4.2) τpc(2ne) ≤ Ppc(0←→ ∂Λn)2.



11.4. ON THE PERCOLATION UPPER CRITICAL DIMENSION 145

Since η = 0 in x-space, the left-hand side is at least cn−(2−d) for some 0 < c <∞. Further,
since ρex = 1/2, the right-hand side is at most C/n4. We conclude that, for every n ≥ 1,

(11.4.3) cn−(2−d) ≤ C/n4,

which can only be true when d ≥ 6. �





CHAPTER 12

Kesten’s incipient infinite cluster

In this chapter, we introduce the high-dimensional incipient infinite cluster, henceforth
abbreviated IIC, which is an infinite cluster at the critical threshold pc as constructed by
Kesten [193]. We first motivate the IIC in Section 12.1, and then discuss its construction
and properties in high dimensions in Section 12.2.

12.1. Motivation for the incipient infinite cluster

One of the most classical questions about percolation concerns the formation of infinite
clusters at the critical point (recall Open Problem 1.1). When θ(pc) = 0, as proven in high
dimensions and believed quite generally, this leaves us with a most remarkable situation:
At the critical point pc there are clusters at all length scales, which are, however, all
finite. As we then make a density ε > 0 of closed edges open, the large clusters connect
up to form a (unique) infinite cluster, no matter how small ε is. At criticality, the critical
cluster is therefore at the verge of appearing. This observation motivated the introduction
of an incipient infinite cluster (IIC) as a critical cluster that is conditioned to be infinite.
Since at the critical value there does not exist an infinite component when θ(pc) = 0,
the IIC can only be defined through an appropriate limiting scheme. The underlying
idea is to construct a cluster that has all the remarkable features of a critical cluster, but
on the other hand provides us with the advantage of being infinite. This last feature is
particularly handy when studying random walks on critical structures.

Somewhat simplified, the incipient infinite cluster (IIC) is defined as the cluster of
the origin under the critical measure Ppc conditioned on {|C (0)| =∞}. Since this would
condition on an event of probability 0, a rigorous construction of the IIC requires a limiting
argument. The first mathematical construction has been carried out by Kesten [193] in
d = 2. Kesten considers two limiting schemes:

� under Ppc , condition on the event {C (0) ∩ ∂Λn 6= ∅}, and then let n→∞;
� under Pp (p > pc), condition on the event {|C (0)| =∞} and let p↘ pc.

Kesten proved that both limits exist in d = 2, and give rise to the same limiting measure.
Járai [186, 187] proved that several other limiting schemes give rise to the same limit,
illustrating the robustness of the IIC construction.

Naturally, this is not the only way of viewing large critical clusters. For example,
one could also be interested in the scaling limit of critical clusters, and we return to that
perspective from two different angles in Chapters 13 and 15. Kesten’s IIC is particularly
relevant when studying random walks on critical clusters, as the IIC is an infinite graph
with fractal properties. Random walks on such structures could behave rather differently
compared to random walks on the full lattice, as we discuss in more detail in Section 14.3.

147
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12.2. The IIC in high dimensions

We now turn towards the high-dimensional regime, where three different IIC construc-
tions are known to exist. To this end, we recall the notion of a cylinder event, which is
an event that only depends on a finite number of bonds. The main result concerning the
existence and uniqueness of the IIC in high dimensions is the following:

Theorem 12.1 (IIC construction [146, 162]). For d ≥ 11 and any cylinder event E,
the limits

(12.2.1) PIIC(E) := lim
|x|→∞

Ppc
(
E | 0←→ x

)
and

(12.2.2) QIIC(E) := lim
p↗pc

∑
x∈Zd Pp(E ∩ {0←→ x})∑

x∈Zd Pp(0←→ x)

exist and PIIC(E) = QIIC(E). If, furthermore, the extrinsic arm exponent exists in the
asymptotic sense of Open Problem 11.2, then

(12.2.3) RIIC(E) := lim
n→∞

Ppc
(
E | 0←→ ∂Λn);

exists and RIIC(E) = PIIC(E) = QIIC(E).

A few remarks are in place concerning Theorem 12.1:

� Note that the cylinder events form an algebra that is stable under intersections,
and that the consistency hypothesis of Kolmogorov’s extension theorem is sat-
isfied by the definition of PIIC in Theorem 12.1 (see e.g. [242]). Therefore, Kol-
mogorov’s extension theorem implies that (12.2.1) determines a unique measure
on the σ-fields of events, which we denote the incipient infinite cluster measure.

� The limit in (12.2.1) does not depend on the way in which |x| diverges to infinity.
This is related to the asymptotic rotational symmetry of τpc(x) in Theorem 11.4.

� It is straightforward to see that indeed PIIC(|C (0)| = ∞) = 1, as desired. Since
θ(pc) = 0, the IIC is also one-ended, in the sense that the removal of any finite
region of the IIC leaves one infinite part. It can be seen that the infinite path is
essentially unique in the sense that any pair of infinite self-avoiding paths in the
IIC share infinitely many bonds.

� The existence of the extrinsic arm exponent in the bounded-ratio form in Theo-
rem 11.5 is sufficient to deduce that the limit in (12.2.3) exists along subsequences ;
the strong form of Open Problem 11.2 is needed in a regularity argument to show
that the limit is unique.

Mind that the measure PIIC has lost the translation invariance of the percolation
measures Pp. Indeed, the point 0 plays a special role, since we have enforced that the
cluster C (0) is infinite. The cluster C (0) under the IIC measure PIIC is clearly larger than
the law of C (0) under the critical percolation measure Ppc . One consequence is that the
two-point function changes under the measure PIIC:

Theorem 12.2 (IIC properties [162]). Under the assumptions of Theorem 12.1, there
exist constants CIIC, cIIC

(12.2.4) cIIC|y|4−d ≤ PIIC(0←→ y) ≤ CIIC|y|4−d as |y| → ∞.



12.2. THE IIC IN HIGH DIMENSIONS 149

Comparison with Theorem 11.4 shows that the conditioning indeed changes the two-
point function. To illustrate this difference, we now prove the upper bound in Theorem
12.2.

Proof of the upper bound in Theorem 12.2. Denote

(12.2.5) Qp(E) =

∑
x∈Zd Pp(E ∩ {0←→ x})∑

x∈Zd Pp(0←→ x)
,

so that, by (12.2.2) and Theorem 12.1,

(12.2.6) PIIC(0←→ y) = lim
p↗pc

Qp(0←→ y).

The careful reader might note that Theorem 12.1 requires a cylinder event, and thus can-
not be applied to {0←→ y}. In such cases, we approximate {0←→ y} as the increasing
limit of {0←→ y in Λn}, apply the construction for these events, and subsequently take
the limit n→∞. We note that

(12.2.7) Qp(0←→ y) =

∑
x∈Zd Pp({0←→ y} ∩ {0←→ x})∑

x∈Zd Pp(0←→ x)
.

By (4.2.23),

(12.2.8) Pp({0←→ y} ∩ {0←→ x}) ≤
∑
z∈Zd

Pp(0←→ z)Pp(z ←→ y)Pp(z ←→ x).

Therefore,

Qp(0←→ y) ≤
∑

x,z∈Zd Pp(0←→ z)Pp(z ←→ y)Pp(z ←→ x)∑
x∈Zd Pp(0←→ x)

(12.2.9)

=
∑
z∈Zd

Pp(0←→ z)Pp(z ←→ y) = (τp ? τp)(y).

Letting p ↗ pc proves that PIIC(0 ←→ y) ≤ (τpc ? τpc)(y), which is upper bounded by
c|y|−(d−4) by Theorem 11.4, as required. �

We see that the limiting scheme in (12.2.2) is particularly convenient to prove prop-
erties of the limiting IIC measure PIIC. It is possibly to adapt the proof for the limiting
scheme in (12.2.1), but this is a little more involved and left as an exercise:

Exercise 12.1 (Upper bound IIC two-point function). Prove that PIIC(0 ←→ y) ≤
(τpc ? τpc)(y) by using the limiting scheme in (12.2.1) instead.

In order to understand the high-dimensional IIC, it is worthwhile to investigate its
mean-field model. Just as critical branching random walk (BRW) is the mean-field model
for percolation, critical BRW conditioned on non-extinction is the mean-field model for
the high-dimensional IIC:

The IIC for BRW. We consider critical BRW with Bin(2d, p)-offspring distribution
where p = pc = 1/2d, and we condition the total progeny to be infinite. Since critical
BRW dies out a.s., also here we need to take an appropriate limit. The nice thing is that
we can perform this limit explicitly. Let Ppc denote the BRW measure at p = pc, and Epc
its corresponding expectation. Let Nm denote the number of particles in generation m
(with N0 = 1) and Fm be the σ-algebra generated by all events that are determined by
the BRW up to time m.
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A natural candidate for the BRW IIC arises when we condition on survival until time
n and then take the limit n→∞. Thus, we define

(12.2.10) PIIC(E) = lim
n→∞

Ppc(E | Nn ≥ 1),

assuming that this limit exists.

Lemma 12.3. The limit in (12.2.10) exists for any cylinder event E, and if E is
measurable w.r.t. Fm, then

(12.2.11) PIIC(E) = Epc [1ENm].

Proof. Clearly, (12.2.11) defines a probability measure, since (Nm)m≥0 is a non-
negative martingale with Epc [Nm] = 1. This also implies that PIIC in (12.2.11) is consistent,
since Epc [Nn | Nm] = Nm for n ≥ m.

Since θn = Ppc(Nn ≥ 1) satisfies that nθn → Cin (recall Theorem 2.1), we obtain

(12.2.12) PIIC(E) = (1/Cin) lim
n→∞

nPpc(E ∩ {Nn ≥ 1}).

Since E is Fm-measurable and the Nm particles present at time m are all independent,

(12.2.13) Ppc(E ∩ {Nn ≥ 1}) = Epc
[
1E

(
1− (1− θn−m)Nm

)]
.

When n→∞, therefore,

(12.2.14) nPpc(E ∩ {Nn ≥ 1}) = nEpc
[
1E

(
1− (1− θn−m)Nm

)]
→ CinEpc

[
1ENm

]
,

which, combined with (12.2.12), proves (12.2.11). �

Exercise 12.2 (Equivalent limit scheme for BRW IIC). Define

(12.2.15) QIIC(E) := lim
n→∞

Epc [1ENn]

Prove that the limit in (12.2.15) exists, and that QIIC = PIIC.

The existence of the percolation IIC. Here we sketch the proof of Theorem 12.1.
Let E be an event that is determined by the bonds in Λm. Since E is determined by the
occupation status of a finite number of bonds, such an m must exist. Then, we recall
(12.2.5) to see that we need to investigate

∑
x∈Zd Pp(E ∩ {0 ←→ x}). For x ∈ Zd, we

split depending on whether there is a pivotal bond for Λm ←→ x or not. When there is
a pivotal bond, we use adaptations of the Hara-Slade inclusion-exclusion proof to show
that there exists Πp(x;E) such that

(12.2.16) Pp(E ∩ {0←→ x}) = Πp(x;E) + 2dp
∑
u,v

Πp(u;E)D(v − u)τp(x− v).

Now we can sum out over all x, and use that
∑

x |Πp(x;E)| <∞ to arrive at

(12.2.17) Qp(E) =
1

χ(p)

∑
x∈Zd

Pp(E ∩ {0←→ x}) =
Π̂p(0;E)

χ(p)
+ 2dpΠ̂p(0;E),

where we note that the factor χ(p) =
∑

x∈Zd τp(x − v) cancels in the last term. Letting
p↗ pc, we see that the first term vanishes, so that

(12.2.18) QIIC(E) = 2dpcΠ̂pc(0;E).

The other limiting schemes in (12.2.1) and (12.2.3) can be seen to converge to the same
limit, which implies that PIIC = QIIC = RIIC. �



CHAPTER 13

Finite-size scaling and random graphs

So far, we have considered percolation on the infinite lattice Zd. When, instead,
considering percolation on a bounded domain, the clusters are restricted by the boundary
of the domain under consideration. This leads to so-called finite-size effects. For example,
in the supercritical regime, there is a large connected component, but this component
cannot be infinite. Further, in any finite domain, the probability of a certain event and
expectations of random variables are continuous functions of the percolation threshold p
(even polynomials). Thus, discontinuities as for p 7→ Ep[|C (0)|] or in the derivative of
p 7→ θ(p), such as present in high-dimensional percolation, cannot occur. Instead, one
has to deal with asymptotic phase transitions, for example in the proportion of vertices
in the largest connected component.

In finite domains, one can expect that the boundary conditions play hardly any role
when the value of p is far away from the critical value. When p is close to the critical value,
clusters become fractal and self-similar, and clusters feel the boundary of the domain. In
this chapter, we investigate these finite-size effects.

Further, when dealing with, say, a finite domain that is a subset of Zd of volume of
order nd, we can investigate how the size of the clusters depends on p more closely, and
take p = pn such that pn → pc at a certain rate. Now, when this convergence is sufficiently
slow, then it is as if the value of p is sub- or supercritical, while if it is very quick, then it
is as if the value is pc. The values of p for which the behavior of percolation quantities,
such as the expected cluster size or the largest connected component, is as in the critical
case are sometimes called the scaling window or critical window. We aim to derive the
asymptotic properties of the critical window in high-dimensional percolation on tori. In
statistical mechanics, the setting of percolation on a torus is also termed percolation on
a cube with periodic boundary conditions.

The main advantage of working with the torus is that it is a transitive graph. As
such, the boundary of the graph is “equally far away for every vertex”. This is different
for zero boundary conditions, where only connections inside the cube are allowed. There,
one may expect large clusters to be more likely to sit close to the center of the cube. See
Section 13.6 where the role of boundary conditions is investigated in more detail.

In this chapter, we focus on percolation on the high-dimensional torus, with the fol-
lowing main aim:

Show that the mean-field model for percolation on the high-
dimensional torus is the Erdős-Rényi random graph, in the sense
that the phase transition for percolation on the high-dimensional
torus mimics that of percolation on the complete graph.
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Investigating mean-field critical behavior on various graphs is a highly active field of
research. In general, for geometric graphs, in many settings the subcritical behavior and
(with considerably more effort) the critical behavior is fairly well understood. Interest-
ingly, the supercritical regime is not. In particular, the “barely supercritical” regime (i.e.,
close to the critical value) is a challenge, and it is approached by investigating specific
examples, such as the complete graph, products of it, the hypercube, and various random
graphs.

This chapter is organized as follows. In Section 13.1, we draw inspiration from the
Erdős-Rényi random graph, which is percolation on the complete graph. We rigorously
prove a number of statements for the Erdős-Rényi random graph, whose proof can be
modified to the setting of high-dimensional tori. In Section 13.2, we then proceed to
critical percolation on high-dimensional tori. In Section 13.3, we extend this to more
general tori including the hypercube. In Section 13.4, we focus exclusively on the hy-
percube, where also the supercritical regime is now well understood. In Section 13.5, we
discuss scaling limits of critical percolation on random graphs. We close this chapter in
Section 13.6 by discussing the role of boundary conditions beyond the periodic boundary
conditions that give rise to high-dimensional tori.

13.1. Inspiration: the Erdős-Rényi random graph

A leitmotif in the text so far is that for percolation in high dimensions, we can think of
far away clusters as being close to independent, and thus geometry plays a less important
role. This is why percolation on Zd shares many features with critical branching random
walk on Zd. The only finite graph that is transitive and has no geometry is the complete
graph Kn. For Kn, the vertex set is [n] = {1, . . . , n} and the edge set E consists of all
pairs {i, j} with i, j ∈ [n] such that i 6= j. For simplicity of notation, we often write
ij = {i, j}, so that ij = ji.

Percolation on the complete graph is obtained by letting every edge in E be occupied
with probability p and vacant with probability 1−p, independently across the edges. This
model is also called the Erdős-Rényi random graph, named after Paul Erdős and Alfréd
Rényi who were the first to deduce scaling properties of this model for p close to criticality
[97]. We denote the Erdős-Rényi random graph with n vertices and edge probability p by
ERn(p). In fact, this model, which is sometimes called the binomial model, was introduced
by Gilbert [114], while Erdős and Rényi investigated the closely related setting in which
a fixed number of uniformly chosen edges is added.

Write C(j) for the jth largest component, and |C(j)| for the number of vertices in C(j),
so that |C(1)| ≥ |C(2)| · · · . Further, we often write C(1) = Cmax. An inspiring discovery
of Erdős and Rényi [97] is that this model exhibits a phase transition when p is scaled
like p = λ/n. When λ < 1, we have |C(1)| = ΘP(log n) whp while |C(1)| = ΘP(n) whp
when λ > 1. This can be understood by noting that, for p = λ/n, the average degree
is close to λ. Thus, for λ > 1, locally and in expectation, boundaries of clusters in the
graph distance are growing exponentially in the graph distance, while for λ < 1, their
expectations decay exponentially. This leads us to the above prediction. More precisely,
in ERn(p), the scaling of the largest connected components can be subdivided into the
following three cases:
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The subcritical phase. Let ε = εn = o(1) be a non-negative sequence with ε� n−1/3

and put p = (1− ε)/n. Then, for any fixed integer j ≥ 1,

(13.1.1)
|C(j)|

2ε−2 log(ε3n)

P−→ 1 .

The scaling in (13.1.1) can be interpreted as that the largest connected components in
ERn(λ/n) are obtained from a maximum of n i.i.d. random variables (Xi)i∈[n], each having

an exponential tail P(Xi ≥ `) ∼ e−`ε
2/2. This is almost true, since the cluster sizes

(|C (i)|)i∈[n] are close to being independent and do satisfy that P(|C (i)| ≥ `) ∼ e−`ε
2/2, but

their dependence is crucial to obtain the factor log(ε3n), which the above crude argument

does not yield. When inserting more precise estimates in P(|C (i)| ≥ `) ∼ e−`ε
2/2, one can

get the factor 2ε−2 correctly, but not the factor log(ε3n). To see this additional factor,
instead, one needs to take into account that if |C (i)| = m, then there are m − 1 other
vertices apart from i that have the same cluster size. We see such effects in more detail
below.

The supercritical phase. Let ε = εn = o(1) be a non-negative sequence with ε� n−1/3

and put p = (1 + ε)/n. Then

(13.1.2)
|C(1)|
2εn

P−→ 1 ,

and, for any fixed integer j ≥ 2,

(13.1.3)
|C(j)|

2ε−2 log(ε3n)

P−→ 1 .

Equations (13.1.2)–(13.1.3) show that the largest connected component has a size that
is concentrated, and all other connected components are much smaller. It is not hard to
extend (13.1.2)–(13.1.3) to the (easier) setting where p = λ/n with λ fixed and λ > 1,
where the limit in (13.1.2) needs to be replaced by the survival probability ζ = ζ(λ) of
a Poisson branching process with mean offspring λ. When λ↘ 1, then ζ(λ) ∼ 2(λ− 1),
which explains the factor 2ε in (13.1.2). The proof of (13.1.2)–(13.1.3) relies on branching
process approximations that we explain in some detail below.

In both the sub- and the supercritical phase, the limit of |Cmax|, properly normalized,
is deterministic. At the critical point, one can expect that such a scaling limit is random.
This is reflected in the following asymptotics:

The critical window. When p = (1 + θn−1/3)/n for some θ ∈ R, for any fixed integer
j ≥ 1,

(13.1.4)
(
n−2/3|C(1)|, . . . , n−2/3|C(j)|

)
d−→ (γ1, . . . , γj) ,

where (γi)
j
i=1 are non-degenerate random variables supported on (0,∞), and

d−→ denotes
convergence in distribution. Thus, we see that large critical clusters obey non-trivial
scaling, in that they are of order n2/3. The power 2/3 was first identified by Erdős and
Rényi in their seminal work [97]. It is sometimes called the double jump, since the maximal
cluster size jumps first from 2ε−2 log(ε3n) to n2/3, and then from n2/3 to 2εn. This “jump”,
however, turns out to be quite smooth indeed, the phase transition only becoming sharp
when p = λ/n with λ fixed, and n → ∞. We discuss the critical window in much more
detail in Section 13.5 below.
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In these lecture notes, we focus on the critical behavior in percolation, and we thus
focus on the critical window as described in (13.1.4). In this section, we do not give a
full proof of (13.1.4), but instead show that both n−2/3|Cmax| and n2/3/|Cmax| are tight
sequences of random variables. This is because the proof of these statements is the most
robust, and can be adapted to high-dimensional tori, as explained in more detail in this
section, as well as to inhomogeneous random graphs in Section 13.5. In that section, we
also investigate the scaling limits of the largest connected components in the random
graph setting.

We summarize that the prominent qualitative features of the phase transition on the
Erdős-Rényi random graph are:

� The emergence of the giant component occurs just above the scaling window.
That is, only in the supercritical phase |C(2)| � |Cmax|, and |Cmax|/n increases
suddenly but smoothly above the critical value (in mathematical physics termi-
nology, the phase transition is of second order).

� Concentration of the size of the largest connected components outside the scaling
window and non-concentration inside the window.

� Duality: |C(2)| in the supercritical phase has the same asymptotics as |Cmax| in
the corresponding subcritical phase.

The aim of this chapter is to state and partly derive similar results for percolation on
high-dimensional tori.

In the remainder of this section, we make the discussion of the behavior of the largest
connected component of ERn(λ/n), for p close to the critical value 1/n, precise. The
main result is the following, proving that indeed n−2/3|Cmax| and n2/3/|Cmax| form tight
sequences of random variables:

Theorem 13.1 (Largest critical cluster). Take p = (1 + θn−1/3)/n, where θ ∈ R.
There exists a constant b = b(θ) > 0 such that, for all A > 1,

(13.1.5) Pp
(
A−1n2/3 ≤ |Cmax| ≤ An2/3

)
≥ 1− b

A
.

In the next section, we describe the strategy of proof of Theorem 13.1, giving quite
some details.

13.1.1. Strategy of the proof of Theorem 13.1. We follow the second author
[155]. A key ingredient to the proofs is the ingenious choice of a certain family of random
variables Z≥k. We denote the number of vertices in connected components of size at least
k by

(13.1.6) Z≥k =
∑
v∈[n]

1{|C (v)|≥k}.

Since

(13.1.7) {|Cmax| ≥ k} = {Z≥k ≥ k},
we can prove bounds on |Cmax| by investigating Z≥k for appropriately chosen values of k.
This strategy has been successfully applied in several related settings, and we see some
more examples below.

Exercise 13.1 (Relation |Cmax| and Z≥k). Prove (13.1.7).
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The nice thing about Z≥k is that it is a sum of indicators. While these indicators
are dependent, they turn out to be sufficiently weakly dependent to make their analysis
possible using first and second moment methods. This is in sharp contrast to |Cmax| =
maxv∈[n] |C (v)|, which is the maximum of dependent random variables and as such much
more difficult to deal with. We note that E[Z≥k] = nP(|C (1)| ≥ k), so that the study of
Z≥k quickly leads us to study tail probabilities of cluster sizes.

We see that we need to understand the cluster tails to study the first moment of
Z≥k. We next investigate the variance of Z≥k, which allows us to apply a second moment
method on Z≥k. We state this result more generally, since we later wish to apply it to
other settings. To state the result, we say that a random graph is an inhomomegeneous
random graph with edge probabilities p = (pij)1≤i<j≤n when the edge ij is occupied with
probability pij and the occupation statuses of different edges are independent. Then the
main variance estimate on Z≥k is as follows:

Proposition 13.2 (A variance estimate for Z≥k). For an inhomogeneous random
graph with edge probabilities p = (pij)1≤i<j≤n, every n and k ≥ 1,

Var(Z≥k) ≤
∑
i∈[n]

E[|C (i)|1{|C (i)|≥k}].

Proof. We use the fact that

Var(Z≥k) =
∑
i,j∈[n]

[
P(|C (i)| ≥ k, |C (j)| ≥ k)− P(|C (i)| ≥ k)P(|C (j)| ≥ k)

]
.(13.1.8)

We split the probability P(|C (i)| ≥ k, |C (j)| ≥ k), depending on whether i←→ j or not,
i.e.,

P(|C (i)| ≥ k, |C (j)| ≥ k) = P(|C (i)| ≥ k, |C (j)| ≥ k, i←→ j)

+ P(|C (i)| ≥ k, |C (j)| ≥ k, i←→/ j).(13.1.9)

We condition on the edges and vertices in C (i) to obtain

P(|C (i)| ≥ k, |C (j)| ≥ k, i←→/ j)(13.1.10)

=
∑

C :|C |≥k

P(C (i) = C )P(|C (j)| ≥ k, i←→/ j | C (i) = C ),

where the sum is over all collections of vertices C ⊆ [n] satisfying i ∈ C and |C | ≥ k.
Now, in order for |C (j)| ≥ k and i ←→/ j to occur, |C (j)| ≥ k must happen without
using any of the vertices in C , which clearly has a smaller probability than P(|C (j)| ≥ k).
Therefore,

(13.1.11) P(|C (j)| ≥ k, i←→/ j | C (i) = C ) ≤ P(|C (j)| ≥ k).

Applying this yields

(13.1.12) Var(Z≥k) ≤
∑
i,j∈[n]

P(|C (i)| ≥ k, |C (j)| ≥ k, i←→ j),
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and we arrive at the fact that

Var(Z≥k) ≤
∑
i,j∈[n]

P(|C (i)| ≥ k, |C (j)| ≥ k, i←→ j)(13.1.13)

=
∑
i∈[n]

∑
j∈[n]

E
[
1{|C (i)|≥k}1{j∈C (i)}

]
=
∑
i∈[n]

E
[
1{|C (i)|≥k}

∑
j∈[n]

1{j∈C (i)}

]
=
∑
i∈[n]

E[|C (i)|1{|C (i)|≥k}]. �

13.1.2. Critical scaling of cluster sizes in the Erdős-Rényi random graph.
In this section, we investigate cluster tails and expected cluster sizes of the Erdős-Rényi
random graph within the scaling window. First, we show that the cluster tail is, within
the critical window, of the order 1/

√
k just as for critical high-dimensional percolation:

Proposition 13.3 (Critical cluster tails). Take p = (1 + θn−1/3)/n, where θ ∈ R,
and let r > 0. For k ≤ rn2/3, there exist constants 0 < c1 < c2 < ∞ with c1 = c1(r, θ)
satisfying minr≤1 c1(r, θ) > 0, and c2 independent of r and θ, such that, for n sufficiently
large,

(13.1.14)
c1√
k
≤ Pp(|C (1)| ≥ k) ≤ c2((θ ∨ 0)n−1/3 +

1√
k

).

Proposition 13.3 implies that the tail of the critical cluster size distribution obeys
similar asymptotics as the tail of the total progeny of a critical branching process (recall
the “δ = 2” result in Theorem 2.1). The lower bound on the tail in (13.3.23) can only be
valid for values of k that are not too large. Indeed, when k > n, then Pλ(|C (v)| ≥ k) = 0.
Therefore, there must be a cut-off above which the asymptotics fails to hold. As it turns
out, this cut-off is given by rn2/3. The upper bound in (13.3.23) holds for a wider range
of k, in fact, the proof yields that the upper bound in (13.3.23) is valid for all k.

Sketch proof of Proposition 13.3. Let Tm denote the total progeny of a branch-
ing process with a Bin(m, p) offspring distribution. Then we claim that

(13.1.15) Pp(Tn−k ≥ k) ≤ Pp(|C (1)| ≥ k) ≤ Pp(Tn ≥ k),

The proof of (13.1.15) is not very hard, and we leave it to the reader. A full proof can be
found in [156, Proof of Theorems 4.2 and 4.3].

Exercise 13.2 (Stochastic domination of |C (1)| in terms of Tn). Prove the upper
bound in (13.1.15) by proving that |C (1)| is stochastically dominated by Tn.

Exercise 13.3 (Stochastic relation of |C (1)| in terms of Tn−k). Prove the lower bound
in (13.1.15) by using that, when exploring a cluster up to its kth element, the number of
potential neighbors on the complete graph is always at least n− k.

Special attention needs to be paid to the case where Tn = ∞, which occurs with
positive probability when p > 1/n. We split

(13.1.16) Pp(Tn ≥ k) = Pp(Tn =∞) +
∞∑
l=k

Pp(Tn = l).
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By the Random Walk Hitting Time Theorem (recall (2.1.24)),

(13.1.17) Pp(Tm = l) =
1

l
Pp(X1 + · · ·+Xl = l − 1),

where Xi ∼ Bin(m, p). Then, it is not hard to use Stirling’s formula to prove that

(13.1.18) Pp(Tn ≥ k) ≤ c2((θ ∨ 0)n−1/3 +
1√
k

).

Exercise 13.4 (Tails of Tn). Complete the proof of (13.1.18).

We continue by investigating the expected cluster size at the bottom part of the scaling
window:

Lemma 13.4 (Bound on critical expected cluster size). Take p = (1 + θn−1/3)/n with
θ < 0. Then, for all n ≥ 1,

(13.1.19) Ep[|C (1)|] ≤ n1/3/|θ|.

Proof. The upper bound in (13.1.15) gives that |C (1)| is stochastically dominated
by Tn, where Tn is the total progeny of a branching process with a Bin(n, λ/n) offspring
distribution, and where p = (1 + θn−1/3)/n. As a result, for θ < 0, since E[T ] = 1/(1−µ)
when T is the total progeny of a branching process with mean µ < 1 offspring, we obtain

(13.1.20) Ep[|C (1)|] ≤ E[Tn] = 1/(1− λ) = n1/3/|θ|.

This proves the claim. �

Lemma 13.4 is intuitively consistent with Theorem 13.1. Indeed, in the critical regime,
one can expect the largest cluster to contribute substantially to the expected cluster size.
This suggests that

Ep[|C (1)|] ≈ Ep[|C (1)|1{1∈Cmax}](13.1.21)

= Ep[|Cmax|1{1∈Cmax}] =
1

n
Ep[|Cmax|2],

where≈ denotes asymptotic equality with an uncontrolled error. When |Cmax| = ΘP(n
2/3),

intuitively,

(13.1.22) Ep[|C (1)|] ≈ 1

n
Ep[|Cmax|2] ≈ n1/3.

The above heuristic is confirmed by Lemma 13.4, at least when θ < 0. With a little more
effort, we can show that Lemma 13.4 remains to hold for all θ ∈ R. We refrain from
proving this here, and return to this question in the next section.

Exercise 13.5 (Critical expected cluster size). Prove that Proposition 13.3 also im-
plies that

(13.1.23) Ep[|C (1)|] ≥ cn1/3

for some c > 0. Therefore, for p = (1 + θn−1/3)/n with θ < 0, the bound in Lemma 13.4
is asymptotically sharp.
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Proof of Theorem 13.1. We start by proving the upper bound on |Cmax|. We use
the first moment method (or Markov inequality) to bound

(13.1.24) Pp(|Cmax| ≥ k) = Pp(Z≥k ≥ k) ≤ 1

k
Ep[Z≥k] =

n

k
Pp(|C (1)| ≥ k).

Taking k = An2/3 and using the upper bound in Proposition 13.3 then leads to

(13.1.25) Pp(|Cmax| ≥ An2/3) ≤ c2n

An2/3
((θ ∨ 0)n−1/3 +

1

n1/3
√
A

) ≤ c2((θ ∨ 0) + 1/
√
A)

A
,

as required.
To prove the matching lower bound on |Cmax|, we rely on a second moment method

for Z≥k. We use that it suffices to study p = (1 + θn−1/3)/n with θ < 0, since increasing
θ makes the event |Cmax| < kn less likely. We use the fact that |Cmax| < k precisely when
Z≥k = 0, to obtain that, with k = kn = A−1n2/3,

(13.1.26) Pp
(
|Cmax| < kn

)
= Pp

(
Z≥kn = 0

)
≤ Varp(Z≥kn)

Ep[Z≥kn ]2
.

By the lower bound in Proposition 13.3,

(13.1.27) Ep[Z≥kn ] = nPp(|C (1)| ≥ kn) ≥ nc1A
1/2

n1/3
= c1A

1/2n2/3.

Also, by Proposition 13.2 and Lemma 13.4, with |θ| ≥ 1,

(13.1.28) Varp(Z≥kn) ≤ nEp[|C (1)|] ≤ n4/3.

Substituting (13.1.26)–(13.1.28), for n sufficiently large, leads to

(13.1.29) Pp
(
|Cmax| < kn

)
≤ n4/3

c2
1An

4/3
=

1

c2
1A
,

as required. �

In the next section, we continue to investigate the critical behavior of percolation
on high-dimensional tori. In the sequel we are extending Theorem 13.1 to several high-
dimensional tori.

13.2. Critical high-dimensional tori

In this section, we return to the study of percolation on high-dimensional tori. To this
end, we call two vertices x, y ∈ Zd n-connected (and write x

n∼ y) whenever x− y ∈ nZd;
and define Tn,d = Zd

/
n∼. It is common to think of Tn,d as the cube {0, . . . , n − 1}d with

periodic boundary conditions. Mind that Tn,d is a transitive graph, that is, every vertex
plays the same role.

We investigate the size of the maximal cluster on the torus, |Cmax| = maxx∈Tn,d |CT(x)|,
at, or close to, the critical percolation threshold on the infinite lattice pc = pc(Zd). Here,
to avoid confusion, we write CT(x) for the cluster of x on the torus Tn,d. Later, we
also encounter its Zd analogue CZ(x). Further, we write τT,p(x) for the probability that
x ∈ CT(0) and V = nd for the number of vertices or volume of the torus Tn,d. The main
result in this section is the following theorem:
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Theorem 13.5 (Random graph asymptotics of the largest cluster size [144, 145]).
There is d0 > 6 such that for percolation on the torus Tn,d with d ≥ d0 there exists a
constant b > 0, such that for all A ≥ 1 and all n ≥ 1,

(13.2.1) Ppc(Zd)

(
A−1V 2/3 ≤ |Cmax| ≤ AV 2/3

)
≥ 1− b

A
.

Theorem 13.5 is identical to Theorem 13.1 for the Erdős-Rényi random graph, and
therefore the asymptotics in Theorem 13.5 is sometimes called random graph asymptotics.
Theorem 13.5 suggests that the Erdős-Rényi random graph is the mean-field model for
critical percolation on high-dimensional tori.

The upper bound in (13.2.1) in Theorem 13.5 is proved in [144, Theorem 1.1]. That
theorem also contains a lower bound that involves an extra logarithmic factor. This extra
factor was removed in [145].

We next extend the above result to the other large clusters C(2),C(3), . . . . Our next
result implies that the scaling of these clusters is similar to that of |Cmax|:

Theorem 13.6 (Random graph asymptotics of the ordered cluster sizes [145]). There
is d0 > 6 such that for percolation on the torus Tn,d with d ≥ d0 and every m = 1, 2, . . .
there exist constants b1, . . . , bm > 0, such that for all A ≥ 1, n ≥ 1, and all j = 1, . . . ,m,

(13.2.2) Ppc(Zd)

(
A−1V 2/3 ≤ |C(j)| ≤ AV 2/3

)
≥ 1− bj

A
.

Consequently, the expected cluster sizes satisfy Epc(Zd)[|C(j)|] ≥ b′j V
2/3 for certain constants

b′j > 0. Moreover, there are positive constants c1 and c2 such that

(13.2.3) Ppc(Zd)

(
|Cmax| > AV 2/3

)
≤ c1

A3/2
e−c2 A.

Consequently, also Epc(Zd)[|Cmax|] ≤ bV 2/3 for some b > 0.

We see below that Theorems 13.5 and 13.6 extend to various values of p sufficiently
close to pc. These values form the critical or scaling window. We defer this discussion to
the next section.

The proofs of Theorems 13.5 and 13.6 are somewhat indirect. Indeed, we aim to apply
the ideas for the critical Erdős-Rényi random graph to the setting of percolation on a high-
dimensional torus. For the upper bound, this turns out to be relatively straightforward,
as we indicate now. The lower bound is much more involved, and is discussed in more
detail in the next section.

Proposition 13.7 (Stochastic domination of clusters on torus by those on lattice,
[39]). Consider percolation on Tn,d with n ≥ 3 and any dimension d ≥ 1. Then, the size
of the cluster of the origin on the torus denoted by |CT(0)| is stochastically dominated by
the size of the cluster of the origin on Zd denoted by |CZ(0)|.

The proof is carried out via a coupling of the two clusters, where we use a technique
known as cluster exploration. Here we follow the original proof by Benjamini and Schramm
[39, Theorem 1], which generalizes to any quotient graph. In [144, Proposition 2.1], we do
the coupling in a different way, which not only gives the upper bound formulated in the
proposition, but also a highly useful lower bound. This lower bound is the key ingredient
to the lower bound of (13.2.1).
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Proof. We prove Proposition 13.7 in the generalized setup of quotient graphs. To
this end, let Γ be a group of automorphisms of a graph G. The quotient graph G ′ = G/Γ
is the graph whose vertices V(G/Γ) are the equivalence classes V(G)/Γ = {Γv : v ∈ V(G)},
and an edge {Γu,Γv} appears in G/Γ if there are representatives {u0 ∈ Γu, v0 ∈ Γv} that
are neighbors in G, i.e., {u0, v0} ∈ E(G). The setting on the torus Tn,d arises when we
take G = Zd and Γ is the set of translations over nZd.

We construct a coupling between percolation on G ′ and on G. We start by describing
an inductive procedure for constructing the percolation cluster of v′ ∈ V(G ′) known as
cluster exploration. For a set of edges B′ ⊂ E(G ′) we write ∂B′ for the set of those edges
that have precisely one endpoint in V(B′), where V(B′) is the union of all endpoints of
edges in B′. Let C ′1 denote all the occupied edges incident to v′ and W ′

1 the vacant edges
incident to v′. For t ≥ 2, we proceed as follows. If ∂C ′t−1 is contained in W ′

t−1, set
C ′t = C ′t−1,W

′
t = W ′

t−1. Otherwise, choose an edge b′t ∈ E(G ′) that is not in C ′t−1 ∪W ′
t−1,

but is in ∂C ′t−1. If b′t is occupied, then let C ′t = C ′t−1 ∪ {b′t} and W ′
t = W ′

t−1, if vacant,
let C ′t = C ′t−1 and W ′

t = W ′
t−1 ∪ {b′t}. Then, C ′ =

⋃
tC
′
t is the edge set of the percolation

cluster of v′, and its vertex set is denoted by C (v′) in G ′.
We now describe the coupling with the percolation process in G. Let f be a quotient

map from G to G ′ with f(v) = v′. Again let C1 denote all the occupied edges incident
to v and W1 the vacant edges incident to v. Assume that t ≥ 2 and Ct−1, Wt−1 were
defined, and satisfy f(Ct−1) = C ′t−1, f(Wt−1) = W ′

t−1. If the construction of C (v) in
G ′ is stopped at stage t, that is, if C ′t = C ′t−1 and W ′

t = W ′
t−1, then let Ct = Ct−1,

Wt = Wt−1. Otherwise, let bt be some edge in f−1(b′t) ∩ ∂Ct−1. Let bt be occupied if and
only if b′t is occupied, and define Ct and Wt accordingly. Then

⋃
tCt is a connected set

of occupied edges contained in the edge set of the percolation cluster C (v) of v. Hence,
f
(
C (v)

)
⊇ C (v′), and the result follows. �

Partial proof of Theorem 13.5. We prove the upper bound on |Cmax| in Theorem 13.5.
By Proposition 13.7 and at p = pc(Zd), |CT(0)| is stochastically dominated by |CZ(0)|.
Therefore, by Theorem 9.2,

(13.2.4) Ppc(Zd)(|CT(0)| > k) ≤ Ppc(Zd)(|CZ(0)| > k) ≤ Cδ/
√
k.

Repeating the argument for the Erdős-Rényi random graph as in (13.1.24)–(13.1.25), there
exists b > 0 such that for every A ≥ 1,

(13.2.5) Ppc(Zd)

(
|Cmax| > AV 2/3

)
≤ b

A
.

�

While Proposition 13.7 is a useful tool to prove upper bounds on percolation clusters
on the torus, it does not help so much in proving the corresponding lower bounds. For
this, it turns out to be helpful to extend the results in Chapters 4–9 to percolation on
general high-dimensional tori. This is the content of the next section.

13.3. General high-dimensional tori

We now consider percolation on various transitive graphs with vertex set V = {0, . . .
. . . , n − 1}d in the asymptotic regime where the volume (= number of vertices) V = nd

diverges to infinity. These graphs differ by their edge set:
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(i) the classical torus Tn,d of width n and fixed dimension d that was introduced at the
beginning of Section 13.2.

(ii) the hypercube {0, 1}d, which is the torus as in (i) but with n = 2 fixed;
(iii) the complete graph Kn, whose percolation yields the Erdős-Rényi random graph as

discussed in Section 13.1;
(iv) the Hamming graph Kd

n, which is the Cartesian product of d complete graphs.

We write Tn,d for all of these cases.
In these settings, it is not at all obvious precisely what the appropriate critical value

pc(Tn,d) is. Of course, on the torus Tn,d with d fixed and n→∞, one would expect that
the critical value pc(Tn,d) can be taken as pc(Zd), which is the critical value of the set in
which the torus can naturally be embedded. In other settings, however, such an obvious
choice is not available. Since the graphs that we deal with are finite, one can not expect
the critical value to be unique, since any value p that is sufficiently close to pc(Tn,d) has
similar scalings of the cluster sizes. This leads us to the notion of the scaling window,
which informally consists of those values of p for which the scaling behavior of cluster
sizes agrees with that at p = pc(Tn,d).

The BCHSS definition of the critical value for high-dimensional tori. The
aim in this section is to define the critical value pc(Tn,d) in the high-dimensional setting,
and then to show that indeed pc(Tn,d) is a sensible choice. This we achieve by describing
results about the largest connected components below the scaling window, within the
scaling window close to pc(Tn,d), and above the scaling window. We restrict ourselves to
the high-dimensional or mean-field setting, where we expect the scaling behavior to be
similar to that on the complete graph Kn. We follow Borgs et al. in [58]. Recall that
CT(x) denotes the cluster of x ∈ Tn,d, and we write V = nd for the volume or number
of vertices of the torus. In view of the correspondence with Erdős-Rényi random graphs,
Lemma 13.4 and Exercise 13.5 suggest that a critical value can be obtained by equating
the expected cluster size to the cube root of the volume of the graph. This is our point
of departure for percolation on high-dimensional tori:

Fix λ > 0 independent of n and d. Define the critical value pc(Tn,d) =
pc(Tn,d;λ) to be the unique solution of

(13.3.1) χT(p) := Ep|CT(0)| = λV 1/3.

The appearance of λ > 0 in (13.3.1) may be somewhat surprising. It is there for
technical reasons, and we often take λ to be sufficiently small. In fact, we show that any
value of λ gives qualitatively similar results. Indeed, taking another value of λ simply
shifts pc(Tn,d;λ) within the scaling window. So, in hindsight, we could have taken λ = 1
in (13.3.1). However, this only comes out as a consequence of our results, so we stick to
the above definition.

For the complete graph Kn, E1/n

[
|CT(0)|

]
= Θ(n1/3) = Θ(V 1/3) (cf. Lemma 13.4), so

we can see (13.3.1) as the natural generalization of the critical value pc = 1/n for the
complete graph. Also here we do not know what the value of λ is for which E1/n|CT(0)| =
λn1/3, which can be seen as another reason to define the critical value in (13.3.1) more
generally.
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Let us emphasize here that it is highly unclear that the definition of pc(Tn,d) in (13.3.1)
is a natural choice. This can only be established by showing that the behavior of the largest
components are quite different below, within and above the critical window defined by
(13.3.1) for various λ. We return to alternative definitions of pc on finite graphs at the
end of this section.

Finite-graph triangle condition. Of course, (13.3.1) aims to describe the critical
behavior in the high-dimensional setting. On the full lattice, high-dimensional can be
interpreted in terms of the triangle diagram being finite at the critical point. We define
the finite-graph triangle diagram by

(13.3.2) ∆T,p(x, y) =
∑
u,v

τT,p(v − x)τT,p(u− v)τT,p(y − u).

Clearly, ∆T,p(x, y) ≤ V 2 for every x, y, so that the finiteness is guaranteed. However,
we need that ∆T,p(x, y) remains finite uniformly in the volume (like the statement that
∆(pc) ≤ 1 + O(1/d) for high-dimensional percolation on the infinite lattice). More pre-
cisely, the finite-graph triangle condition is the following:

Fix λ > 0, and take pc = pc(Tn,d;λ) as in (13.3.1). The finite-
graph triangle condition holds when there exists a sufficiently small
constant a0 such that

(13.3.3) ∆T,p(x, y) = δx,y + a0.

We shall see that a0 = Cλ3 + O(1/m), where λ is defined in (13.3.1) and m denotes
the degree of the graph in the settings that we investigate. Note that this explains why
we wish to take λ > 0 small, rather than just λ = 1. It is instructive to see what happens
on the complete graph Kn = T1,n, in which, for consistency, we now write the vertex set
as {0, . . . , n− 1}. By symmetry,

(13.3.4) τT,p(x) = δ0,x + (1− δ0,x)
χT(p)− 1

n− 1
,

so that

∆T,pc(x, y) ≤ δx,y + (n− 2)(n− 3)
(χT(p)− 1)3

(n− 1)3
+ 3(n− 2)

(χT(p)− 1)2

(n− 1)2
+ 3

χT(p)− 1

n− 1

≤ δx,y + 9
χT(p)

3

n
= δx,y + 9λ3.(13.3.5)

As a result, it is natural to expect a0 ≥ Cλ3. For general tori, we expect extra contribu-
tions, and we see that also a contribution of the form 1/m is present in a0, where m is
the degree of the graph under consideration.

Subcritical and critical results on high-dimensional tori. Of course, the def-
inition of pc(Tn,d;λ) in (13.3.1) necessitates a proof that it actually is a correct critical
value, at least when the finite-graph triangle condition holds. In the sequel, we give partial
results in this direction. We start by investigating the subcritical phase, following Borgs
et al. [58]:
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Theorem 13.8 (Subcritical phase [58]). There is a (small) constant b0 > 0 such that
the following statements hold for all positive λ and all p of the form p = pc(Tn,d;λ)(1− ε)
with ε ≥ 0. If the triangle condition holds for some a0 ≤ b0, if V ≥ λ−3b3

0, then

(13.3.6) Pp
(
|Cmax| ≤ 2χ2

T(p) log(V/χ3
T(p))

)
≥ 1−

√
e

[2 log(V/χ3
T(p))]

3/2
,

and, for A ≥ 1,

(13.3.7) Pp
(
|Cmax| ≥

χ2
T(p)

3600A

)
≥
(

1 +
36χ3

T(p)

AV

)−1

.

The next theorem gives results inside the scaling window:

Theorem 13.9 (Scaling window [58, 145]). Let λ > 0 and C < ∞. Then there
are finite positive constants b1, b2, b3 such that the following statements hold provided the
triangle-condition (13.3.3) is valid for some constant a0 ≤ b0 and V ≥ λ−3b3

0, with b0 as
in Theorem 13.8. Let p = pc(Tn,d;λ)(1 + ε) with |ε| ≤ CV −1/3.
(i) If A ≥ 1, then

(13.3.8) Pp
(
A−1V 2/3 ≤ |Cmax| ≤ AV 2/3

)
≥ 1− b1

A
.

(ii)

(13.3.9) b2V
1/3 ≤ χT(p) ≤ b3V

1/3.

Theorem 13.8 is an adaptation of [58, Theorem 1.2]. Theorem 13.9(i)–(ii) are adapta-
tions of [58, Theorem 1.3]. We do not give the entire proofs of Theorems 13.8 and 13.9,
but rather explain the intuition behind them. We leave many partial proofs as exercises
and refer to the original papers for other parts.

Role of λ in the definition of pc = pc(Tn,d;λ) in (13.3.1). Theorem 13.9(ii) states
that

(13.3.10) χT(p) = Θ(V 1/3)

for any p of the form p = pc(1 + ΛV −1/3). This suggests that indeed the precise value of
λ is not so important. A similar statement follows from the following exercise:

Exercise 13.6 (Asymptotics expected cluster size below pc(Tn,d;λ)). Prove that if
the triangle condition (13.3.3) holds for some a0 < 1, then, for p = pc(Tn,d;λ)(1− ε) with
ε ≥ 0,

(13.3.11)
1

χT(pc)−1 + ε
≤ χT(p) ≤

1

χT(pc)−1 + [1− a0]ε
.

Hint: Adapt the proof in Section 4.2.

Upper bound on |Cmax| below the scaling window: tree-graph inequalities.
Here we explain how the upper bound in (13.3.6) can be proved using the so-called
tree-graph inequalities derived by Aizenman-Newman in [13]. We start by proving that
Pp(|CT(0)| ≥ k) decays exponentially:
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Lemma 13.10 (Exponential cluster size decay [13, Prop. 5.1]). For every p ∈ [0, 1]
and every k ≥ χT(p)

2,

(13.3.12) Pp(|CT(0)| ≥ k) ≤
√

e

k
e−k/(2χT(p)2).

Proof. We study the moments of |CT(0)| so as to bound the moment generating
function. For this, we use that

(13.3.13) Ep[|CT(0)|k] =
∑

x1,...,xk

Pp(x1, . . . , xk ∈ CT(0)).

Let us investigate this sum for small values of k. When k = 2, we can write

(13.3.14) {0←→ x1, 0←→ x2} =
⋃
z

{0←→ z} ◦ {z ←→ x1} ◦ {0←→ x2}.

Using the BK-inequality (1.3.4) and the union bound, we thus arrive to1

Ep[|CT(0)|2] ≤
∑
x1,x2

∑
z

Pp(0←→ z)P(z ←→ x1)Pp(z ←→ x2)(13.3.15)

=
(
Ep[|CT(0)|])3 = χT(p)

3.

With a little more work, this can be extended to

Ep[|CT(0)|k] =
∑

x1,...,xk

Pp(0←→ x1, . . . , xk)(13.3.16)

≤ (2k − 3)!!
(
Ep[|CT(0)|])2k−1 = (2k − 3)!!χT(p)

2k−1,

where (2k−3)!! = (2k−3)(2k−5) · · · 3 ·1 = 2−(k−1)(2(k−1))!/(k−1)! counts the number
of ways that the paths from 0 to x1, . . . , xk can occur, which is the same as the number
of trees with k + 1 ordered leaves. We return to this counting problem in Section 15.1.

Exercise 13.7 (The Aizenman-Newman tree graph inequality [13]). Prove (13.3.16).

We use the identity

(13.3.17)
1√

1− t
=
∞∑
k=0

tk
(

2k

k

)(
1

4

)k
for |t| < 1. We use the tree-graph inequalities in (13.3.16) to thus obtain, for every t ≥ 0,

Ep
[
|CT(0)|et|CT(0)|

]
=
∞∑
k=0

tk

k!
Ep
[
|CT(0)|k+1

]
≤

∞∑
k=0

tk

k!
χT(p)

2k+1 (2k)!

2kk!
(13.3.18)

=
χT(p)√

1− 2tχT(p)2
.

1Interestingly, Aizenman and Newman achieved this without the BK-inequality, which was only
proved later.
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Therefore,

Pp(|CT(0)| ≥ k) = Pp(|CT(0)|et|CT(0)| ≥ ketk) ≤ 1

ketk
Ep
[
|CT(0)|et|CT(0)|

]
(13.3.19)

=
χT(p)

ketk
√

1− 2tχT(p)2
.

We conclude that

(13.3.20) Pp(|CT(0)| ≥ k) ≤ inf
t≥0

χT(p)

ketk
√

1− 2tχT(p)2
.

The minimizer is t = 1/[2χT(p)
2]− 1/[2k], which is indeed non-negative when k ≥ χT(p)

2.
Substitution leads to (13.3.12) and thus completes the proof of Lemma 13.10. �

Proof of the upper bound in (13.3.6). Take k = 2χ2
T(p) log(V/χ3

T(p)). We use
that |Cmax| ≥ k precisely when Z≥k ≥ k (recall (13.1.7)). This leads to

(13.3.21) PT,p(|Cmax| ≥ k) = PT,p(Z≥k ≥ k) ≤ 1

k
ET,p[Z≥k] =

V

k
PT,p(|CT(0)| ≥ k).

By Lemma 13.10 and using that k = 2χ2
T(p) log(V/χ3

T(p)), this can be further bounded by

PT,p(|Cmax| ≥ k) ≤ V (e/k3)1/2e−k/(2χT(p)2) = V (e/k3)1/2e− log(V/χ3
T(p))(13.3.22)

=

√
e

23/2(log(V/χ3
T(p)))

3/2
,

as required. �

Bounds on |Cmax| inside scaling window: first and second moment methods.
The behavior inside the critical window follows to a large extent from the statement that
there exists constants c1, c2, c3 such that, for p = pc(Tn,d;λ)(1 + ε) with |ε| ≤ ΛV −1/3,

(13.3.23)
c2√
k
≤ PT,p(|CT(0)| ≥ k) ≤ c3

( 1√
k

+ (ε ∨ 0)
)
,

where the lower bound holds for k ≤ c1V
2/3. The lower bound is [58, Theorem 1.3(i)],

the upper bound is [58, (6.4) in Lemma 6.1 and (6.2)]. The proof of (13.3.23) follows the
proofs of δ = 2 and β = 1 in Chapter 9, and is omitted here.

Tightness proof |Cmax|V −2/3 in Theorem 13.9(i). As for the Erdős-Rényi random graph,
we again use (13.3.21). Now take k = AV 2/3, and apply the upper bound in (13.3.23) to
obtain

(13.3.24) Pp(|Cmax| ≥ AV 2/3) ≤ c3
V

k

(
1√
k

+ (ε ∨ 0)

)
≤ c3

A

(
1√
A

+ Λ

)
.

This proves the upper bound on |Cmax| inside the scaling window. For the lower bound,
we first use that monotonicity in p implies that it suffices to prove the claim for p =
pc(1 − ΛV −1/3). For this, we use the second moment method, as well as the bound
Varp(Z≥k) ≤ V χT(p) in Proposition 13.2, to arrive at

(13.3.25) Pp(|Cmax| < k) = Pp(Z≥k = 0) ≤ Varp(Z≥k)

Ep[Z≥k]2
≤ V χT(p)

Ep[Z≥k]2
.
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Now, χT(p) ≤ χT(pc) = λV 1/3, and, by the lower bound in (13.3.23),

(13.3.26) Ep[Z≥k] = V Pp(|CT(0)| ≥ k) ≥ c2V√
k
,

when we take k = V 2/3/A for A ≥ 1 sufficiently large. Thus,

(13.3.27) Pp(|Cmax| < V 2/3/A) ≤ V χT(p)

(c2V/
√
k)2

=
λV 4/3k

(c2V )2
=

λ

c2
2A
.

This completes the proof of (13.3.8). �

Exercise 13.8 (Exponential tails of V −2/3|Cmax|). Let p = pc(Tn,d;λ)(1+ε) with |ε| ≤
ΛV −1/3. Use (13.3.9) and Lemma 13.10 to prove that there exists a = a(Λ), b = b(Λ) > 0
such that

(13.3.28) Pp(V −2/3|Cmax| > x) ≤ b

x3/2
e−ax.

Proof of the triangle condition in (13.3.3). The proof of the finite-graph triangle
condition in (13.3.3) is similar to that of the original triangle condition in (4.1.1), as
performed in Chapters 5–8. In fact, there we have adapted the argument by Borgs et
al. in [59] that proved the finite-graph triangle condition to the infinite lattice. We omit
further details.

Back to high-dimensional tori of fixed dimension. In (13.3.1), we have given an
alternative definition of a critical value for high-dimensional tori of fixed dimension and
degree. Of course, one would believe that the infinite-lattice critical value pc = pc(Zd) lies
inside the critical window. In fact, the stochastic domination in Proposition 13.7 implies
that pc(Zd)(1− ΛV −1/3) ≤ pc(Tn,d;λ), as formalized in the following exercise:

Exercise 13.9 (Upper bound on pc(Zd) in terms of pc(Tn,d;λ)). Use Proposition 13.7
to prove that pc(Zd)(1− ΛV −1/3) ≤ pc(Tn,d;λ) when Λ > 0 is sufficiently large.

The lower bound pc(Zd)(1 + ΛV −1/3) ≥ pc(Tn,d;λ) is more involved, and is proved by
us in [144, Theorem 1.1] by a careful coupling argument in order to lower bound χT(p) in
terms of χZ(p). We omit the details.

Alternative definitions of pc on finite graphs. We mentioned earlier that it is a
priori unclear what a valid and meaningful notion of a critical percolation threshold on
finite transitive graphs is. One condition that every definition of a critical value (rather, a
critical window) should satisfy is a separation into a sub- and a supercritical regime that
show clearly different scaling of cluster sizes.

The definition in (13.3.1) may seem surprising at first sight, but is motivated through
the corresponding behavior of Erdős-Rényi random graphs. The validity of that definition
for “high-dimensional” tori is verified through the results in Theorems 13.8 and 13.9, yet
we are missing a result that above the critical value there is a giant component. A more
fundamental problem with this definition is that it anticipated mean-field behaviour, and
is expected to be meaningless, for example, for lower dimensional tori. It is a challenge to
find a more general definition of pc which is suitable for a large class of transitive graphs.
One possible generalization is to replace (13.3.1) by Epc |CT(0)| = λV 1/(δ+1), which should
be the correct value with δ being the cluster tail exponent. Plugging in δ = 2 from
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Theorem 9.2 then recovers the high-dimensional definition in (13.3.1). Here we extend
this discussion by proposing related definitions from the literature.

These related definitions rely on the fact that the phase transition of Erdős-Rényi
random graphs exhibits a number of other intriguing properties, and these might also
be used for formalizing the notion of criticality. Nachmias and Peres [216, Remark 7.2]
suggest to use the maximizer of the logarithmic derivative of the susceptibility

(13.3.29)
d

dp
logχT(p) =

d
dp
Ep|CT(v)|
Ep|CT(v)|

.

Motivation for this choice comes from Russo’s formula (1.3.9), as (13.3.29) expresses the
expected number of edges that can affect the size of CT(v). Janson and Warnke [185]
confirm that this definition is meaningful and valid for the Erdős-Rényi random graph
and even identify the width of the critical window correctly. It is an open problem to
investigate this definition for percolation on other transitive graphs.

Other possible choices for defining the critical value pc are the maximizer of the second
largest component

(13.3.30) p(2)

c = arg maxEp|C(2)|
or the maximizer of the (properly rescaled) cluster size variance

(13.3.31) p(3)

c = arg max
Varp|Cmax|
Ep|Cmax|

.

The second choice is motivated by the fact that it is expected that the second largest
component is maximized within the scaling window. The last choice is motivated by the
intuition that only at the critical value the rescaled maximal cluster size |Cmax|/Ep|Cmax|
has a non-degenerate scaling limit.2 We consider a further investigation into such notions
an interesting open problem:

Open Problem 13.1 (Notions of criticality for high-dimensional
tori). For percolation on the torus Tn,d with d > 6, show that

p(1)

c = arg max
d

dp
logχT(p)

satisfies |p(1)
c − pc(Tn,d)| ≤ O(V −1/3), and therefore (in view of The-

orem 13.9) p(1)
c characterizes critical behavior correctly.

Do the same for p(2)
c and p(3)

c .

The lack of results in the supercritical case. We close this section by describing
the supercritical phase, where the results are not complete:

Theorem 13.11 (Supercritical phase [58]). Let λ > 0. The following statements hold
provided the triangle-condition (13.3.3) holds for some constant a0 ≤ b0 and λV 1/3 ≥ b−1

0 ,
with b0 as in Theorem 13.8. Let p = pc(Tn,d;λ)(1 + ε) with ε ≥ 0:

(i)

(13.3.32) Ep
(
|Cmax|

)
≤ 21εV + 7V 2/3

2We learned of the possible choices p(2)
c and p(3)

c through private communication with Asaf Nachmias.
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and, for all A > 0,

(13.3.33) Pp
(
|Cmax| ≥ A(V 2/3 + εV )

)
≤ 21

A
.

(ii) If 0 ≤ ε ≤ 1 then

(13.3.34) χT(p) ≤ 81(V 1/3 + 81ε2V ).

All the estimates in Theorem 13.11 prove upper bounds on |Cmax| above the scaling
window. The missing ingredient in Theorem 13.11 is a lower bound on |Cmax| above the
scaling window. Without such a lower bound, we actually do not know rigorously that
pc(Tn,d;λ) or pc(Zd) really is an appropriate critical value, as the results so far do not
exclude the possibility that also above the scaling window centered at pc(Tn,d;λ) the two
largest clusters are of about equal size, which would contradict the uniqueness of the giant
component. Also, it might be that for some other p′c(Tn,d), while χT(p

′
c(Tn,d))� V 2/3, still

the largest connected component is not concentrated. We believe that such a situation
cannot occur:

Open Problem 13.2 (Concentration and uniqueness giant compo-
nent above the scaling window). Fix Tn,d with d > 6 and let n→∞.
Prove that, for p such that p = pc(Tn,d;λ)(1 + ε) with ε = o(1) but
ε� V −1/3, there exists c > 0 such that

(13.3.35)
|Cmax|
εV

P−→ c,
|C(2)|
εV

P−→ 0.

Verify that c is indeed the right-derivative of θ(p) at p = pc(Zd).

In order to resolve Open Problem 13.2, an improved understanding of the supercritical
phase of percolation is necessary. Recall also Open Problem 11.1. Currently, we approach
the critical phase always from the subcritical side, as our understanding is the best there.
Unfortunately, our understanding of the supercritical phase is lacking, which so far pre-
vents us from resolving Open Problem 13.2. In the next section, we discuss percolation
on the hypercube {0, 1}d, where we can prove the concentration and uniqueness of the
giant component in (13.3.35).

13.4. Hypercube percolation

The study of percolation on the hypercube T2,d = {0, 1}d was initiated by Erdős and
Spencer in [99], where they showed that the connectivity transition of the random graph
obtained by randomly and independently removing edges with probability p is close to
p = 1/2. They also raised the question what the percolation phase transition is, i.e.,
for which values of p is there a unique giant component, and for which values are all
connected components small. This issue was substantially clarified by Ajtai, Komlós and
Szemerédi [15], who proved that for p = λ/d with λ < 1 all connected components are
much smaller than the volume V = 2d of the graph, while for λ > 1, there exists a giant
component containing a positive proportion of the vertices of the graph.

Of course, this leaves open what the critical behavior is, or even what the precise
critical value is (except for the rough asymptotics pc = (1/d)(1 + o(1)) as d → ∞).
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Bollobás, Kohayakawa and  Luczak [56] picked up this topic by studying values of p that
are allowed to be quite close to 1/d. However, also in this work, the ratio between the
scaling of |Cmax| in the sub- and the supercritical regimes was close to 2d (in fact, 2d

modulo a power of d), which indicates that these values are not close enough to the true
critical value to observe critical behavior.

The definition (13.3.1) was proposed by Borgs et al. in [60] (this paper applies the
general results in [58, 59] to the special case of the hypercube). The results proved there
do prove that close to what was believed to be the scaling window, |Cmax| has intricate
scaling behavior of the form V 2/3 = 22d/3. Unfortunately, as already remarked in the
previous section (and in Open Problem 13.2), the control over the size of the largest
connected component |Cmax| right above the scaling window is too weak to conclude that
pc({0, 1}d;λ) in (13.3.1) really is the right critical value. Borgs et al. [60] prove that for

p = pc(1 + ε) with ε > e−ad
1/3

for some a > 0 there is a unique giant component of size

Θ(εV ). Even though e−ad
1/3

is much smaller than any inverse power of d, it is much larger
than the size of the predicted scaling window, which is V −1/3 = 2−d/3.

For the hypercube, as well as several other graphs that have sufficient symmetries, this
problem was taken up afresh by the second author and Nachmias in [166, 165]. There,
symmetry was defined in terms of random walks having sufficiently small mixing time.
Interestingly, it is not the mixing time of simple random walk that is relevant, but rather
that of non-backtracking random walk (NBW), which already appeared in Chapter 10 to
study percolation above, but somewhat close to, the upper critical dimension. Let us
start by stating the main result of [166] on the hypercube:

Theorem 13.12 (The hypercube supercritical phase [166]). Put p = pc(1 + εd) where
εd = o(1) is a positive sequence with εd � 2−d/3. Then, as d→∞,

(13.4.1)
|Cmax|
2εd2d

P−→ 1, Ep|C (0)| = (4 + o(1))ε2
d2
d,

|C(2)|
εd2d

P−→ 0 .

Combined with the results in Theorems 13.8 and 13.9, Theorem 13.12 shows that the
critical value pc({0, 1}d;λ) defined in (13.3.1) really is the appropriate critical value, and
that any alternative definition lies within the scaling window of that in (13.3.1).

The proof of Theorem 13.12 follows from a more general result applying to finite
transitive graphs. Let us start by introducing some necessary notation.

Let G be a finite transitive graph on V vertices and with degree m. Consider the
non-backtracking random walk (NBW) on it (recall that this is just a simple random
walk not allowed to traverse back on the edge it just came from, see Chapter 10). As we
explain later, the use of NBW is vital for the argument that we present here. For any
two vertices x, y, we write pn(x, y) for the probability that the NBW started at x visits y
at time n. More precisely, recalling from Section 10.2 that bn(x) denotes the number of
n-step NBWs starting at the origin and ending at x,

(13.4.2) pn(x, y) =
bn(x− y)

m(m− 1)n−1
.

We write Tmix(ξ) for the ξ-uniform mixing time of the walk, that is,

(13.4.3) Tmix(ξ) = min
{
n : max

x,y

1

2
[pn(x, y) + pn+1(x, y)] ≤ (1 + ξ)V −1

}
.
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Then, the generalization of Theorem 13.12 is as follows:

Theorem 13.13 (Supercritical phase general high-dimensional graphs [166]). Let G be
a transitive graph on V vertices with degree m and define pc as in (13.3.1) with λ = 1/10.
Assume that there exists a sequence ξ = ξm → 0 as m → ∞ such that the following
conditions hold:

(1) m→∞ as V →∞,
(2) [pc(m− 1)]Tmix = 1 + o(1) with Tmix = Tmix(ξm),
(3) For any vertices x, y,

(13.4.4)
∑
u,v

Tmix∑
t1,t2,t3=0

1{t1+t2+t3≥3}pt1(x, u)pt2(u, v)pt3(v, y) = o(1/ log V ).

Then,

(a) the finite triangle condition (13.3.3) holds (and hence the assertions of Theorems
13.8-13.9 follow),

(b) for any sequence ε = εm satisfying εm � V −1/3 and εm = o(T−1
mix),

(13.4.5)
|Cmax|
2εmV

P−→ 1 , Ep|C (0)| = (4 + o(1))ε2
mV ,

|C(2)|
εmV

P−→ 0 .

Theorem 13.13 gives precise conditions for random graph asymptotics, i.e., critical
behavior like that on the Erdős-Rényi random graph, to be valid on transitive graphs. It
not only proves that the finite-graph triangle condition holds (so that the results from
Borgs et al. [58] apply), but also shows that the supercritical regime is like that on the
Erdős-Rényi random graph. While we believe this to be true much more generally for
high-dimensional graphs, we are not able to show this. The fact that pc is sufficiently
close to 1/(m− 1), as formalized in Assumption (2) and the fact that NBW mixed quite
fast and has short loops, as formalized in Assumptions (2) and (3), provide just enough
‘symmetry’ to push the argument through. Remarkably, as we show in more detail below,
the application of Theorem 13.13 to the hypercube does not need the lace expansion!

We continue to explain the basic philosophy of the proof of Theorem 13.13, which
consists of 5 key steps. This overview is similar in spirit as the one provided in [165],
some parts of which are copied verbatim.

Step 1: The number of vertices in large clusters is what it should be. We
start by investigating the number of vertices in large clusters:

Theorem 13.14 (Bounds on the cluster tail). Let G be a finite transitive graph of
degree m on V vertices such that the finite triangle condition (13.3.3) holds and put p =
pc(1 + εm) where εm = o(1) and εm � V −1/3. Then, for the sequence k0 = ε−2

m (ε3
mV )1/4,

(13.4.6) Pp(|C (0)| ≥ k0) = 2εm(1 + o(1)) .

Further,

(13.4.7)
Z≥k0

2εmV

P−→ 1,

where we recall that Z≥k is the number of vertices having cluster size at least k.
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This theorem resembles the statement that a branching process with Poisson offspring
distribution of mean 1 + ε has survival probability of 2ε(1 + O(ε)). The choice of k0 is
such that k0 � 1/ε2

m. This choice is inspired by the fact that P(T ≥ k0) = 2ε(1 + o(1))
precisely when k0 � 1/ε2, where T is the total progeny (=total population size) of
a Poisson branching process with mean 1 + ε offspring. Thus, Theorem 13.13 can be
interpreted by saying that the majority of vertices in clusters of size at least k0 are in the
same giant component.

Upper and lower bounds of order ε for the cluster tail were proved already by Borgs
et al. in [59] using Barsky and Aizenman’s differential inequalities [27] as discussed in
Chapters 3 and 9, and were sharpened in [166, Appendix A] to obtain the right constant
2. We omit further details.

Step 2: Uniform connection probabilities, non-backtracking random walk
and the triangle. One of the most useful estimates on percolation connection proba-
bilities relies on symmetry. To give this symmetry a quantitative shape, a simple key
connection between percolation and the mixing time of the non-backtracking walk is re-
vealed. In the analysis of the Erdős-Rényi random graph, symmetry plays a special role.
One instance of this symmetry is that the function Pp(v ←→ x) is constant whenever
x 6= v ∈ [n] and its value is precisely (V − 1)−1(Ep|C (v)| − 1) and it equals 1 when x = v.
Such a statement clearly does not hold on the hypercube at pc: the probability that two
neighbors are connected is at least pc ≥ 1/d, while the probability that 0 is connected to

one of the vertices in the barycenter of the cube is at most
√
d2−dEp|C (0)| by symmetry.

A key observation in the proof of Theorem 13.13 in [166] is that one can recover this
symmetry as long as we require the connecting paths to be longer than the mixing time

of the NBW, as shown in [166, Lemma 3.12]. In its statement, we write x
[a,b]←→ y for the

event that the graph distance dC (x)(x, y) ∈ [a, b]. We also write x
b←→ y for x

[0,b]←→ y, i.e., the
event that there exists a path of at most b occupied bonds connecting x and y. Further,
we write Bx(r) for the balls of intrinsic radius r around x.

Lemma 13.15 (Uniform connection estimates). Perform edge percolation on a graph
G satisfying the assumptions of Theorem 13.13. Then, for every r ≥ m0 and any vertex
x ∈ G,

(13.4.8) Ppc
(
0

[Tmix,r]←−−→ x
)
≤ (1 + o(1))

1

V
Epc|B(r)| ,

where Tmix is the uniform mixing time as defined above Theorem 13.13. In particular,

(13.4.9) Ppc
(
0

[Tmix,∞)←−−→ x
)
≤ (1 + o(1))

1

V
Epc |C (0)| .

The proof of the above lemma is short and elementary, see [166]. There it is also
shown how to obtain similar estimates for p = pc(1 + ε) (with an error depending on ε).
The uniformity of this lemma allows us to decouple the sum in the triangle diagram and
yields a simple proof of the strong triangle condition, as we now show:

Proof of the triangle condition in part (a) of Theorem 13.13. Let p ≤ pc. If one
of the connections in the sum 4p(x, y) is of length in [Tmix,∞), say between x and u,
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then we may estimate∑
u,v

Pp
(
x

[Tmix,∞)←−−→ u
)
Pp(u←→ v)Pp(v ←→ y)

≤ (1 + o(1))
1

V
Ep|C (0)|

∑
u,v

Pp(u←→ v)Pp(v ←→ y)

= (1 + o(1))
1

V
(Ep|C (0)|)3 ,(13.4.10)

where we have used Lemma 13.15 for the first inequality. Thus, we are only left to deal
with short connections:

(13.4.11) 4p(x, y) ≤
∑
u,v

Pp
(
x
Tmix←→ u

)
Pp
(
u
Tmix←→ v

)
Pp
(
v
Tmix←→ y

)
+O(χ(p)3/V ) .

We write, using the notation x
=t←→ y to denote that x is at graph distance precisely t from

y,

(13.4.12) Pp(x
Tmix←→ u) =

Tmix∑
t1=0

Pp(x
=t1←→ u) ,

and do the same for all three terms so that

(13.4.13) 4p(x, y) ≤
∑
u,v

Tmix∑
t1,t2,t3=0

Pp(x
=t1←→ u)Pp(u

=t2←→ v)Pp(v
=t3←→ y) +O(χ(p)3/V ) .

We bound

(13.4.14) Pp(x
=t1←→ u) ≤ m(m− 1)t1−1pt1(x, u)pt1 ,

simply because m(m − 1)t1−1pt1(x, u) = bt1(u − x) is an upper bound on the number of
simple paths of length t1 starting at x and ending at u. Hence,

4p(x, y) ≤ m3

(m− 1)3

∑
u,v

Tmix∑
t1,t2,t3=0

[p(m− 1)]t1+t2+t3pt1(x, u)pt2(u, v)pt3(v, y)(13.4.15)

+O(χ(p)3/V ) .

Since p ≤ pc and ti ≤ Tmix, assumption (2) of Theorem 13.13 gives that [p(m−1)]t1+t2+t3 =
1 + o(1), and it is a simple consequence of assumption (3) of Theorem 13.13 that

(13.4.16)
∑
u,v

Tmix∑
t1,t2,t3=0

[p(m− 1)]t1+t2+t3pt1(x, u)pt2(u, v)pt3(v, y) ≤ δx,y + o(1) ,

where o(1) vanishes as m→∞, concluding the proof. �
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Step 3: Most large cluster share large boundary. Since this is the most technical
part of the proof, at the expense of being precise, we have chosen to simplify notation and
suppress several parameters. We ignore several dependencies between parameters, and
refer to [166] for details. However, we do emphasize the role of two important parameters.
We choose r and r0 so that r � ε−1

m but just barely, and r0 � r in a way that becomes
clear later on. For vertices x, y, define the random variable

Sr+r0(x, y) =
∣∣{(u, u′) ∈ E : {x r+r0←→ u} ◦ {y r+r0←→ u′},(13.4.17)

|Bu(r + r0)| · |Bu′(r + r0)| ≤ ε−2(Ep|B0(r0)|)2
}∣∣ ,

where Bu(r) denotes the intrinsic ball of radius r around u, so that B0(r) = B(r) (recall
(11.3.3)). The important part of the definition of Sr+r0(x, y) is the first requirement

{x r+r0←→ u}◦{y r+r0←→ u′} (the second requirement is more technical). The edges contributing
to Sr+r0(x, y) are such that, if made occupied, they enforce a connection between x and
y, thus merging C (x) and C (y). These edges are used in the next step to sprinkle them.

Informally, a pair of vertices (x, y) is good when their clusters are large and Sr+r0(x, y)
is large, so that their clusters have many edges between them. This is made quantitative
in the following definition. In its statement, we use ∂Bx(r) = Bx(r) \Bx(r− 1) to denote
the vertices at graph distance equal to r:

Definition 13.16 ((r, r0)-good pairs). We say that x, y are (r, r0)-good if all of the
following occur:

(1) ∂Bx(r) 6= ∅, ∂By(r) 6= ∅ and Bx(r) ∩By(r) = ∅,
(2) |C (x)| ≥ (ε3

mV )1/4ε−2
m and |C (y)| ≥ (ε3

mV )1/4ε−2
m ,

(3) S2r+r0(x, y) ≥ V −1mε−2
m (Ep|B(r0)|)2.

Write Pr,r0 for the number of (r, r0)-good pairs.

In the following theorem, the asymptotics of the number of good pairs is investigated:

Theorem 13.17 (Most large clusters share many boundary edges). Let G be a graph
on V vertices and degree m satisfying the assumptions of Theorem 13.13. Assume that
εm satisfies εm � V −1/3 and εm = o(T−1

mix). Then,

Pr,r0
(2εmV )2

P−→ 1 .

Theorem 13.17 is the crucial ingredient to the proof of Theorem 13.13. It shows
that most large clusters have many edges between them, which is similar in spirit to the
statement that two (distinct) clusters of sizes s1 and s2 have s1s2 edges between them
on the complete graph. While this is not deterministically true in our general setting, it
turns out to be true for most pairs of clusters.

In light of Theorem 13.14, we expect that the number of pairs of vertices (x, y) with
|C (x)| ≥ (ε3

mV )1/4ε−2
m and |C (y)| ≥ (ε3

mV )1/4ε−2
m is close to (2εmV )2. Theorem 13.17

shows that almost all of these pairs have clusters that share many edges between them.
Theorem 13.17 allows us to prove Theorem 13.13, as is described in more detail in the
next step.

The difficulty in the proof of Theorem 13.17 is the requirement (3) in Definition 13.16.
Indeed, conditioned on survival (that is, on ∂Bx(r) 6= ∅, ∂By(r) 6= ∅ and that the
balls are disjoint), the random variable Sr+r0(x, y) is not concentrated and hence it is
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hard to prove that it is large. In fact, even the variable |B0(r0)| is not concentrated.
This is not a surprising fact: the number of descendants at generation n of a branching
process with mean µ > 1 divided by µn converges as n → ∞ to a non-trivial random
variable. Non-concentration occurs because the first generations of the process have a
strong and lasting effect on the future of the population. In [166], this non-concentration
is counteracted by conditioning on the whole structure of Bx(r) and By(r). Since r
is bigger than the correlation length (r � ε−1

m ), under this conditioning the variable
Sr+r0(x, y) is concentrated (as one would expect from the branching process analogy).

Step 4: Sprinkling and improved sprinkling. The sprinkling technique was
invented by Ajtai, Komlós and Szemerédi [15] to show that |Cmax| = ΘP(2

d) when
p = (1 + ε)/d for fixed ε > 0 and can be described as follows. Fix some small θ > 0
and write p1 = (1 + (1− θ)ε)/d and p2 ≥ θε/d such that (1 − p1)(1 − p2) = 1 − p. Let
Gp be the subgraph of G obtained by removing each edge independently with probability
1 − p. It is clear that Gp is distributed as the union of the edges in two independent
copies of Gp1 and Gp2 . The sprinkling method consists of two steps. The first step is
performed in Gp1 and uses a branching process comparison argument together with an
Azuma-Hoeffding concentration inequality to obtain that whp at least c22d vertices are
contained in connected components of size at least 2c1d for some small but fixed constants
c1, c2 > 0. In the second step we add the edges of Gp2 (these are the “sprinkled” edges)
and show that they connect many of the clusters of size at least 2c1d into a giant cluster
of size ΘP(2

d).
Let us give some details on how the last step is done. A key tool here is the isoperi-

metric inequality for the hypercube stating that two disjoint subsets of the hypercube
of size at least c22d/3 have at least 2d/d100 disjoint paths of length C(c2)

√
d connecting

them, for some constant C(c2) > 0. (The d100 in the denominator is not sharp, but this
is immaterial as long as it is a polynomial in d.) This fact is used in the following way.
Write V ′ for the set of vertices that are contained in a component of size at least 2c1d in
Gp1 , so that V ′ ≥ c22d. We say that sprinkling fails when |Cmax| ≤ c22d/3 in the union
Gp1 ∪ Gp2 . If sprinkling fails, then we can partition V ′ as the disjoint union of A and B
such that both A and B have cardinality at least c22d/3 and any path of length at most

C(c2)
√
d between them has an edge that is p2-closed. The number of such partitions is

at most 22d/2c1d . The probability that a path of length k has a p2-closed edge is 1 − pk2.
Applying the isoperimetric inequality and using that the paths guaranteed to exist by it
are disjoint so that the edges in them are independent, the probability that sprinkling
fails is at most

(13.4.18) 22d/2c1d ·
(

1−
(θε
d

)C(c2)
√
d
)2d/d100

= e−2(1+o(1))d

,

which tends to 0 (even rather quickly).
The sprinkling argument above is not optimal due to the use of the isoperimetric

inequality. It is wasteful because it assumes that large percolation clusters can be “worst-
case” sets, that is, sets that saturate the isoperimetric inequality (e.g., two balls of radius

d/2−
√
d around two vertices at graph distance d). However, it is in fact very improbable

for percolation clusters to be similar to this kind of worst-case sets. In [166], this is replaced
by Theorem 13.17 showing that percolation clusters are “close” to uniform random sets of
similar size, so that two large clusters share many closed edges with the property that if
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we open even one of them, then the two clusters connect. Further, the above argument is
quite specific to the hypercube, while we aim for more universal results. The general result
in Theorem 13.17 allows for this, as it allows us to improve the above crude sprinkling
argument.

Let us now describe the heuristics of the improved sprinkling argument. While pre-
viously there were paths of length

√
d connecting the two clusters, by Theorem 13.17,

instead, there are paths of length precisely 1. The final line of the proof, replacing
(13.4.18), then becomes

(13.4.19) 22εV/(kmε−2) ·
(

1− θε

m

)mε2V
≤ e−θε

3V (1+o(1)) ,

where km is some sequence with km → ∞ very slowly as V → ∞. The right hand side
of (13.4.19) tends to 0 since ε3V → ∞. Compared with the logic leading to (13.4.18),
this line is rather suggestive: whp 2εV vertices are in components of size at least kmε

−2,
explaining the 22εV/(kdε

−2) term in (13.4.19).
The most difficult part in [166] is justifying the second term showing that for any

partition of these vertices into two sets of size of order εV , the number of closed edges
between them is at least ε2mV . This is implied by Theorem 13.17. Perhaps not surpris-
ingly, ε2mV is the expected number of edges that two random uniform sets of size εV
have between them.

Step 5: Unlacing hypercube percolation. In this step, we return to the special
setting of the hypercube. In order to apply Theorem 13.17, we need to prove several
estimates. For the hypercube, m = d, which indeed tends to infinity when V = 2d →∞.
Thus, condition (1) in Theorem 13.13 holds. Conditions (2) and (3) both rely on two
key ingredients: properties of NBWs on the hypercube (appearing in terms of Tmix in
Condition (2) and in Condition (3)), and an estimate on (d − 1)pc. We explain the
necessary ingredients in this order below. As we shall see, these estimates also allow us
to avoid the use of the lace expansion altogether. We start by investigating Tmix following
the work of Fitzner and the second author [104]:

Theorem 13.18 (Mixing time NBW on hypercube [104]). For NBW on the hypercube
{0, 1}d and for every ε > 0, there exists d0 such that for all d ≥ d0,

(13.4.20) Tmix ≤ (1 + ε)
d

2
log d.

As we explain in more detail below, d
2

log d also arises as the mixing time of simple

random walk on the hypercube {0, 1}d (see e.g., the work on mixing times by Levin,
Peres and Wilmer [205], or Aldous [16, Lemma 2.5(a)] where it is shown that the mixing
times of discrete-time random walk is similar to that in continuous time). Thus, the
non-backtracking condition does not change the mixing time very much.

We explain how to identify the mixing time of continuous-time random walk on the
hypercube, and after this explain how to obtain that of NBW. The main advantage of
working in continuous time is that the random walk becomes aperiodic.

Continous-time random walk on {0, 1}d can be seen as a random walk on subsets of
[d]. Indeed, we can identify x ∈ {0, 1}d with a subset A(x) ⊆ [d] by letting i ∈ A(x)
precisely when xi = 1. Then, continuous-time random walk has the interpretation of d
independent rate 1/d clocks, and when the ith clock rings, element i is removed from At
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when i ∈ At and added to At otherwise. We let A0 = ∅, which corresponds to the random
walk starting in 0 ∈ {0, 1}d. Then, the transition probability at time t, which we denote
by st, is given by

(13.4.21) st(A) = P(At = A) =
∏
i∈[d]

qt(i)
1{i∈A}(1− qt(i))1{i6∈A} = qt(1)|A|(1− qt(1))d−|A|,

where qt(i) = P(i ∈ At) and we have used symmetry of the different elements. To
determine qt(1), we note that

(13.4.22)
d

dt
qt(1) =

1

d
[−qt(1) + (1− qt(1))] =

1

d
[1− 2qt(1)],

so that

(13.4.23) qt(1) =
1

2
(1− e−2t/d).

This makes it easy to deduce the uniform mixing time in (13.4.3). The details of this
proof are left as an exercise:

Exercise 13.10 (Uniform mixing time hypercube). Fill in the details of the proof that
Tmix = (1 + o(1))d

2
log d for continuous-time simple random walk on the hypercube {0, 1}d.

The proof of Theorem 13.18 is based on Fourier theory. The analysis is a bit harder
due to the bipartite nature of the hypercube, meaning that, when started from 0 ∈ {0, 1}d,
at time t the random walk (non-backtracking or simple alike) has to be at an even location
when t is even and at an odd location when t is odd. This is also reflected in the definition
of the mixing time in (13.4.3), where the average between two consecutive times is taken.
Let us now introduce Fourier theory on the hypercube. Let the Fourier dual of the
hypercube {0, 1}d be given by {0, 1}d, where, for a bounded function f : {0, 1}d → R and
k ∈ {0, 1}d,

(13.4.24) f̂(k) =
∑

x∈{0,1}d
(−1)x·kf(x).

Then, the Fourier inversion theorem states that

(13.4.25) f(x) =
1

2d

∑
k∈{0,1}d

(−1)x·kf̂(k).

Let the simple random walk step distribution be D(x) = (1/d)1{{0,x}∈E}, so that

(13.4.26) D̂(k) =
∑

x∈{0,1}d
(−1)x·kD(x) =

1

d

d∑
i=1

(−1)ki = 1− 2a(k)

d
,

where a(k) = #{i : ki = 1} is the number of ones in k.
The main technical estimate in the analysis of the mixing time for NBW on the

hypercube shows that the Fourier transform decays exponentially fast towards zero for
any Fourier variable k 6= 0, that is,

(13.4.27) pt(k) ≤
(
|D̂(k)| ∨ 1/

√
d− 1

)t−1

(keep in mind that |D̂(k)| < 1 for every k 6= 0). The proof that this implies Theorem
13.18 is left as an exercise:
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Exercise 13.11 (Uniform mixing time NBW on hypercube). Fill in the details of the
proof that, for any ε > 0, Tmix(1/ log d) ≤ (1+ε)d

2
log d for d large enough for discrete-time

non-backtracking random walk on the hypercube {0, 1}d.

We continue with the necessary bound on pc in order to show that [(d − 1)pc]
Tmix =

1 + o(1). Since Tmix is now known to be Θ(d log d), this means that we need a bound of
the form (d − 1)pc ≤ 1 + o((d log d)−1). The following lemma can be used to prove that
(d− 1)pc ≤ 1 +O(d−2) :

Lemma 13.19 (Recursive bounds on Ep|∂B(k)| [165]). For any c > 0 there exists a
K > 0 such that if

p =
1 + 5/(2d2) +K/d3

d− 1
,

then, for d = d(K) sufficiently large and for any k ≥ 1 satisfying Ep|B(k)| ≤ 2d/2/d3,

(13.4.28) Ep|∂B(k)| ≥ [1 + c/d3]Ep|∂B(k − 1)|.

The proof of Lemma 13.19 follows by induction combined with an appropriate split of
the expectations to account for self-intersections. Lemma 13.19 can be used to show that
for p with (d− 1)p = 1 + 5/(2d2) +K/d3, Ep|B(k)| ≥ 2d/2/d3, so that p > pc. This is left
as an exercise:

Exercise 13.12 (Upper bound on pc on hypercube). Prove that Lemma 13.19 implies
that Ep|B(k)| ≥ 2d/2/d3 when (d − 1)p = 1 + 5/(2d2) + K/d3 with K suffieiently large.
Conclude that (d− 1)pc < 1 + 5/(2d2) +K/d3.

Open problems for hypercube percolation. We close this section by discussing
two of the main open problems for hypercube percolation. The first one is the scaling
limit in the critical window:

Open Problem 13.3 (Scaling limit critical hypercube). For the
hypercube {0, 1}d and p = pc({0, 1}d)(1 + θ2−d/3), prove that

(13.4.29) V −2/3
(
|C(i)|

)
i≥1

d−→ (γi(θ))i≥1,

for some scaling limits (γi(θ))i≥1.

We expect the scaling limit in Open Problem 13.3 to be closely related to the scaling
limit on the Erdős and Rényi random graph, as discussed in more detail in Section 13.5.
There, we also discuss recent progress on this problem for the Hamming graph.

We continue to discuss the discrete duality principle for hypercube percolation. Com-
paring (13.1.1) for subcritical Erdős-Rényi random graphs, and (13.1.3) for supercriti-
cal Erdős-Rényi random graphs shows that the second largest supercritical cluster for
p = pc(1 + ε) is closely related to the largest subcritical cluster for p = pc(1 − ε). This
is known as discrete duality principle, and it is a classical result for branching processes
(which we discuss around (2.1.21)). Due to the “almost infinite-dimensional nature” of
the hypercube, we believe that the discrete duality principle extends to hypercube perco-
lation:
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Open Problem 13.4 (Duality principle hypercube). Prove that the
hypercube satisfies the discrete duality principle, by showing that the
asymptotics of |C(2)| for p = pc(1 + ε) with ε = o(1) with ε� 2−d/3,
to leading order, agrees with that of |C(1)| for p = pc(1 − ε) with
ε = o(1) with ε� 2−d/3.

A major difficulty in establishing Open Problem 13.4 is that we do not know how |C(1))|
for p = pc(1− ε) with ε = o(1) with ε� 2−d/3 behaves. Indeed, (13.3.6) in Theorem 13.8
implies that whp |C(1)| ≤ 2ε−2 log(ε32d), similarly to (13.1.1) for the subcritical Erdős-
Rényi random graph. However, a matching lower bound is missing. Hulshof and Nachmias
[179] recently showed that |C(1)| = ΘP

(
ε−2 log(ε32d)

)
, which, even though it is a major

result, still does not identify the correct constant in the subcritical regime. Interestingly,
Hulshof and Nachmias [179] do identify the correct constant for the related problem of
the largest diameter of a subcritical cluster. Results on |C(2)| in the supercritical regime,
beyond the statement that it is oP(|C(1)|), are completely lacking, and appear to be quite
hard to derive.

Bollobás, Kohayakawa and  Luczak [56] establish the discrete duality principle for the
hypercube in the range of p parameters that they consider, which is a hopeful sign. For
their range of p’s, this problem is slightly easier, as comparisons to branching processes
are much more powerful there. A version of the discrete duality principle for the two-
dimensional Hamming graph can be found in [164].

13.5. Scaling limits of critical random graphs

In this section, we discuss scaling limits of cluster sizes in the critical window. We focus
on the Erdős-Rényi random graph, where the scaling limit is identified in the beautiful
work of David Aldous [17]. Aldous’ theorem can be seen as concluding a long line of
research, mainly in the probabilistic combinatorics community, on scaling behavior of the
Erdős-Rényi random graph at, and close to, the critical point. This work was initiated by
Erdős and Rényi [97, 98], and explored to full detail in works by Bollobás,  Luczak, Knuth,
Pittel and Wierman [182, 209]. Bollobás [53] and  Luczak [208] were the first to identify
the scaling window of the Erdős-Rényi random graph. For results on the Erdős-Rényi
random graph we further refer to the monographs [20, 54, 156, 183] and the references
therein.

Let us start by describing the main result. Take p = (1+θn−1/3)/n, and recall that C(i)

denotes the ith largest component. It is convenient to make the dependence on θ explicit,
so that from now on we write C(i)(θ). Then Theorem 13.1 shows that n−2/3|C(1)(θ)| is a
tight sequence of random variables. In this section, we informally describe the scaling
limit of n−2/3

(
|C(i)(θ)|

)
i≥1

.

To formulate the convergence result, define `2
↘ to be the set of infinite sequences

x = (xi)i≥1 with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i≥1 x
2
i <∞, and define the `2

↘ metric by

(13.5.1) d(x, y) =

√∑
i≥1

(xi − yi)2.
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For fixed θ ∈ R, consider the inhomogeneous Brownian motion, or Brownian motion
minus a parabola, as

(13.5.2) Bθ(t) = B(t) + θt− 1
2
t2,

where B is standard Brownian motion. The reflected version of this process is denoted
by Rθ, and can be obtained as

(13.5.3) Rθ(t) = Bθ(t)− min
0≤u≤t

Bθ(u).

Aldous [17] shows that the excursions of Bθ from 0 can be ranked in increasing order as,
say, γ1(θ) > γ2(θ) > . . .. The main result for the cluster sizes of the Erdős-Rényi random
graph within the scaling window is as follows:

Theorem 13.20 (Cluster sizes Erdős-Rényi random graph within the scaling window
[17]). For the Erdős-Rényi random graph with p = (1 + θn−1/3)/n, as n→∞,

(13.5.4)
(
n−2/3|C(i)(θ)|

)
i≥1

d−→
(
γi(θ)

)
i≥1
,

in distribution and with respect to the `2
↘ topology.

While we do not fully prove Theorem 13.20, we do explain the ideas leading up to it.
The proof relies on an exploration of the components of the Erdős-Rényi random graph.
To set this exploration up, we successively explore clusters, starting from the cluster of
a single vertex. In the exploration, we keep track of the number of active and neutral
vertices. Here we call a vertex active when it has been found to be part of the cluster that
is currently explored, but its neighbors in the random graph have not yet been identified.
We call a vertex neutral when it has not been active yet.

This exploration is described in terms of a stochastic process (Si)i≥0, which encodes
the cluster sizes as well as their structure. To describe the exploration process, we let
S0 = 0, N0 = n− 1, R0 = 1, and let Si for i ≥ 1 satisfy the recursion

(13.5.5) Si = Si−1 +Xi − 1,

where Xi ∼ Bin(Ni−1, p). Here Ni−1 denotes the number of neutral vertices after we have
explored i − 1 vertices. The fact that Ni decreases as i increases plays a major role in
determining the scaling limit of critical clusters, and is caused by the so-called depletion-
of-points effect, indicating that during the exploration, the number of potential further
neighbors of vertices decreases.

Let us highlight some of the properties of the above exploration. The quantity
− infj∈[i] Sj denotes the number of disjoint clusters that have been fully explored after
the ith exploration, while, for i ≥ 1,

(13.5.6) Ri = Si − inf
j∈[i−1]

Sj + 1

denotes the number of active vertices at time i in the cluster that we are currently ex-
ploring. We see that, for i ≥ 1,

(13.5.7) Ni = n− i−Ri

denotes the number of neutral vertices after the ith exploration.
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We can view (Ri)i≥0 as the reflection of the process (Si)i≥0. The exploration can
perhaps be more easily understood in terms (Ri)i≥0 When Ri = 0, we have fully explored
a cluster. In particular, when we explore C (v1), then

(13.5.8) |C (v1)| = inf{i > 0: Ri = 0}.

After having explored C (v1), we explore C (v2) for some v2 6∈ C (v1), and obtain that

(13.5.9) |C (v2)| = inf{i > |C (v1)| : Ri = 0} − |C (v1)|.

Iterating this procedure, we see that

(13.5.10) |C (vj)| = inf{i > |C (v1)|+ · · ·+ |C (vj−1)| : Ri = 0}−|C (v1)|−· · ·−|C (vj−1)|.

Inspecting (13.5.6), we thus see that a cluster is fully explored when Si− infj∈[i−1] Sj+1 =
0, which is the same as saying that Si = infj∈[i] Sj for the first time. Thus, the total number
of clusters that are fully explored up to time i indeed equals − infj∈[i] Sj.

It turns out to be more convenient to deal with the process (Si)i≥0 than with (Ri)i≥0,
since the scaling limit of (Si)i≥0 can be more easily described:

Theorem 13.21 (Cluster exploration Erdős-Rényi random graph within the scaling
window [17]). For the Erdős-Rényi random graph with p = (1 + θn−1/3)/n, as n→∞,

(13.5.11)
(
n−1/3Stn2/3

)
t≥0

d−→
(
Bθ(t)

)
t≥0
.

Theorem 13.21, together with (13.5.6) and the continuity of the reflection mapping,
implies that

(13.5.12)
(
n−1/3Rtn2/3

)
t≥0

d−→
(
Rθ(t)

)
t≥0
, where Rθ(t) = Bθ(t)− inf

s∈[0,t]
Bθ(s).

Since the excursions of
(
Rθ(t)

)
t≥0

describe the component sizes, (13.5.12) can be seen to

imply Theorem 13.20 and describes the limiting law of the largest connected components.

Let us next informally describe the proof of Theorem 13.21. Since n−1/3Stn2/3 will be
seen to converge in distribution, and we are investigating the exploration process at times
tn2/3, we simplify our lives considerably, and approximate (13.5.7) to Ni ≈ n − i. This
means that the random variables (Xi)i≥1 in (13.5.5) are close to being independent with

(13.5.13) Xi ≈ Bin(n− i, p) = Bin
(
n− i, (1 + θn−1/3)/n

)
.

Here, and in what follows, ≈ denotes an uncontrolled approximation.
We now apply the Poisson limit theorem, which states that Bin(µ/n, n)-distributed

random variables are well approximated by a Poisson r.v. with parameter µ whenever n
is large. In our case,

(13.5.14) µ = (n− i)p = (n− i)(1 + θn−1/3)/n ≈ 1 + θn−1/3 − i/n.

Note that when i = tn2/3, both correction terms are of the same order in n. Thus, we
approximate

(13.5.15) Si ≈
i∑

j=1

(Yj − 1),
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where Yj ∼ Poi(1 + θn−1/3 − j/n) are independent. Since sums of independent Poisson
variables are Poisson again, we thus obtain that

(13.5.16) Si ≈ S∗i ,

where

(13.5.17) S∗i ∼ Poi
( i∑
j=1

(1 + θn−1/3 − j/n)
)
− i = Poi

(
i+ iθn−1/3 − i2

2n

)
− i,

and (S∗i − S∗i−1)i≥1 are independent. Now we multiply by n−1/3 and take i = tn2/3 to
obtain

(13.5.18) n−1/3S∗tn2/3 ∼ n−1/3
(
Poi
(
tn2/3 + tθn1/3 − 1

2
t2n1/3

)
− tn2/3

)
,

Since a Poisson process is to leading order deterministic, we can approximate

(13.5.19) n−1/3S∗tn2/3 ∼ n−1/3
(
Poi(tn2/3

)
− tn2/3

)
+ tθ − 1

2
t2

d−→ B(t) + tθ − 1
2
t2,

where (B(t))t≥0 is standard Brownian motion and we use the fact that m−1/2
(
Poi(tm

)
−

tm
)
t≥0

d−→ (B(t))t≥0 as m → ∞. This informally explains the proof of Theorem 13.21.

We also directly see that the quadratic term in (13.5.19) arises from the depletion-of-
point effect discussed below (13.5.5). To make this proof rigorous, one typically resorts
to Martingale Functional Central Limit Theorems, see for example how Aldous [17] does
this nicely.

Further results on critical Erdős-Rényi random graphs. There are many recent
extensions to the above scaling limit results. For example, already in his original paper,
Aldous also investigates the surplus of the largest connected components. The surplus of
a graph is the minimal number of edges that need to be removed in order to obtain a tree,
and is related to the number of cycles in the graph. We leave this as an excercise:

Exercise 13.13 (Surplus critical Erdős-Rényi clusters). Prove, using Theorem 13.21
and (13.5.12), that the number of cycle edges between vertices found in the time interval
[t1n

2/3, t2n
2/3] has an approximate Poisson distribution with random parameter

(13.5.20)

∫ t2

t1

Rθ(t) dt.

Interestingly, Aldous gives a second interpretation of the scaling limit of clusters in
terms of multiplicative coalescents. Indeed, when we interpret θ as a time variable and
use the Harris coupling of percolation (see page 13), we see that within the time interval
(θ, θ+εθ), two clusters of size |C(i)(θ)| = xn2/3 and |C(j)(θ)| = yn2/3 merge with probability
close to εθ

n4/3 (xn2/3)(yn2/3) = εθxy to create a cluster of size (x + y)n2/3. When rescaling

the cluster sizes by n−2/3, this dynamics is called the multiplicative coalescent.

More recent work of Addario-Berry, Broutin and Goldschmidt [2, 3] shows that the
largest critical clusters, viewed as metric spaces, converge in distribution in an appropriate
topology to some limiting graphs. The components C(i) are considered as metric spaces
using the graph distance rescaled by n−1/3. The authors prove that the sequence of
rescaled components converges to a sequence of continuous compact metric spaces. These
limiting continuum graphs are almost trees, but they contain a finite number of cycles
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corresponding to the surpluses of the clusters (recall Exercise 13.13). The convergence is
in the Gromov-Hausdorff-Prokhorov topology on metric spaces. This result has several
interesting consequences, such as the convergence in distribution of the diameter of C(i),
rescaled by n−1/3 and of the array of distances between uniformly chosen vertices in the
cluster.

Scaling limit of cluster sizes in inhomogeneous random graph. Scaling lim-
its for critical random graphs have been obtained in many settings, in particular when
the graphs themselves are quite inhomogeneous. Here we can think of percolation on
base graphs that have variable degrees, or inhomogeneous percolation, where the edge
occupation probabilities are different from vertex to vertex. These edge probabilities are
moderated by vertex weights (wi)i∈[n], where wi describes the propensity of edges for ver-
tex i. Examples are rank-1 inhomogeneous random graphs, where the edge probability
between vertex i and j is given by

(13.5.21) pij = 1− e−wiwj/
∑
k∈[n] wk .

This model is sometimes also called the Norros-Reittu model or the Poisson random
graph. The interpretation of wi is that it is (close to) the expected degree of vertex i, as
investigated in more detail in the following exercise:

Exercise 13.14 (Degrees in rank-1 inhomogeneous random graphs). Prove that the
degree of vertex i is converging to a Poi(wi)-distributed random variable as n→∞.

We assume that the weights are sufficiently regular, in the sense that their empirical
distribution function Fn converges weakly to some limiting distribution function F , i.e.,

(13.5.22) Fn(x) =
1

n

∑
i∈[n]

1{wi≤x} → F (x) for all continuity points x ∈ R of F.

Exercise 13.15 (Weak convergence degrees in rank-1 inhomogeneous random graphs).
Let U ∈ [n] denote a vertex that is chosen uniformly from [n]. Prove that (13.5.22) implies
that the degree of U converges in distribution to a Poi(W ) random variable, where W has
distribution function F .

Assume that the second moment of the weights converges, i.e., 1
n

∑
i∈[n] w

2
i → E[W 2],

then the random graph is critical when

(13.5.23) ν =
E[W 2]

E[W ]
= 1.

This can be seen by noting that, under these conditions, the number of other neighbors
of a random neighbor of a random vertex (i.e., neighbors of neighbors not equal to the
random vertex itself) has asymptotic distribution Poi(W ?), where W ? is the size-biased
version of W for which

(13.5.24) P(W ? ≤ w) =
E[W1{W≤w}]

E[W ]
.

It turns out that the local neighborhood of a uniformly picked individual is close to a
branching process where the root has offspring distribution Poi(W ), while all other vertices
have offspring distribution Poi(W ?). The expected value of Poi(W ?) equals E[Poi(W ?)] =
ν, so that for ν = 1 the branching process is critical. This informally explains (13.5.23).
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When we also assume that the third moment of the weights converges, i.e.,

(13.5.25)
1

n

∑
i∈[n]

w3
i → E[W 3] <∞,

where W has distribution function F , then also the scaling limits, at criticality, are given
by rescaled versions of the multiplicative coalescent scaling limit in the critical Erdős-
Rényi random graph. The third moment in (13.5.25) implies that Poi(W ?) has finite
variance, in which case one can expect Brownian limits in the cluster exploration process
as in Theorem 13.21. See for example the work by Bhamidi et al. [51], and Turova [255].

Interestingly, when the third moment of the weights tends to infinity, different scalings
and scaling limits arise. The simplest example arises when wi = (cn/i)1/(τ−1) for some
constant c > 0, τ > 1, which corresponds to asymptotic weight distribution F (x) = 1 −
cx−(τ−1) for x > c1/(τ−1). We take τ ∈ (3, 4), so that

∫∞
0
x3dF (x) = E[W 3] =∞, where W

has distribution function F . By choosing c appropriately, we can make ν = E[W 2]/E[W ] =
1, so that the random graph is critical. In this case, 1

n

∑
i∈[n] w

3
i ≈ n3/(τ−1)−1 � 1. It

turns out that now n−(τ−2)/(τ−1)(|C(i)|)i≥1 converges, interestingly again to a multiplicative
coalescent. The scaling limit of the cluster exploration process in Theorem 13.21 changes
dramatically, and is now described in terms of so-called thinned Lévy processes. See [49]
for more details.

Many more results have appeared about the critical behavior of such random graphs,
and we refer the reader to [47, 48, 50, 87, 88, 188, 217, 229] and the references therein. The
proofs all revolve around the appropriate exploration processes and their scaling limits.

Problems in identifying the scaling limits for critical high-dimensional tori.
Now we return to percolation on critical high-dimensional tori. As we have seen in the
above description, scaling limits of critical random graphs are usually obtained by applying
weak convergence results, such as Martingale Functional Central Limit Theorems, to the
exploration processes that describe the exploration of such graphs. Here, we are helped
by the fact that the models are sufficiently mean field, meaning that vertices interact with
one another in roughly the same way. For example, for the Erdős-Rényi random graph, all
vertices are the same, which makes that the depletion-of-points effect comes out in a really
simple form as the −t2/2 term in (13.5.2) and as the Ni = n−i−Si+infj∈[i−1] Sj−1 ≈ n−i
term in (13.5.7) (recall also the discussion below (13.5.5)).

Unfortunately, on lattices, the depletion-of-points-effect is far less homogeneous. Some
vertices that we explore still have many neighbors that are neutral, while others have far
fewer than expected. On average, after a long time, most active vertices should have of
the order 1 minus something small neighbors that become active after exploration. For
example, on the hypercube, the scaling window is of width 2−d/3/d, so that, after of the
order 22d/3 explorations, we can expect vertices to have on average [1 + O(2−d/3/d)]/pc
neutral neighbors. This number is extremely close to d, and order 1 of them will be found
to be neighbors of the vertex that is currently explored. One cannot expect to achieve
this by the simple exploration process that was used for the Erdős-Rényi random graph.
However, we do believe that the scaling limits are the same:
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Open Problem 13.5 (Scaling limit critical high-dimensional tori).
Consider the Tn,d with d > 6 and fix p = pc(Zd)(1 + θV −1/3). Prove
that

(13.5.26) V −2/3
(
|C(i)|

)
i≥1

d−→ (γi(θ))i≥1 as n→∞,

where (γi(θ))i≥1 are muliplicative coalescents. One would expect a
translation of time and rescaling of γi as well as θ to be necessary to
make (γi(θ))i≥1 have the same law as the scaling limit on the Erdős-
Rényi random graph (γi(θ))i≥1 in Theorem 13.20.

Open Problem 13.5 appears out of reach with current methodology. We believe that
a rescaling in time in Open Problem 13.5 may be necessary, since we do not exactly
know the locatoin of pc(Zd) inside the scaling window. Mind that Open Problem 13.5 is
much harder than Open Problem 13.3, since the hypercube {0, 1}d has a larger amount
of symmetry, as shown by the bounds in terms of the non-backtracking random walk.

At the moment, there is only one example of a high-dimensional torus where Open
Problem 13.5 has been resolved. Indeed, for the Hamming graph, Federico, the second
author, den Hollander and Hulshof [206] have proved that the scaling limit in Open
Problem 13.5 exists for d = 2, 3, 4, with the scaling limit indeed being equal to that of the
Erdős-Rényi random graph. Interestingly, while the cluster sizes behave in a completely
universal way, the surplus edges behave rather differently. Indeed, the number of surplus
edges grows like a(d)|C(i)|/n for some appropriate constant depending on the dimension.
The number of long cycles, however, does satisfy the same scaling as for the Erdős-Rényi
random graph as in Exercise 13.13, This shows that even within the Erdős-Rényi random
graph differences can arise. We believe that in great generality the number of surplus
edges on high-dimensional tori satisfies different scaling as on the Erdős-Rényi random
graph.

The proof in [206] is by a two-scale exploration, which remedies the problem that the
number of potential neighbors in the exploration process varies substantially. Further,
Federico, the second author, den Hollander and Hulshof [206] rely on the precise char-
acterization of the critical value as identified by them in [207], so as to cancel out short
cycles appearing in the exploration. This exact cancelation also partly explains why their
methods fail in higher dimensions, as this would require a more refined analysis of the
critical point. We refer to Section 15.5 for more details on asymptotics of percolation
critical values, where also the critical value of the Hamming graph is discussed.

13.6. The role of boundary conditions

In this section, we describe some results that explore the role of boundary conditions
in high-dimensional percolation. So far, we have studied periodic boundary conditions,
leading to percolation on high-dimensional tori. The key advantage of periodic boundary
conditions is that the resulting graph is transitive, meaning that every vertex plays the
exact same role. Alternative boundary conditions that we consider in this section are the
following:

Zero boundary conditions: Zero boundary conditions arise when we consider
connections that only use edges in [0, n − 1]d. In other words, the clusters for
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zero boundary conditions are
(
C (z)(x)

)
x∈[0,n−1]d

with C (z)(x) = C (x; [0, n − 1]d),

where C (x;A) denotes the cluster of x in the percolation configuration where
only the edges between vertices in A are considered.

Bulk boundary conditions: Bulk boundary conditions arise when we declare
two vertices x, y ∈ [0, n − 1]d connected whenever y ∈ C (x). In other words,
the clusters for bulk boundary conditions

(
C (b)(x)

)
x∈[0,n−1]d

are the original Zd-
clusters intersected with the cube, C (b)(x) = C (x) ∩ [0, n− 1]d.

Wired boundary conditions: In wired boundary conditions, we identify all ver-
tices on the boundary ∂[0, n − 1]d = [0, n − 1]d \ [1, n − 2]d, and say that x and
y are connected when either y ∈ C (x; [0, n− 1]d) or x and y are both connected
to the boundary. Denote the cluster of x under wired boundary conditions by
C (w)(x) for x ∈ [0, n− 1]d.

In each of the above boundary conditions, we let |Cmax| denote the maximal cluster size,
so that, for example, |C (b)

max| = maxx∈[0,n−1]d |C (b)(x)|. Clearly, |C (z)
max| ≤ |C (b)

max| ≤ |C (w)
max|

a.s., since these three objects can all be defined in terms of a percolation configuration
on Zd. Further, since [0, n− 1]d \ [1, n− 2]d is identified to one point, the wired boundary
conditions satisfy that |C (w)

max| ≥ cnd−1 for some c > 0.
When p 6= pc, the boundary conditions ought to play a minor role. See, for example,

the work of the second author and Redig [167], where this is proved when p 6= pc is
independent of n. We see that boundary conditions are relevant in the critical case.
Theorem 13.9 shows that the largest connected components are of order V 2/3 = n2d/3 for
periodic boundary conditions, and we give bounds on the largest connected components
under the related boundary conditions in this section. Most of the results mentioned in
this section are direct consequences of the work by Aizenman in [8], but we also extend
some of his results:

Theorem 13.22 (The role of boundary conditions [8]). For percolation on Zd with
d ≥ 11, there exist constants C1 and ε > 0 such that

(13.6.1) lim
n→∞

Ppc(εn4 ≤ |C (b)

max| ≤ C1n
4 log n) = 1,

and

(13.6.2) lim
n→∞

Ppc(εn4 ≤ |C (z)

max| ≤ C1n
4 log n) = 1.

The upper bound in (13.6.1) in Theorem 13.22 follows from Aizenman [8, (4.18)],
together with the fact that η = 0 in the x-space sense by Theorem 11.4. The upper
bound in (13.6.2) follows from that in (13.6.1). The lower bounds are proved below.
Aizenman [8, (4.18)] proves a lower bound with ε > 0 replaced by εn for any εn = o(1)
and only for bulk boundary conditions. Our results improves [8, Theorem 5].

The proof of Aizenman [8, (4.18)] follows by using tree-graph inequalities like the
ones used in the proof of Lemma 13.10, but now for bulk boundary conditions. We note
that the largest cluster in a cube under bulk boundary conditions scales as n4+o(1), which
suggests that large critical clusters are four dimensional. We return to this issue in Section
15.1 below. Note that n4 � V 2/3 = n2d/3 precisely when d > dc = 6. This suggests that
the maximal clusters under bulk and periodic boundary conditions grow at the same rate
when d < dc, but proving this seems out of reach at this moment.
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Aizenman [8] proves several more interesting results related to spanning clusters, which
are the clusters that connect two opposite sides of the cube (that is, clusters connecting
the hyperplanes {0} × [0, n− 1]d−1 and {n− 1} × [0, n− 1]d−1). He proves that there are
nd−6+o(1) of such spanning clusters and that the largest one has size n4+o(1), as for the
largest cluster. Thus, in high dimensions, there are many large spanning clusters.

We now present the proof of the lower bound in (13.6.2), which is novel and implies
the lower bound in (13.6.1):

Proof of the lower bound in (13.6.2). Fix ε > 0. Without loss of generality,
assume that n is a multiple of 4. Let

(13.6.3) Z≥εn4 =
∑

x∈[n/4,3n/4]d

1{|C (z)(x)|≥εn4}.

We use the second moment method on Z≥εn4 to show that Z≥εn4 ≥ 1 with high probability.
For this, it is enough to show that

(13.6.4) Epc [Z≥εn4 ]→∞, Varpc(Z≥εn4)� Epc [Z≥εn4 ]2.

We start by proving a lower bound on Epc [Z≥εn4 ], for which we notice that

(13.6.5) Epc [Z≥εn4 ] =
∑

x∈[n/4,3n/4]d

Ppc
(
|C (z)(x)| ≥ εn4

)
.

Since |C (x)| ≥ εn4 implies that either |C (z)(x)| ≥ εn4 or x ←→ ∂[0, n − 1]d, we obtain
that

(13.6.6) Ppc
(
|C (z)(x)| ≥ εn4

)
≥ Ppc

(
|C (x)| ≥ εn4

)
− Ppc(x←→ ∂[0, n− 1]d).

We use Theorem 9.2 to bound the first term from below, and Theorem 11.5 to bound the
second term from above using Ppc(x←→ ∂[0, n− 1]d) ≤ Ppc(0←→ ∂Λn/4), leading to

(13.6.7) Ppc
(
|C (z)(x)| ≥ εn4

)
≥ cδ√

εn4
− Cex

(n/4)2
=
cδε
−1/2 − 16Cex

n2
≥ a

n2

with a = cδε
−1/2 − 16Cex > 0 when ε < c2

δ/(16C2
ex). We conclude that

(13.6.8) Epc [Z≥εn4 ] ≥
∑

x∈[n/4,3n/4]d

a

n2
=

a

2d
nd−2.

We proceed to investigate the variance of Z≥εn4 , for which we note that

Varpc(Z≥εn4) =
∑

x1,x2∈[n/4,3n/4]d

[
Ppc
(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4

)
(13.6.9)

− Ppc
(
|C (z)(x1)| ≥ εn4

)
Ppc
(
|C (z)(x2)| ≥ εn4

)]
.

We split depending on whether x1 ←→ x2 or not to obtain

Ppc
(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4

)
= Ppc

(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4, x1 ←→ x2

)
+ Ppc

(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4, x1 ←→/ x2

)
,(13.6.10)
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and bound both terms separately starting with the second. Note that, by the BK-
inequality,

Ppc
(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4, x1 ←→/ x2

)
(13.6.11)

≤ Ppc
(
{|C (z)(x1)| ≥ εn4} ◦ {|C (z)(x2)| ≥ εn4}

)
≤ Ppc

(
|C (z)(x1)| ≥ εn4

)
Ppc
(
|C (z)(x2)| ≥ εn4}

)
,

so that, by Theorem 11.4,

Varpc(Z≥εn4) ≤
∑

x1,x2∈[n/4,3n/4]d

Ppc
(
|C (z)(x1)|, |C (z)(x2)| ≥ εn4, x1 ←→ x2

)
(13.6.12)

≤
∑

x1,x2∈[n/4,3n/4]d

Ppc(x1 ←→ x2)

≤
∑

x1,x2∈[n/4,3n/4]d

A+O(|x1 − x2|−2/d)

|x1 − x2|d−2
,

Computing the sum leads to

(13.6.13) Varpc(Z≥εn4) ≤ cnd+2,

for some c > 0. Combining (13.6.8) and (13.6.13) shows that

(13.6.14) Varpc(Z≥εn4) ≤ cnd+2 � (and−2)2 ≤ Epc [Z≥εn4 ]2

precisely when d > 6. We conclude that

(13.6.15)
Z≥εn4

Epc [Z≥εn4 ]

P−→ 1,

and thus Z≥εn4 ≥ 1 whp since Epc [Z≥εn4 ]→∞. This proves that |C (z)
max| ≥ εn4 whp. Since

Epc [Z≥εn4 ] ≥ a
2d
nd−2, we even get that the number of vertices in components of size at

least εn4 exceeds nd−2+o(1) whp. �

While Aizenman’s results and their extensions identify the critical exponents related
to the cluster growth for different boundary conditions, they leave the exact scaling open:

Open Problem 13.6 (Scaling of critical high-dimensional clusters
for different boundary conditions). For critical percolation on the box
[0, n−1]d, identify the exact scaling of |C (b)

max|, |C (z)
max| and |C (w)

max|. We
believe that there exist constants ab, az, aw such that

(13.6.16)
|C (b)

max|
n4 log n

P−→ ab,
|C (z)

max|
n4 log n

P−→ az,
|C (w)

max|
nd−1

P−→ aw.

We continue by discussing results related to the boundary effects for periodic boundary
conditions as proved by the second author and Sapozhnikov [170]. They prove that (all
results with high probability) clusters have long cycles with positive probability, and the
length of such cycles is of order V 1/3. Further, any cycle that is long (for example, any
cycle having displacement at least n/4 is considered to be long) contains at least V 1/3

edges. Finally, such long cycles go around the torus at least V 1/6/n = n(d−6)/6 times.
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Again this highlights the importance of the boundary conditions, as well as the special
role that dc = 6 plays. Finally, this means that when ‘unwrapping’ large percolation
clusters on the torus, their spatial extent becomes V 1/6, while their size is V 2/3. Since
V 2/3 = (V 1/6)4, this is again a sign of the four-dimensional nature of large percolation
clusters.

We close this section by discussing the lack of a discrete duality principle for high-
dimensional tori of fixed dimension, which can be viewed as an explanation why proving
mean-field behavior of supercritical percolation on high-dimension tori is hard. While
this result may appear highly surprising at first sight, the reason behind it is relatively
simple. Indeed, if p > pc, then the second largest cluster has size c(log V )d/(d−1)(1 + oP(1))
for some constant c = c(p, d) [167]. This is quite different from the behavior of the largest
cluster for p < pc, where it is c′ log V (1 + oP(1)) for some c′ = c′(p, d). These results are
independent of the precise boundary conditions (at least, when the boundary conditions
are not wired). Thus, the discrete duality principle, as observed for the Erdős-Rényi
random graph (recall (13.1.1) and (13.1.3)), and predicted for the hypercube in Open
Problem 13.4, cannot be valid for high-dimensional tori. This leads us to the following
open problem:

Open Problem 13.7 (Second largest component of high-dimen-
sional supercritical percolation). For supercritical percolation on the
high-dimensional torus Tn,d, identify the exact scaling of the second
largest component for p = pc(1 + ε) with ε = o(1) but ε � V −1/3.
How does this interpolate between the strictly supercritical value
c(log V )d/(d−1) for p > pc (which is unlike the Erdős-Rényi random
graph), and the critical behavior (where it is V 2/3 as for the critical
Erdős-Rényi random graph)?

The occurrence of the exponent d/(d − 1) > 1 in the strictly supercritical case hints
at a role of geometry in the supercritical percolation phase that is absent in the mean-
field model for percolation, the Erdős-Rényi random graph. We thus conclude that while
the critical and subcritical phases of percolation on high-dimensional tori is, as far as we
know, very well predicted by the mean-field model, the supercritical behavior, in general,
is not.

Here is an explanation for the (log V )d/(d−1) scaling of clusters in the strictly supercriti-
cal percolation setting. In this setting, it is not hard to see that there is a giant component
of size θ(p)V (1 + oP(1)). Thus, the second largest component needs to avoid this giant
component, that has a positive density. For Erdős-Rényi random graphs, avoiding a clus-
ter of positive density effectively decreases the percolation value, and in the supercritical
regime, this decreased percolation value becomes subcritical, so that the distribution of
clusters avoiding the giant has an exponential tail. This explains why the second largest
cluster has a logarithmic size in the strictly supercritical Erdős-Rényi random graph,
where p = λ/n with λ > 1 (independent of n).

For percolation on a finite-dimensional torus, however, it is much easier to create
a large cluster that is not the giant. Indeed, when we fix m large, then making the
boundary of a box of side length m1/d completely vacant has costs of order e−am

(d−1)/d
,
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where we observe a boundary versus volume effect that is absent on the complete graph.
When making the boundary of a large cube vacant, the inside of that cube will still be
supercritical, so the largest cluster inside the cube has size close to θ(p)(m1/d)d. Thus,

we can create a cluster of size Θ(m) with probability at most e−am
(d−1)/d

. Assuming
independence of the cluster sizes, extreme value theory suggests that the second largest

cluster has size m if e−am
(d−1)/d

is roughly 1/V , therefore it has size m ≈ (log V )d/(d−1). Of
course, the cluster sizes are not independent, but the dependency is sufficiently weak to
push the argument through. Indeed, the second author and Redig [167] provide a rigorous
proof for this, they even study the fluctuations around the leading order asymptotics.

In the analysis of the tails of large non-giant clusters in the supercritical setting, results
on the percolation Wulff shape are crucial. The Wulff shape describes the geometry of
a large finite cluster on Zd in the supercritical regime, and has attracted quite some
attention. See Cerf [70] for a discussion of the Wulff shape in percolation and related
models, and [68, 69] for his results in two- and three dimensional percolation. In particular,
the results by Cerf show that there exists an a = a(p, d) such that the probability that

a supercritical cluster has size m behaves as e−am
(d−1)/d(1+o(1)). Wulff shape-type results

on finite tori, for sequences of p that approach pc, are crucial in order to resolve Open
Problem 13.7 but have not yet been derived.





Part 4

Related and open problems





CHAPTER 14

Random walks on percolation clusters

Random structures have an intricate relationship with the random walks defined on
them. We are now focussing on random walks on percolation clusters, which is a prime
example of the random conductance model with the charm of not being elliptic. We
shall see that random walks on supercritical and critical percolation structures behave
completely differently, underlining the remarkable features of critical structures.

We discuss random walks on supercritical percolation clusters in Section 14.1, on finite
critical clusters in Section 14.2, and on the IIC in Section 14.3.

14.1. Random walks on the infinite cluster

One of the most classical results in modern probability theory is Donsker’s invariance
principle: A simple symmetric random walk on the lattice Zd, diffusively rescaled, con-
verges in distribution to a d-dimensional Brownian motion. The question to be addressed
now is the following variation: If the lattice is not perfect, but a few edges are missing,
will the scaling limit of a random walk still be Brownian motion? Indeed, the answer is
affirmative.

Let us start with a formal description of the problem. To this end, let D(R+,Zd) be
the space of Zd-valued càdlàg functions equipped with the Skorokhod topology. For a
given percolation configuration ω ∈ {0, 1}E(Zd), we consider the simple symmetric random
walk (X(n))n≥0 with law P ω

0 (X(0) = 0) = 1 and transition probabilities, for n ∈ N,

(14.1.1) P ω
0

(
X(n) = y | X(n− 1) = x

)
=

{
1

degω(x)
if |x− y| = 1 and ω({x, y}) = 1;

0 otherwise,

where degω(x) denotes the number of occupied bonds (in ω) that contain x. The walk is
well-defined as long as the cluster of 0 is not an isolated vertex without any connections.
For p > pc, we define the conditional measure

(14.1.2) P∗p( · ) := Pp( · | 0←→∞),

which guarantees us that the walk starts in the infinite component. Barlow [26] proves
sharp heat kernel bounds for the random walk (X(n))n≥0 under P∗p. This was extended
to a full Donsker’s invariance principle by Berger and Biskup [45], and independently by
Mathieu and Piatnitski [213]:

Theorem 14.1 (Quenched invariance principle on the infinite percolation cluster [45,

213]). Let d ≥ 2 and p > pc. For P∗p-almost all ω ∈ {0, 1}E(Zd), under P ω
0 , the process

(Xε(t))t∈R+ , where Xε(t) ≡ εX(bt/ε2c),
converges in law as ε↘ 0 to an isotropic d-dimensional Brownian motion, whose diffusion
constant σ2(p) depends on p and d, but not on ω.

193



194 14. RANDOM WALKS ON PERCOLATION CLUSTERS

Theorem 14.1 is known as a quenched invariance principle, since it proves weak con-
vergence for almost all realizations of the environment. An annealed invariance principle,
where one averages over the environment, was proven earlier by De Masi et al. [82]. Sido-
ravicius and Sznitman [241] prove the quenched result for d ≥ 4. Full generality has been
obtained simultaneously by Berger and Biskup [45] and Mathieu and Piatnitsky [213], the
latter for continuous-time random walk.

The central idea in the proofs, rooting back to Kipnis and Varadhan [197] and other
work of the 1980’s, is to find an harmonic embedding of the infinite cluster C∞ into Rd such
that the random walk on the deformed lattice is a martingale. The difference between this
harmonic embedding and the original lattice is given by the corrector map χω : Zd → Rd.
In finite volume this is obtained without further ado by solving an appropriate Dirichlet
problem, the challenge is to construct the corrector in the infinite domain while keeping
the distributional shift invariance. Berger and Biskup [45] point out that the corrector
can also be obtained probabilistically through

(14.1.3) χω(x) = lim
n→∞

(Eω
x (Xn)− Eω

0 (Xn)) ,

although this representation does not appear to be very fruitful yet.
Once the corrector is established, the proof then consists of two parts, showing first

that the rescaled martingale converges to Brownian motion, and second that the defor-
mation of the path due to the corrector is asymptotically negligible.

We summarize that we have an invariance principle on the infinite cluster just as on
the full lattice Zd, and we thus see hardly any difference between the full lattice and
supercritical percolation in the scaling limit of random walks - the only dependence on
p is through the diffusion constant σ2(p). It is highly plausible that limp↘pc σ

2(p) = 0,
since we believe that θ(pc) = 0, and thus the infinite component becomes more and more
sparse and fractal-like as p↘ pc, thus slowing down the walk more and more. Indeed, it
is suggested that there is another critical exponent characterizing the barely supercritical
regime as

(14.1.4) σ(p)2 ≈ (p− pc)θ as p↘ pc.

Heuristic arguments suggest that θ = 2 in high dimensions, although no proof for this is
known:

Open Problem 14.1 (Critical exponent for diffusion constant). For
random walk on the infinite percolation cluster as in Theorem 14.1,
show that in sufficiently high dimension,

σ(p)2 ≈ (p− pc)2 as p↘ pc

for a suitable mode of convergence ≈.

Even monotonicity properties of the function p 7→ σ2(p) are not known rigorously. We
will give a heuristic explanation of the scaling in Open Problem 14.1 in Section 14.3.

14.2. Random walks on finite critical clusters

We shall now turn towards random walk on critical clusters, where much of the fun
happens. A slight issue arises from the fact that all critical clusters are finite, thus a scaling
limit in the sense of the previous section is no sensible object to study. Instead, we consider
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the mixing time of critical clusters on finite high-dimensional tori (as considered in Section
13.2). To this end, we call a lazy simple random walk on a finite graph G = (V , E) a Markov
chain on the vertices V with transition probabilities

(14.2.1) p(x, y) =


1/2 if x = y;

1
2 deg(x)

if (x, y) ∈ E ;

0 otherwise,

where deg(x) denotes the degree of a vertex x ∈ V . The attribute ‘lazy’ refers to
p(x, x) = 1/2, a term that is not present for (ordinary) random walk on the cluster
as defined in (14.1.1). The stationary distribution of this Markov chain π is given by
π(x) = deg(x)/(2|E|). The mixing time of lazy simple random walk on G is defined as

(14.2.2) Tmix(G) = min
{
n : ‖pn(x, ·)− π(·)‖TV ≤ 1/4 for all x ∈ V

}
,

with pn being the distribution after n steps, and ‖ · ‖TV denoting the total variation
distance. Mind that this definition differs from the uniform mixing time defined in (13.4.3).

Loosely speaking, the mixing time Tmix(G) identifies the time scale at which the (lazy)
random walker “forgets” its starting point. Working with the lazy walk instead of the
usual simple walk has certain technical advantages, for example, it avoids any periodicity
issues.

Motivation again is obtained from the Erdős-Rényi random graph models G(n, p) (cf.
Section 13.1). When scaling p = λ/n, λ ∈ R, we obtain the following results. For λ > 1,
the mixing time of the giant component of G(n, λ/n) is of the order log2(n), as proven
by Fountoulakis and Reed [109] and Benjamini, Kozma, and Wormald [36]. For λ < 1,
a similar bound holds, because clusters are simply too small, cf. (13.1.1). Interestingly,
the fact that we are dealing with worst-case starting points is highly relevant. Indeed,
Berestycki, Lubetzky, Peres and Sly [41] show that starting from a uniform starting point
in the giant component, the mixing time is of the order log(n) instead. This discrepancy
can be understood by noting that the giant component in the Erdős-Rényi random graph
has rare stretches of vertices of degree two of length of the order of log(n). The random
walk is like a one-dimensional walk on these stretches, so it will take time log2(n) to leave
them. When started from a uniform vertex, on the other hand, these stretches are very
far away, and thus the random walk is unlikely to even notice them. See also [35] where
Ben-Hamou and Salez prove similar results for non-backtracking walk. There, the worst
possible mixing time is identified as being a specific constant times log(n), under the
restriction that the minimal degree in the random graph is at least three, thus avoiding
the long stretches of degree two vertices that form traps.

Mixing time of large critical clusters. The interesting critical case is settled by
Nachmias and Peres [216], who prove that the mixing time of G(n, 1/n) is of the order n.
Thus we see that the mixing times blows up in the critical case.

Let us inspect the “engine room” of Nachmias’s and Peres’s argument a little more
closely. The authors prove the following, rather general and highly fruitful, criterion for
the mixing time of critical clusters. In its statement, we let PG,p denote the percolation
measure with percolation parameter p on the graph G:
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Theorem 14.2 (Nachmias–Peres [216]). Consider bond percolation on the graph G
with vertex set V, V = |V| < ∞, with percolation parameter p ∈ (0, 1). Assume that for
all subgraphs G ′ ⊂ G with vertex set V ′,

(a) EG′,p
∣∣E({u ∈ C (v) : dC (v)(v, u) ≤ k}

)∣∣ ≤ d1k, v ∈ V ′,
(b) PG′,p

(
∃u ∈ C (v) : dC (v)(v, u) = k

)
≤ d2/k, v ∈ V ′,

where E(C ) denotes the set of open edges with both endpoints in C and d1, d2 are uniform
constants. If for some cluster C

(14.2.3) PG,p
(
|C | ≥ A−1V 2/3

)
≥ 1− b

A
,

then there exists c > 0 such that for all A ≥ 1,

(14.2.4) PG,p
(
Tmix(C ) > AV

)
≤ c

A1/6
, PG,p

(
Tmix(C ) < A−1V

)
≤ c

A1/34
.

This version of the theorem is in the line of [216, Theorem 2.1], the precise adaptations
are explained in [145, Section 4].

Theorem 14.2 works in fairly general setup, for example various cases of “sufficiently
uniform” random graphs. A particularly beautiful result arises when we apply it to the
case G = Tn,d and p = pc(Zd), where Theorem 13.6 provides excellent control of the
volume of the large clusters:

Corollary 14.3 (Mixing time of large critical percolation clusters on high-dimen-
sional tori, [145]). There is d0 > 6 such that for percolation on the torus Tn,d with d ≥ d0,
every m = 1, 2, . . . , there exist constants c1, . . . , cm > 0, such that for all A ≥ 1, n ≥ 1,
and all i = 1, . . . ,m,

Ppc(Zd)

(
A−1V ≤ Tmix(C(i)) ≤ AV

)
≥ 1− ci

A1/34
.(14.2.5)

Proof of Corollary 14.3. In order to prove Corollary 14.3, we need to verify the
two conditions in Theorem 14.2(a) and (b) for critical percolation on the high-dimensional
torus:

Verification of Theorem 14.2(a). Recall that CT(v) denotes the cluster of v on the
torus, and CZ(v) denotes the cluster of v on Zd. The cluster CT(v) is a subgraph of the
torus with degree at most 2d, therefore we can replace the number of edges on the left
hand side by the number of vertices (and accommodate the factor 2d in the constant d1).
In Proposition 13.7, a coupling between CT(v) and CZ(v) was presented that shows that
CT(v) can be obtained by identifying points that agree modulo n in a subset of CZ(v) ⊆ Zd.
A careful inspection of this construction shows that this coupling is such that it preserves
graph distances. Since

∣∣{u ∈ C (v) : dC (v)(v, u) ≤ k}
∣∣ is monotone in the number of edges

of the underlying graph, the result in Theorem 14.2(a) for the torus follows from the
bound E

∣∣{u ∈ CZ(v) : dCZ(v)(v, u) ≤ k}
∣∣ ≤ d1k, which was established in Theorem 11.5.

Verification of Theorem 14.2(b). For percolation on Zd, this bound was proved
by Kozma and Nachmias as [199, Theorem 1.2(ii)], and reproduced in Theorem 11.5.
However, the event

{
∃u ∈ CT(v) : dCT(v)(v, u) = k

}
is not a monotone event, and therefore

this does not prove our claim. However, a close inspection of the proof of Theorem 11.5
shows that it only relies on the bound

(14.2.6) Ppc(Zd)(|CT(v)| ≥ k) ≤ C1/k
1/2.
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This, however, is implied by the corresponding Zd-result in Theorem 9.2 and the fact that
Zd-clusters stochastically dominate T-clusters in Proposition 13.7. This completes the
verification of Theorem 14.2(b). �

We discuss the example of random walks on large finite critical clusters on Zd below,
as it is more closely related to random walk on the IIC.

14.3. Random walk on the incipient infinite cluster

As we have seen in the previous section, random walk on critical clusters are quite
charming, and very much different from the supercritical setting and everything we are
used to. We are now targeting random walk on critical clusters on the infinite lattice
Zd. It is clear that we need to condition on the cluster C (0) being big (since for small
clusters, there is not much to explore for the random walk). Actually, it is most convenient
to push the conditioning one step forward, and to condition on an infinitely large critical
cluster C (0) – which is nothing else than the incipient infinite cluster (IIC) that we have
discussed in Chapter 12. It provides us with an infinite cluster that locally resembles a
(large) critical cluster.

A well-known conjecture in the field has been made by the physicists S. Alexander
and R. Orbach: based on simulations in dimension d = 2, . . . , 5, they conjectured that

(14.3.1) P ω
0 (X(2n) = 0) ≈ n−2/3 PIIC − a.s.

for random walk on the incipient infinite cluster in all dimension d ≥ 2. This conjecture
led to a wave of criticism in the literature. Indeed, large-scale simulation suggests that
the exponent 2/3 is wrong in dimension d < 6. In a seminal paper, Kozma and Nachmias
[199] prove that the exponent is correct in high dimensions. Mind that for supercritical
percolation, as well as on the ordinary lattice, (14.3.1) is valid with exponent −d/2, thus
random walk on critical clusters is strongly subdiffusive. Indeed, the first study of random
walk on the incipient infinite cluster is due to Kesten [194], who proved that random walk
on the two-dimensional IIC is subdiffusive.

The reason behind this subdiffusivity lies in the specific structure of the IIC cluster.
The vertices in the cluster can be classified into two groups: the backbone Bb is formed
by those vertices that are part of a self-avoiding path from the origin to infinity,

(14.3.2) Bb :=
{
x : {0←→ x} ◦ {x←→∞}

}
;

all other vertices form large finite clusters, which are called dangling ends by some authors.
The key point is that random walk on the IIC can only escape through the backbone,
but spends most of its time on the dangling ends. Indeed, Cames van Batenburg [67]
identified the mass dimension of the (entire) IIC cluster in high dimension as

(14.3.3) dm(IIC) := lim
n→∞

log |C (0) ∩ Λn|
log n

= 4 PIIC-almost surely.

On the other hand, the backbone vertices with diffusive rescaling converge to a Brownian
motion path (we present this result in Theorem 15.5), and Brownian motion has Hausdorff
dimension 2. Sparsity of the backbone w.r.t. the entire IIC cluster in dimension d > 4 + 2
makes it very difficult for the random walk to find the backbone, and consequently the
dangling ends function as traps for the random walk.
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We summarize what is known for random walk on the high-dimensional IIC. Recall
from Section 11.3.1 the notion B(n) for the n-ball in the intrinsic distance dC (0) centered
at the origin and Λn the `∞-ball, write further τ ′(A)1 for the exit time from the set A ⊂ Zd
and W (n) = {S(j) | j = 0, . . . , n} for the range of the walk until time n.

Theorem 14.4 (Random walk on the incipient infinite cluster [147, 199]). For random
walk on the incipient infinite cluster, under the triangle condition (4.1.1), for PIIC-almost
all ω,

(14.3.4) lim
n→∞

P ω
0 (X(2n) = 0)

log n
= −2

3
, lim

n→∞

|W (n)|
log n

=
2

3
,

(14.3.5) lim
n→∞

Eω
0 τ
′(B(n))

log n
= 3, lim

n→∞

Eω
0 τ
′(Λn)

log n
= 6.

This behavior is very much in contrast to random walk on the ordinary lattice and
supercritical clusters as in Section 14.1, where the exponents in (14.3.5) both equal 2.
The fact that the latter exponent is twice as large as the former is however no surprise if
we contrast the linear growth of Epc |B(n)| in Lemma 11.6 against the quadratic growth
of Epc|Λn ∩ C (0)| (as follows from Theorem 11.4). The intuition is that the boundary of
B(n) is at Euclidean distance

√
n from 0 under Ppc as well as under PIIC.

A proof of the statements in Theorem 14.4 follows a standard recipe. Indeed, it turns
out that two properties of the medium characterize the random walk behavior. The first
one is the ball growth rate. The second quantity is the effective resistance Reff , and
formally defined on a general graph G = (V , E) as follows. Consider the quadratic form

(14.3.6) Q(f, g) =
1

2

∑
(x,y)∈E

(
f(x)− f(y)

) (
g(x)− g(y)

)
, f, g : V → R,

and let H2 := {f : Q(f, f) < ∞}. Note that the sum in (14.3.6) is over directed bonds,
so in a symmetric setting, every bond contributes twice. Then

(14.3.7) Reff(A,B)−1 := inf
f∈H2

{
Q(f, f) : f |A = 1, f |B = 0

}
; A,B ⊂ V .

Indeed, the effective resistance has a beautiful interpretation when we consider the graph
(in our case: the cluster) as an electric network: For vertex sets A and B, Reff(A,B) is
the effective resistance between A and B (in physics sense) when every edge in the graph
is a resistor of 1 Ohm. In particular, Reff obeys Kirchhoff’s series and parallel law, which
makes it easy to compute.

Exercise 14.1 (Lower bound on effective resistance along a bond). Let G = (V , E)
and {a, b} ∈ E. Use the definition in (14.3.7) to show that Reff({a}, {b}) ≥ 1/da, where
da is the degree of a.

Exercise 14.2 (Upper bound on effective resistance along a bond). Let G = (V , E)
and {a, b} ∈ E. Use the definition in (14.3.7) to show that Reff({a}, {b}) ≤ 1.

1We do not use τ for risk of confusion with the two-point function that appears so prominently in
this text.
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Exercise 14.3 (Effective resistance along a pivotal bond). Let G = (V , E) and {a, b} ∈
E and there is no other path from a to b. Use the definition in (14.3.7) to show that
Reff({a}, {b}) = 1.

Exercise 14.4 (Series law for effective resistance). Let A,B ⊆ Zd. Let x ∈ Zd\(A∩B)
be such that every path from A to B passes through x. Use the definition in (14.3.7) to
show that Reff(A,B) = Reff(A, {x}) +Reff({x}, B).

The basic line of arguments is as follows: Suppose that the volume of the n-ball grows
like |B(n)| ≈ nα and the effective resistance between the origin and the boundary of the n-
ball grows like Reff(0, B(n)c) ≈ nβ, and a number of technical conditions hold (to control
that the medium is sufficiently regular), then the return probability P ω

0 (X(2n) = 0)
scales like n−α/(α+β) and the expected exit time of the n-ball scales like nα+β. This
has been proven for α = 2 and β = 1, which gives the magic exponent 2/3 in the
Alexander-Orbach conjecture (14.3.1), by Barlow, Járai, Kumagai, and Slade [25] (who
apply it to high-dimensional oriented percolation, see Section 15.2). A generalized setup
has been obtained by Kumagai and Misumi [201]. The correspondence between random
walk properties on the one hand and volume+Reff scaling on the other hand is very much
in the folklore of random walk on graphs, see e.g. the classic book by Doyle and Snell [90].

Since the volume growth of the incipient infinite cluster is fairly well understood, the
main challenge is to control the effective resistance. With the interpretation of Reff as a
physical resistance, it is quite clear that the number of pivotals between 0 and B(n)c is a
lower bound for Reff(0, B(n)c).

Exercise 14.5 (Effective resistance and pivotal bonds). Let 0 ∈ A ⊆ Zd. Prove that
Reff(0, Ac) for random walk on the IIC is bounded below by the number of pivotal bonds
for 0←→ A in the IIC configuration. [Hint: Use Exercises 14.1–14.4.]

In high dimensions, this lower bound is of the correct order, and a corresponding upper
bound exists. In other words, there are lots of pivotal bonds in the IIC-cluster. Indeed,
the triangle condition (4.1.1) is the central tool in establishing the upper bound. Details
can be found in [147, 199].

In Section 14.1, we have considered the scaling limit of random walk on (infinite)
percolation clusters. Does there exist a scaling limit of random walk on the incipient
infinite cluster? The second limit in (14.3.5) suggests n1/6 as the correct spatial scaling
of random walk after n steps, since the exit time of a ball of radius n scales as n6. Yet,
the scaling limit has not been obtained. Only very recently, a promising candidate for
a scaling limit has been found: in a seminal work, Ben Arous, Cabezas, and Fribergh
[34] consider random walk on the high-dimensional branching random walk conditioned
to have total population size n. This is a natural candidate for the scaling limit of random
walks on critical high-dimensional percolation clusters of size n, since branching random
walk is a mean-field model for percolation, as we have explained in detail in Section 2.2.
It is believed that such critical clusters of finite size have the same scaling limit as for
critical branching random walk conditioned on the population size, as we discuss in more
detail in Section 15.1. This scaling limit is called Integrated Super-Brownian Excursion
(ISE). In [34], the authors prove that random walk on critical branching random walk
conditioned on the population size being n converges to Brownian motion on Integrated
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Super-Brownian Excursion, the latter object being introduced by Croydon [78]. More
formally, they prove that for d ≥ 14,

(14.3.8)
(
n−1/4Xωn

tn3/2

)
t≥0
−→

(
σBISE

t

)
t≥0
,

where σ > 0 is a constant, ωn is the range of critical branching random walk conditioned
to be of size n, BISE is Brownian motion on the ISE, convergence is annealed and occurs
in the topology of uniform convergence over compact sets. To make the connection to the
order n1/6 spatial scaling for random walk on the IIC after n steps, we note that in (14.3.8),
the spatial displacement is n1/4 at time n3/2. Denoting m = n3/2, we indeed have that
n1/4 = m1/6. Extending (14.3.8) to high-dimensional percolation is a major challenge, as
one would in particular need that the scaling limit of critical high-dimensional percolation
clusters is ISE. We discuss progress in this direction in Section 15.1 below.

Mind that in (14.3.8), the (spatial and temporal) rescaling of the random walk on
the one hand and the conditioning on the size of the critical structure on the other hand
are done simultaneously. When studying the scaling limit on the percolation IIC in high
dimension, the IIC itself is an infinite structure, and therefore we are only left to rescale
the random walk accordingly. However, this leads to a different limit; Ben Arous et al.
[33] suggest that the scaling limit might be Brownian motion on the infinite canonical
super-Brownian motion (connected to Open Problem 15.2 below). Croydon [79] used
regular resistance forms to identify the scaling limit of random walk on (scaling limits) of
various random objects provided that the underlying spaces are converging in the Gromov-
Hausdorff-vague topology. Indeed, Croydon [79, Section 8.1] conjectures that the properly
rescaled IIC does converge to a limiting object in the required sense and therefore the
scaling limit of the processes associated to certain resistance forms converge, too.

The scaling limit of random walk on the high-dimensional IIC remains a challenging
open problem:

Open Problem 14.2 (Scaling limit of random walk in IIC [33, 79]).
Prove that random walk on the high-dimensional incipient infinite
cluster has a non-degenerate scaling limit.

This open problem is closely linked with the scaling limit of the critical clusters itself,
which we elaborate on in the forthcoming chapter.

We close this chapter by giving a heuristic explanation of the scaling of the slightly
supercritical diffusion constant.

Heuristics for scaling diffusion constant in Open Problem 14.1. We use a
multi-scale analysis. We fix p > pc and partition Zd into cubes whose side length is the
percolation correlation length ξ(p). The correlation length is intuitively the length scale
at which we cannot see the difference between the percolation configuration for p > pc and
the critical system. Thus, heuristically, the random walk on a cube of width ξ(p) behaves
similarly as the random walk on the IIC. As a result, by Theorem 14.4 (in particular
(14.3.5)), it will take roughly ξ(p)6 steps for the random walker to leave a cube of width
ξ(p). Further, the correlation length also has the interpretation that clusters further
away than ξ(p) are approximately independent. We reinterpret this by assuming that the
random walk hops between the different cubes of width ξ(p) as a simple random walk.
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Together, these two heuristic assumptions imply that Var(Sn) = Var(Sξ(p)6(n/ξ(p)6)) ≈
ξ(p)2Var(S ′n/ξ(p)6), where (S ′k)k≥0 is simple random walk on Zd. Since Var(S ′k) = k, we

thus arrive at

(14.3.9) Var(Sn) ≈ ξ(p)2Var(S ′n/ξ(p)6) = ξ(p)2n/ξ(p)6 = nξ(p)−4.

By Theorem 11.2, together with the prediction that ν ′ = ν, we obtain that ξ(p) ∼
(p− pc)−1/2, so that

(14.3.10) Var(Sn) ≈ n(p− pc)2,

which is the reason for the conjectured behavior in Open Problem 14.1.





CHAPTER 15

Related results

In this chapter, we discuss related problems in high-dimensional percolation. These
topics have attracted tremendous attention in the past two decades, and their investigation
is far from complete. We discuss the relation between critical high-dimensional percolation
clusters and super-processes in Section 15.1, oriented percolation in Section 15.2, and
scaling limits of percolation backbones in Section 15.3. We continue to discuss long-
range percolation in Section 15.4 and asymptotic expansion of the percolation threshold
in Section 15.5. We close this chapter by describing percolation on non-amenable graphs
in Section 15.6.

15.1. Super-process limits of percolation clusters

Super-processes or measure-valued diffusions are continuous-time and space processes
that describe the random distribution of mass undergoing simultaneous branching and
motion. In this section, we describe three examples of them, and conjecture that each of
them arises as an appropriate scaling limit of critical percolation clusters.

Super-processes can be understood in terms of scaling limits of branching random walk
(BRW). These lecture notes aim to argue that branching random walk is the mean-field
model for percolation on Zd, and obtaining super-process scaling limits would be one of
the strongest confirmations of this heuristic. Unfortunately, not many results exist that
link high-dimensional percolation to super-processes.

Informal descriptions of super-processes can be found in two nice introductory papers
by Gordon Slade [244, 245]. The super-processes that we discuss here can all be seen as
variations on super-Brownian motion, which is a measure-valued process arising as the
scaling limit of critical branching random walk. See the work by Dawson [81] or Perkins
[224], or one of the books [95, 100, 204] for general expositions on super-processes.

We explain three different super-process constructions. The first super-process is in-
tegrated super-Brownian excusion (ISE), which can be seen as the scaling limit of the
random distribution of all mass in a critical BRW conditioned on having a large and fixed
total population and where we ignore the generations. ISE already made its appearance
in Section 14.3, where we discussed random walk on critical clusters of a given size. The
second super-process is the canonical measure of super-Brownian motion (CSBM), which
can be seen as the scaling limit of critical branching random walk when we rescale time by
n and space by

√
n, and multiply probabilities by n to obtain a non-degenerate limiting

measure. The third super-process is obtained in the scaling limit where we first condition
the critical BRW to survive forever, and then rescale time by n and space by

√
n, so as

to obtain incipient infinite canonical super-Brownian motion or IICSBM.
These three super-processes are tightly connected to one another. Indeed, when we

condition SBM on having total mass equal to 1, and then integrate the random measure
out over time (so as to forget the generations of the particles involved), then we retrieve

203
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ISE. When we condition SBM to survive forever (a construction that can be made sense of,
even though, as for critical BRW, SBM dies out in finite time), then we obtain IICSBM.
We next informally describe how these three limits can be obtained by suitable rescalings
of space and time of critical percolation clusters:

Integrated super-Brownian excursion (ISE). Integrated super-Brownian excur-
sion (ISE) arises as the scaling limit of the random distribution of mass in a critical BRW
conditioned on having a large and fixed total population where we ignore the generation
structure of the population involved. Thus, we take a critical BRW, condition on a fixed
total progeny T = n, rescale space by n−1/4 and take the scaling limit. The limit, which
can be seen to exist, is ISE. One way to describe ISE is through its r-point functions, as
we explain now. For ~x ∈ (Zd)r−1, let
(15.1.1)

p(r)(~x;n) = E
[ r−1∏
i=1

N(xi)1{T=n}
]
, A(r)

n (~x) =
p(r)(~x;n)

P(T = n)
= E

[ r−1∏
i=1

N(xi) | T = n
]
,

where T is the total progeny of a critical finite-variance branching process, and N(x) is
the total number of particles ever present at x ∈ Zd, i.e., N(x) =

∑∞
n=0Nn(x), where

Nn(x) is the number of particles at x at time n. We see that time is integrated out, which
explains the name Integrated Super-Brownian Excursion. The ISE total mass functions
describe the scaling limit A(r)(~x) of A(r)

n (~x), with space rescaled by a factor n−1/4 and mass
by 1/n so that the total mass becomes 1. We do not enter this topic fully, but rather only
descibe A(r)(~x) for r = 2, for which

(15.1.2) A(2)(x) =

∫ ∞
0

te−t
2/2pt(x)dt, where pt(y) =

1

(2πt)d/2
e−|y|

2/(2t)

denotes the standard Brownian transition density. It is the case that

(15.1.3) lim
n→∞

nd/4A(2)

n (x/n1/4) = A(2)(x).

The intuition behind the form in (15.1.2) and the convergence in (15.1.3) is as follows.
In A(2)

n (x), we need to have a particle at x ∈ Zd when the tree has total progeny n.
Condition on the length of the path from 0 at time 0 to x, denote this length by m, and
call the simple-random walk path between 0 and x of length m the backbone. Then, given
n, the (m + 1) trees that are branching off the backbone path are themselves critical
branching processes. Their total sizes need to add up to n. When we let Ti denote the
total population of the tree branching off the ith point along the backbone (including the
backbone vertex itself), then T0 + · · ·+ Tm = T = n, where we recall that T denotes the
total size of the tree and we condition on T = n.

Now, P(Ti = `) = Cδ`
−3/2(1 + o(1)) by Theorem 2.1, see in particular (2.1.28). By

the random walk hitting time theorem (recall [163]), and similarly to (2.1.24) (recall also
Exercises 2.3–2.4),

(15.1.4) P(T0 + · · ·+ Tm = n) =
m+ 1

n
P(X1 + · · ·+Xn = n−m− 1),
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where (Xi)i≥1 are i.i.d. random variables having the offspring distribution of the critical
BRW. Therefore, using that E[Xi] = 1,
(15.1.5)
P(T0 + · · ·+ Tm = n)

P(T = n)
= (m+ 1)

P(X1 + · · ·+Xn = n−m− 1)

P(X1 + · · ·+Xn = n− 1)
∼ (m+ 1)e−m

2/(2γn),

by the local central limit theorem, and where γ = Var(X1) is the variance of the offspring
distribution. We obtain that

(15.1.6) A(2)

n (x) =
∞∑
m=0

P(T0 + · · ·+ Tm = n)

P(T = n)
D?m(x) ∼

∞∑
m=0

(m+ 1)e−m
2/(2γn)D?m(x).

The main contribution comes from m of the order
√
n. Take m = tn1/2 and note that

(15.1.7) D?(tn1/2)(x/n1/4) ∼ n−d/4pt(x).

Combining (15.1.6)–(15.1.7) leads to (15.1.3) with A(2)(x) given by (15.1.2).

Partial results linking high-dimensional percolation and ISE can be found in the papers
of Hara and Slade [140, 141]. This is a fairly difficult problem. For example, since we
condition on the cluster size being equal to n, we need to know how this probability
behaves as n→∞. Let us start by introducing some notation. Let

(15.1.8) τpc(x;n) = Ppc(x ∈ C (0), |C (0)| = n), qn(x) =
τpc(x;n)

Ppc(|C (0)| = n)
.

Hara and Slade [140, 141] prove the following links between high-dimensional critical
percolation and ISE:

Theorem 15.1 (Critical percolation and ISE [140, 141]). For percolation in dimension
d ≥ d0 with d0 > 6 sufficiently large, for every ε < 1/2, there exists v > 0 such that, for
every k ∈ Rd,

(15.1.9) q̂n(k/(vn1/4)) = Â(2)(k) +O(n−ε).

The fact that k is rescaled by n1/4 shows that the majority of mass of the percolation
cluster is at distance n1/4 from the origin. Thus, we have an object of size n whose
radius is n1/4, suggesting that the dimension of large critical clusters is 4. This was also
observed when discussing the role of boundary conditions in Section 13.6. In general,
super-processes related to super-Brownian motion are four-dimensional structures (see
e.g., Perkins [224]). As already noted in Theorem 9.4, the papers of Hara and Slade
[140, 141] also prove that δ = 2 in the strongest possible form.

For lattice tree and lattice animals, a statistical mechanical model like percolation,
Derbez and Slade [85, 86] proved that the finite-dimensional distributions converge to
those of ISE. It is natural to believe that this is also the case for high-dimensional perco-
lation:
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Open Problem 15.1 (ISE scaling limit of critical clusters of fixed
size). Show that critical percolation on Zd with d > 6 satisfies that
the random measure

(15.1.10) µn(E) =
1

n

∑
x∈C (0)

1{x/
√
n∈E}

conditionally on |C (0)| = n converges in distribution to ISE. This
follows by showing that there exist constants γ and v such that

q̂(r)
n (n−1/4~k/v)→ γr−2Â(r)(~k), where

(15.1.11) q(r)

n (x) = Ppc
(
0←→ xi ∀i = 1, . . . , r − 1

∣∣ |C (0)| = n
)

denote the percolation r-point functions conditioned on its cluster

size, and Â(r)(~k) is the Fourier transform of A(r)(~x).

For critical branching random walk, γ is equal to the variance of the offspring distribu-
tion. In particular, for Poisson branching random walk γ = 1. For interacting models, the
role of the so-called vertex factor γ is less obvious, and we return to this matter when dis-
cussing the canonical measure of super-Brownian motion below. The parameter v should
be thought of as the standard deviation of the Brownian motion describing percolation
paths. While v is probably close to 1 in high dimensions, we expect that it is different
from the random walk standard deviation 1 in any dimension.

Canonical measure of super-Brownian motion. The so-called canonical measure
of super-Brownian motion (CSBM) can be seen as the scaling limit of critical branching
random walk when we rescale time by n and space by

√
n and multiply probabilities by

nγ. Since critical BRW dies out a.s., this limit puts all mass on finite structures, a problem
that is resolved by multiplying probabilities by a factor n so as to still give sizeable mass
to particles in generations proportional to n. A downside is that the limiting measure
no longer is a probability measure, as it arises by multiplying a probability measure by a
factor that tends to infinity.

We next describe these objects for BRW. Define the measure-valued process (X (n)

t )t≥0

by

(15.1.12) X (n)

t (f) =
1

γn

∑
x∈Ant

f(x/
√
vn) and µn(·) = nγP(·),

where Am is the set of locations of all particles alive at time m so that |Am| = Nm. Further,

for k ∈ (−π, π]d, let X̂ (n)

t (k) = X (n)

t (φk), where φk(x) = eik·x is the complex exponential.

Thus, k 7→ X̂ (n)

t (k) is the (random) Fourier transform of the random measure X (n)

t . The
distribution of the process (X (n)

t )t≥0 can again be described in terms of r-point functions.
Similar to (15.1.1), let

(15.1.13) p(r)

~n (~x) = E
[ r−1∏
i=1

Nni(xi)
]
, ~n ∈ Nr−1, ~x ∈ (Zd)r−1,
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denote the BRW r-point functions. Here, again, Nn(x) denotes the number of particles
present at x at time n. Then,

(15.1.14) µn
( r−1∏
i=1

X̂ (n)

ti (ki)
)

= (nγ)r−2p̂(r)

n~t
(~k/
√
vn),

so that the rescaled r-point functions correspond to the moments of the Fourier transform
of (X (n)

t )t≥0. We refer to [152] for an extensive discussion of the CSBM and its moment
measures describing the limits of the right hand side of (15.1.14). Again, it is natural
to conjecture that critical percolation has CSBM as a scaling limit, where now time is
interpreted in terms of the graph distance:

Open Problem 15.2 (CSBM scaling limit of critical clusters). Show
that critical percolation on Zd with d > 6 satisfies that there exist γ, v
such that the random measure-valued process

(15.1.15) X (n)

nt (·) =
1

nγ

∑
x∈∂B(nt)

1{x/
√
vn∈·},

under the measure µn(·) = nγPpc(·), converges in distribution to the
canonical measure of SBM.

In Open Problem 15.2, we recall that ∂B(n) denotes the vertices in C (0) at graph
distance exactly n from 0. Let us explain how v and γ arise. The variable v is the variance
of the underlying motion, which should be equal to

(15.1.16) v = lim
n→∞

1

nt̂n(0)

∑
x∈Zd
|x|2tn(x),

assuming that this limit exists (which is highly non-trivial), and where tn(x) = Ppc(x ∈
∂B(n)) denotes the critical two-point function at ‘time’ n. The parameter γ is the branch-
ing ratio of the CSBM, which in the percolation case can be computed as

(15.1.17) γ = AV, where A = lim
n→∞

Epc [|∂B(n)|], A3V = lim
n→∞

1

n
Epc [|∂B(n)|2],

assuming that these limits exist (which is not yet known and technically quite a challenging
problem, see below for more details). For BRW, A = 1 since the random process (Nm)m≥0

is a non-negative martingale with expectation 1, whereas γ is the variance of the offspring
distribution. For percolation, we expect that A > 1 and V < 1. The parameter V is
sometimes called the vertex factor.

Holmes and Perkins [176] prove that convergence of the r-point functions

(15.1.18) µn

( r−1∏
i=1

X̂ (n)

ti (ki)
)

= (nγ)r−2t̂(r)
n~t

(~k/
√
vn) −→ M̂ (r−1)

~t
(~k),

where M̂ (r−1)

~t
(~k) are the Fourier transforms of the so-called moment measures of CSBM,

together with the convergence of the survival probability γnPpc(∂B(n) 6= ∅)→ 2, imply
convergence in finite-dimensional distributions. This is weaker than Open Problem 15.2.
In turn, the conditions in (15.1.18) and the convergence of the intrinsic one-arm are
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much stronger than the identification of the intrinsic one-arm probability by Kozma and
Nachmias in [199] as discussed in Section 11.3. In particular, Open Problem 15.2 implies
Open Problem 11.2, which underlines the relevance of Open Problem 15.2. The fact that
Open Problem 15.2 involves intrinsic distances certainly makes the problem significantly
harder.

The CSBM moment measure M̂ (r−1)

~t
(~k) can be seen to involve a sum over (2r − 3)!!

trees, where (2r−3)!! arises as the number of shapes of trees with r labeled leaves. See also
Section 13.10, where this number appeared in the tree-graph inequalities for percolation.

There is some work in this direction for interacting models. The second author and
Slade prove the convergence of the oriented percolation r-point functions in (15.1.18) in
[172], and, jointly with den Hollander, the convergence of the oriented percolation survival
probability in [158, 159] (see also [160]). This is discussed in more detail in Section 15.2
below. Holmes [175] proves the convergence of the lattice tree r-point functions, the
convergence of the survival probability follows again from the work of Holmes and the
second author [160]. Holmes, Perkins and the second author provide a tightness criterion
in [161] based on r-point functions. While they do not verify it for percolation in high
dimensions, they do so for (spread-out) lattice trees for d > 8, suggesting once more that
similar results ought to be true for percolation in d > 6.

Incipient infinite super-Brownian motion. Incipient infinite CSBM is obtained
by taking critical BRW and conditioning it to survive forever, and can be thought of as
the mean-field model for the percolation IIC as discussed in Chapter 12. Of course, since
critical BRW dies out a.s., we are conditioning on a null event, and a proper definition
needs to rely on a limiting argument. For details on such limiting arguments, we refer to
Chapter 12. Here, we follow the presentation of the second author in [153].

As discussed in Chapter 12, the BRW IIC measure can be explicitly computed. This
implies that also the BRW IIC r-point functions, which we denote as s(r)

~n , can be deter-
mined as

(15.1.19) s(r)

~n (~x) = EIIC

[ r−1∏
i=1

Nni(xi)
]

= Epc
[
Nn̄

r−1∏
i=1

Nni(xi)
]
,

where n̄ = maxri=1 ni and Nn =
∑

xNn(x) denotes the total number of individuals in
generation n.

Exercise 15.1 (Proof IIC BRW higher-point function). Prove (15.1.19) using (12.2.11).

Using (15.1.19), one can identify the scaling limits of the higher-point functions of
the BRW IIC, which correspond to the higher-point functions of SBM with one immortal
particle in the formulation of Evans [101]. This immortal particle performs a Brownian
motion, and there are critical SBMs hanging off. We call this incipient infinite canonical
measure of super-Brownian motion (IICSBM). This leads to the following natural conjec-
ture stating that the IIC, when properly rescaled, converges to this same measure-valued
process:
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Open Problem 15.3 (SBM with immortal particle limit of the IIC).
Show that critical percolation on Zd with d > 6 satisfies that there
exist γ, v such that the random measure-valued process

(15.1.20) X (n)

nt (·) =
1

nγ

∑
x∈∂B(nt)

1{x/
√
vn∈·}

under the measure µn(·) = PIIC(·), converges in distribution to incip-
ient infinite SBM.

Towards a proof of super-process limits. In Open Problems 15.1, 15.2 and 15.3,
we propose to show that various critical high-dimensional percolation clusters converge to
related super-processes. These results are intimately related. Here we discuss how such
proofs can be approached. This approach is similar in spirit to the three settings, yet
there are also substantial differences. Let us focus on the similarities and remark upon
the differences along the way.

The first step to identify the super-process scaling limit of critical high-dimensional
percolation clusters is to identify the scaling limits of the r-point functions. See e.g.,
(15.1.11) for the r-point function in the ISE setting, and (15.1.18) for what such a result
could look like in the context of the canonical measure of SBM. Such scaling again should
be proved using the lace expansion. Let us illustrate this by discussing the first step,
which is the convergence of the three-point function, in more detail. The lace expansion
for the two-point function, as discussed in detail in Chapter 6, is an expansion for a linear
structure. See Figure 6.1 for a linear picture of percolation paths that summarize the
event {0 ←→ x} and that is made up of doubly connected pieces between the ordered
set of povitals. For the three-point function, however, we are interested in the event
{0 ←→ x1, 0 ←→ x2}. Each of the two connections {0 ←→ x1} and {0 ←→ x2} have
their own sets of ordered pivotals. This picture thus gives rise to a branching structure
where the sets of ordered pivotals are split into the pivotals that are common to both
events {0 ←→ x1} and {0 ←→ x2}, and the ones that are pivotal only for {0 ←→ x1}
or {0←→ x2}, respectively. In the lace expansion for the three-point function, we would
like to factor the three-point function τp(x1, x2) = Pp(0←→ x1, 0←→ x2) as
(15.1.21)

τp(x1, x2) =
∑

w0,w1,w2

τp(w0)ψp(w1 − w0, w2 − w0)τp(x1 − w1)τp(x2 − w2) +Rp(x1, x2).

Here we think of Rp(x1, x2) as being some kind of ‘error’ term and ψp as a lace-expansion
coefficient that plays a similar role for the three-point function as Πp for the two-point
function. This means that we need to extract three two-point functions, giving rise to a
‘vertex factor’ that we denote by ψp. In order to achieve (15.1.21), one typically starts
in a rather similar way as for the lace expansion for the two-point function. Indeed, we
successively look for the first pivotal bond, use the Factorization Lemma, etc. However,
now there are two cases: (a) the first pivotal can be pivotal for both {0 ←→ x1} and
{0 ←→ x2}; or (b) {0 ←→ x1} and {0 ←→ x2} have two different first pivotals. (The
case where one of the events {0 ←→ x1} or {0 ←→ x2} does not have a pivotal turns
out to be an error term.) Case (a) can be treated very similarly as for the expansion of
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the two-point function and (ignoring the error term that arises) eventually gives rise to a
contribution of the form

(15.1.22)
∑
w0

(Jp ? Πp)(w0)τp(x1 − w0, x2 − w0),

where we recall that Jp(x) = 2dpD(x). Case (b) (which also arises each time we find a
‘first’ pivotal in the treatment of Case (a)) is more involved, and leads to a contribution
after expansion (again ignoring the error term) of the form

(15.1.23)
∑
w1,w2

ϕp(w1, w2)τp(x1 − w1)τp(x2 − w2).

Here we note that we need to perform a double expansion, the first extracts the factor
τp(x1 − w1), while the second extracts a factor τp(x2 − w2). Such a double expansion
is highly non-trivial and quite a bit more difficult than the expansion for the two-point
function. In the end, this three-point function expansion gives rise to

τp(x1, x2) =
∑
w0

(Jp ? Πp)(w0)τp(x1 − w0, x2 − w0) +
∑
w1,w2

ϕp(w1, w2)τp(x1 − w1)τp(x2 − w2)

+Qp(x1, x2),(15.1.24)

where Qp(x1, x2) is the combined error term that arises. Equation (15.1.24) is not quite
equal to (15.1.21), but (15.1.21) can be obtained from it by iterating indefinitely. Indeed,
we can apply (15.1.24) again to the three-point function τp(x1 − w0, x2 − w0), etc. This
way, we obtain

τp(x1, x2) =
∑
w0

∞∑
m=0

(Jp ? Πp)
?m(w0)ϕp(w1, w2)τp(x1 − w0, x2 − w0)

+
∑
w0

∞∑
m=0

(Jp ? Πp)
?m(w0)Qp(x1 − w0, x2 − w0).(15.1.25)

Realizing that

(15.1.26)
∞∑
m=0

(Jp ? Πp)
?m(w) = (Jp ? τp)(w),

we arrive at (15.1.21) with

ψp(w1, w2) =
∑
u

Jp(u)ϕp(w1 − u,w2 − u),(15.1.27)

Rp(x1, x2) =
∞∑
m=0

(Jp ? Πp)
?m(w0)Qp(x1 − w0, x2 − w0).(15.1.28)

The above argument applies to the ‘regular’ three-point function τp(x1, x2) = Pp(0←→
x1, 0 ←→ x2). In Open Problems 15.1, 15.2 and 15.3, we need to deal with several
complications. Indeed, the expansion for the three-point function in Open Problem 15.1
needs a conditioning on the cluster size. This analysis was performed by Hara and Slade
in [141], where they proved the convergence for the three-point function. This is a major
result in the connection between critical percolation clusters conditioned on their size and
ISE. Convergence results for higher-point functions are still missing. The expansion for
the three-point function in Open Problem 15.2 is phrased in terms of the intrinsic distance
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between 0 and x1 and x2, respectively. Such an expansion is far more elaborate, and partial
results (though not for the three-point function, and phrased in terms of the number of
pivotals rather than the intrinsic distance) are derived in [148]. We present this result in
Section 15.3. A similar comment applies to the IIC setting in Open Problem 15.3. Here
one should bear in mind that an IIC two-point function, loosely speaking, corresponds to
a regular three-point function, due to the ‘extra point’ at infinity. In a similar vein, an
IIC r-point function, loosely speaking, corresponds to a regular (r + 1)-point function.

The expansion for the three-point function is only the first step towards resolving
Open Problems 15.1, 15.2 and 15.3. The next step involves an extension to the r-point
function for general r. This looks quite frightening, but luckily the expansion for an r-
point function is closely related to the expansion for the three-point function. Intuitively,
this is because the limiting tree-like objects have binary branching, so that the major
contributions come from a single split as in (15.1.24). In fact, an equation as in (15.1.24)
is expected to hold for the r-point function for any r ≥ 3, where only the error changes
dramatically, but the vertex factor ϕp(w1, w2) is identical, while the two-point functions
τp(x1 − w1) and τp(x2 − w2) are replaced by s-point functions with s < r. This sets the
stage for an inductive analysis in r. Such an analysis was performed in the context of
oriented percolation by the second author and Slade in [171] (see also Section 15.2 below).
Such an inductive analysis would identify the scaling limit of the r-point functions in each
of the different settings. For Open Problem 15.1, this is enough, as convergence of the
r-point functions in the ISE setting proves weak convergence of the mass measure. See
Derbez and Slade [86] for an example where such a result is proved in the context of
lattice trees.

For Open Problems 15.2 and 15.3, however, an additional tightness argument is needed
to prove convergence in path space. A criterion for such tightness in the context of Open
Problem 15.2, phrased in the language of lace expansions, was recently formulated by the
second author together with Holmes and Perkins [161]. They applied this criterion to
prove the convergence in path space in Open Problem 15.2 to lattice trees. However, we
are quite distant from such results for percolation. A tightness criterion in the context of
Open Problem 15.3 has not yet been formulated.

We see that even though we understand much about critical high-dimensional per-
colation clusters, the results linking such clusters to super-processes are not as strong
as we would like them to be, and much more work is needed to bring such questions
substantially forward.

15.2. Oriented percolation

We now discuss so-called oriented percolation, in which vertices have a time variable
and edges are oriented in time. This is closely related to, yet slightly different from,
directed percolation, where edges always move in positive direction coordinate-wise. For
example, the edges of directed percolation in d dimensions are of the form {x, y}, where
yi = xi + 1 for some i, while xj = yj for all j 6= i. In the high-dimensional literature, the
focus has been on oriented percolation, so we stick to this setting here.

For oriented percolation, the base graph G = (V , E) has vertex set V = Zd × Z+,
and bond set E = {((x, n), (y, n + 1)) : |x − y| = 1}, and G is considered as a directed
graph. This means that every directed bond b ∈ E is open with probability p, and we say
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that (x, n) is (forward) connected to (y,m) (in formulas: (x, n) −→ (y,m)) whenever a
directed path of occupied bonds exists starting in (x, n) and ending at (y,m). Mind that
the direction of the bonds implies that (x, n) −→ (y,m) is only possible when n ≤ m.
Thus, we can only traverse edges in the direction of increasing last coordinate, and this
last coordinate has the convenient interpretation of time. We define the forward cluster
C (x, n) of (x, n) ∈ Zd × Z+ to be

(15.2.1) C (x, n) = {(y,m) : (x, n) −→ (y,m)},
so that, in particular, C (x, n) ⊂ Zd × {n, n+ 1, . . .}.

While one might expect that percolation on oriented lattices poses mathematicians
similar difficulties as percolation on unoriented lattices, this turns out not to be the case,
since, for example, we do know that the oriented percolation function is continuous:

Theorem 15.2 (Continuity of oriented percolation [46, 120]). For oriented percolation
on Zd×Z+, for d ≥ 1, there is no infinite cluster at p = pc(Zd×Z+), i.e., θ(pc(Zd×Z+)) =
0.

Theorem 15.2 was first proved by Bezuidenhout and Grimmett in [46] for directed
percolation. The results were extended to the oriented percolation setting described above
by Grimmett and Hiemer in [120].

The proof of Theorem 15.2 makes use of a block renormalization that was also used
by Barsky, Grimmett and Newman [28, 29] to prove that percolation does not occur
in half-spaces. The proof in [46] also applies to the contact process, a continuous-time
adaptation of oriented percolation. The deep relation between the contact process and
oriented percolation has proved to be quite useful, and results in one model can typically
also be proved for the other.

Durrett [94] investigates the one-dimensional contact process and oriented percolation
models, focussing on the growth of the vertices in the cluster of the origin (0, 0) ∈ Zd×Z+

at time n. These results basically show that when the cluster of the origin is infinite, then
the part of it at time n grows linearly in n with a specific growth constant. Sakai [233]
investigates the hyperscaling inequalities for oriented percolation and the contact process,
indicating that mean-field critical exponents can only occur for d > 4, thus suggesting that
the upper critical dimension of oriented percolation equals dc = 4. Indeed, the orientation
of the percolation problem implies that mean-field behavior already occurs for d > 4:

Theorem 15.3 (Mean-field critical exponents for oriented percolation [220, 221]). For
oriented percolation on Zd × Z+, there exists d0 > 4 such that for all d ≥ d0, β = γ = 1
and δ = ∆ = 2 in the bounded-ratio sense, while η = 0 in the Fourier-asymptotic sense.

The statement of the theorem is also valid for a spread-out version of oriented per-
colation (similar to the spread-out model for ordinary percolation considered in Section
5.2) in dimension d > 4 and spread-out parameter L sufficiently large.

Nguyen and Yang [220, 221] prove Theorem 15.3 by following a similar strategy as
that for unoriented percolation as described in these lecture notes, see also the work of the
second author and Slade [171]. Sakai [232] proves similar results for the contact process,
which can be viewed as a continuous time version of oriented percolation. Indeed, the
theorem follows by employing the Aizenman-Barsky results in [9, 13] assuming the triangle
condition, and using the lace expansion as in [133]. In [158, 159], the second author, den
Hollander and Slade prove that in the spread-out setting, for d > 4, the probability that
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there is an occupied path at criticality connecting (0, 0) to Zd×{n} equals 1/(Bn)(1+o(1))
an n → ∞. This can be seen as a version of the statement that the critical exponent ρ
in the intrinsic distance exists and takes the mean-field value ρ = 1/2. This result was
reproved in a much simpler way by the second author and Holmes [160] at the expense of
a weaker error estimate.

The main results of the second author and Slade in [171] make a connection between
clusters at criticality for the spread-out oriented percolation model above 4 dimensions
and the canonical measure of SBM (recall Section 15.1). The proof in [171] follows the
outline presented at the end of Section 15.1, by deriving an expansion of the r-point
function followed by an induction argument in r to identify the scaling limit of these r-
point functions. Of course, the time variable n in Open Problem 15.2 has a highly natural
meaning as ‘time’ in the context of oriented percolation, which certainly simplifies the
analysis. Together with the results in [158, 159] about the oriented survival probability,
this proves convergence in finite-dimensional distribution (see [176], where this statement
is proved). A tightness argument, for example by verifying the conditions in [161], is still
missing. Related results that apply to oriented percolation as well as the contact process,
have been proved by the second author and Sakai in [168, 169], while the results for the
survival probability of the contact process follow from [160]. The proof for the contact
process in [168, 169] follows by noting that a time-discretization of the contact process
is an oriented percolation model, and proving that all such oriented percolation models
have the SBM scaling limits, uniformly in the discretization parameter.

We close this section by stating an open problem concerning nearest-neighbor oriented
percolation:

Open Problem 15.4 (Upper critical dimension nearest-neighbor
oriented percolation). Show that nearest-neighbor percolation exhibits
mean-field behavior for all d > 4.

15.3. Scaling limit of percolation backbones

In this section, we discuss a novel lace expansion derived with Hulshof and Miermont
in [148] for the two-point function with a fixed number of pivotals. Recall that Piv(x, y)
denotes the set of pivotal bonds for the event {x ←→ y}, and |Piv(x, y)| the number of
such pivotal bonds. We adopt the convention that |Piv(x, y)| =∞ whenever x and y are
not connected, and define

(15.3.1) τn(x, y) = Ppc(|Piv(x, y)| = n), n = 0, 1, 2, . . . ,

to be the probability that x and y are connected and there are precisely n pivotal edges
in between them for the critical value p = pc. Mind that the number of pivotal bonds
forms a random pseudometric on Zd. We write τm(x, y) = τm(y − x). We also study the
backbone two-point function of the IIC, denoted by

(15.3.2) ρn(x) = PIIC(Sn = x),

where Sn is the top of the nth pivotal bond for the connection from 0 to ∞ in the IIC
backbone, with S0 = 0. Since the IIC is single ended, it has infinitely many backbone
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pivotals, so that Sn (and thus ρn(x)) is well defined. The main result in this section is
the following theorem:

Theorem 15.4 (Gaussian asymptotics for two-point function with fixed number of
pivotals). For percolation in dimension d ≥ d0 > 6, there exist constants v and A such
that

(15.3.3) lim
n→∞

τ̂n
(
k/
√
n
)

= Ae−v|k|
2/(2d),

and

(15.3.4) lim
n→∞

ρ̂n
(
k/
√
n
)

= e−v|k|
2/(2d).

In words, Theorem 15.4 states that the end-point of a path consisting of n pivotals
has an asymptotic Gaussian distribution. The result about the endpoint can be strength-
ened to obtain convergence of the entire paths to a Brownian motion path. This is best
explained for the IIC backbone, whose definition we recall from (14.3.3). Further, recall
that Sn is the top of the nth pivotal bond of the IIC cluster for the event {0←→∞}.

Theorem 15.5 (Backbone scaling limit). Consider percolation on Zd with d ≥ d0,
with d0 > 14 sufficiently large. There there exists a constant σ2 = σ2(d) such that the
following convergence in distribution is valid PIIC-a.s. as n→∞ in the space D([0,∞),Rd)
of right-continuous functions with left limits endowed with the Skorokhod J1 topology:

(15.3.5)
(
n−1/2Sdnte

)
t≥0
⇒ (σB)t≥0,

where (Bt)t≥0 is standard Brownian motion on Rd.

Several variants of this result may be stated. For example, a corresponding result
holds for convergence of the entire backbone (in the sense of (14.3.3)) on the space of
non-empty compact subsets of Rd endowed with the Hausdorff distance. Similarly, one
may phrase a version of the theorem for large critical clusters conditioned to be sufficiently
large. For details we refer to [148].

Theorem 15.5 gives a clear mathematical interpretation to the phrase “faraway pieces
of critical percolation clusters are close to being independent” in high dimensions. Of
course, the different pieces are not independent, as the spatial position of one part of the
cluster has implications on other parts. However, if we pretend that they were independent
(as we did, for example, in (4.2.26)), then the resulting quantitative error is very small.
Theorem 15.5 takes this intuition a little further by identifying Brownian motion paths
as scaling limits of the backbone of critical clusters. Since the path of Brownian motion
for disjoint time intervals is (fully) independent, we conclude that all dependencies of the
cluster backbone vanish in the scaling limit.

A remark is due about the condition d0 > 14 in Theorem 15.5. Indeed, we expect the
theorem to hold for any d > 6, just as Theorem 15.4. However, the tightness criterion
that is currently applied in the proof requires the heptagon diagram to be positive rather
than the triangle diagram only, and for this we need d > 14 (cf. Proposition 5.5 with l = 0
and n = 7). The challenge is to find a more suitable tightness criterion in order to avoid
this technicality nuisance.

We now explain the proof of Theorem 15.4. It makes use of a novel lace expansion that
we now explain. It is based on the existence of a family πl(x, y) (where l ∈ N, x, y ∈ Zd)
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such that the lace-expansion equation

(15.3.6) τm(x, y) = πm(x, y) +
m−1∑
l=0

∑
b

πl(x, b) pD(b)τm−l−1(b̄, y)

is valid for all m ∈ N. We achieve this goal by a lace expansion. The lace expansion
below is novel for percolation.

We can take the Fourier transform of (15.3.6) to get

(15.3.7) τ̂m(k) = π̂m(k) +
m−1∑
l=0

π̂l(k) p D̂(k) τ̂m−l−1(k).

Equation (15.3.7) is the starting point of the analysis for the fixed-pivotals two-point
function.

Exercise 15.2 (Uniqueness lace expansion).

(a) Use (15.3.7) to prove that τ̂p(k) satisfies

(15.3.8) τ̂p(k) =
1 + Π̂′p(k)

1− 2dpD̂(k)[1 + Π̂′p(k)]
,

where Π̂′p(k) =
∑∞

l=0 π̂l(k).

(b) Prove that Π̂′p(k) = Π̂p(k) for every p and k for which both are well defined. Thus,
the lace-expansion coefficients are unique.

In order to understand the meaning of (15.3.6), it is most instructive to compare it
to the classical lace expansion in Chapter 6. There we were expanding the probability of
the increasing event {x ←→ y}; but now we consider events of the form |Piv(x, y)| = n,
which are intersections of increasing and decreasing events. A most notable difference is
that the basic expansion identity in (6.2.6) is replaced by a more involved identity. In
order to describe it, we need two more definitions: For any (deterministic) A ⊆ Zd and
vertices x, y ∈ Zd, we write PivA(x, y) for the collection of pivotal bonds for the event
{v ←→ y in Zd \ A}, and define

(15.3.9) τAn (x, y) := Ppc
(
|PivA(x, y)| = n

)
.

Since |PivA(x, y)| ≥ |Piv(x, y)| holds on the event {x←→ y in Zd \ A}, we can write for
all A ⊆ Zd,

τn(x, y)− τAn (x, y) = Ppc
(
|Piv(x, y)| = n,PivA(x, y) = ∅

)
+ Ppc

(
|Piv(x, y)| = n, |PivA(x, y)| > n

)
− Ppc

(
|Piv(x, y)| < n, |PivA(x, y)| = n

)
.

(15.3.10)

Here is an intuitive explanation for this identity: Let us suppose that x and y are con-
nected, and this connection has precisely n pivotal bonds. If we “close off” a set of
vertices A, then there are three possible scenarios: we can break the connection from x
to y entirely (the first summand), we can make it too long (the second summand), or a
connection that was previously too short now has the right length (the third summand).
The last two summands were not present in (6.2.6). Hence, in every expansion step, we
get both a positive as well as a negative term. In turn, this gives a more complicated
structure for the coefficients πl(x, y).
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Instead of working with the number of pivotal bonds, it would also be highly interesting
to investigate the two-point function with fixed intrinsic distance. This is formulated more
precisely in the following open problem:

Open Problem 15.5 (Intrinsic distance two-point function). Extend
Theorem 15.4 to the intrinsic distance two-point function

(15.3.11) τ (in)

n (x) = Ppc
(
dC(0)(0, x) = n

)
,

where dC(0)(0, x) is the intrinsic or graph distance between 0 and x in
the (random) graph C (0).

15.4. Long-range percolation

Long-range percolation is a variation of percolation where edges of arbitrary length
can be occupied, and edge occupation depends on the Euclidean distance between the
vertices in the edge. It has been demonstrated that the lace expansion is a particularly
useful method to study long-range percolation in high dimensions. The big picture is the
following: By allowing (very) long edges to be occupied with sufficiently high probability,
critical clusters become spatially more stretched out, and different parts of critical clusters
are “more independent”. This triggers mean-field behavior even in dimensions below 6
(which is impossible for ordinary percolation by Corollary 11.7). Some authors express
this phenomenon by saying that the slow decay of edge occupation densities increases the
“effective dimension” of the model.

We formally introduce the model by defining edge weights for arbitrary L, α > 0 by

(15.4.1) DL(x, y) = NL max

{
|x− y|
L

, 1

}−(d+α)

, x, y ∈ Zd,

where NL is a normalizing constant, that is, N−1
L =

∑
x∈Zd max

{ |x|
L
, 1
}−(d+α)

is chosen
such that ∑

y∈Zd
DL(x, y) = 1

for all x. For a parameter λ ≥ 0, we make any edge {x, y} ∈ Zd × Zd occupied with
probability

(15.4.2) pxy = λDL(x, y) ∧ 1

independently of each other, and otherwise vacant.

We have now introduced the three parameters in long-range percolation, namely, α,
L and λ. Let us explain the role of all three of them. The power-law exponent parameter
α controls the tail behavior of the edge occupation probabilities. Loosely speaking, the
smaller α, the more likely very-long edges in percolation clusters are. The spread-out
parameter L is of a purely technical nature. The role of L here is indeed the same as
in Theorem 5.4; it “spreads out” the weights in order to make the triangle diagram
small enough such that the bootstrap argument, as discussed in Chapter 8, works. The
percolation parameter λ ≥ 0 scales the edge-occupation probabilities, and thus has the
same role as p in the original percolation model, but bear in mind that
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λ is not a probability anymore. Rather, λ is the expected degree
of a percolation configuration ω at x ∈ Zd.

We denote τλ(x) = Pλ(0 ←→ x) = Pλ(v ←→ v + x) for v, x ∈ Zd, and further use
the same notation as in Section 1.1 for this model with p replaced by λ; in particular, we
define the critical threshold as λc = inf{λ ≥ 0: θ(λ) > 0}, where θ(λ) = Pλ(|C (0)| =∞).

Interestingly, Berger [44] shows that the percolation function θ(λ) is continuous at
λ = λc in general dimension whenever α ∈ (0, d). Again this shows that the problems
encountered for regular percolation can sometimes be resolved by slightly adapting the
model, recall Open Problem 1.1.

The main result concerning mean-field behavior for long-range percolation states that
the upper critical dimension of the model changes from 6 (in the original model) to 3(α∧2)
in long-range percolation:

Theorem 15.6 (Infrared bound [146, 149]). For long-range percolation in dimension
d > 3(α ∧ 2), there is L0 > 0 such that for every L > L0 there exists a constant A =
A(d, α, L) and ε > 0 such that for λc = λc(d, α, L) and k ∈ (−π, π]d,

(15.4.3) τ̂λc(k) =
A(d, α, L)

|k|α∧2
(1 +O(|k|ε)).

Consequently, the triangle condition is satisfied in this regime, and the critical exponents
β, γ, δ, ν, ν2, and ∆ exist in bounded-ratio sense and take on their mean-field values.

The infrared bound in Theorem 15.6 was proved in our joint paper with Sakai [149],
the extension to sharp asymptotics follows from joint work with Hulshof [146], where
strong spatial bounds are obtained for Πλc(x).

Notice that the right hand side of (15.4.3) is comparable to [1 − D̂L(k)]−1, which is
the Fourier transform of the Green’s function of a random walk with step distribution
DL. This observation is also the key to the proof of the theorem: We follow the same
strategy as for ordinary percolation (outlined in Chapters 5–8), but instead of comparing
τλ to the Green’s function of simple random walk, we compare it to the Green’s function
of long-range walk. In fact, Theorem 15.6 holds not only for the specific form of DL in
(15.4.1), but for a much more general class, which we disregard in this discussion; we refer
the interested reader to our paper with Sakai [149].

A natural next step in the analysis is the x-space asymptotics of τλc(x) as |x| →
∞. This requires an excellent control of the convolution bounds in (11.2.4), which is
notoriously difficult for infinite-range models. Chen and Sakai [76] nevertheless manage
to identify the decay of τλc(x) under some extra assumptions on DL. One example of DL

that satisfies all these extra assumptions is

(15.4.4) DL(x) =
∑
n∈N

U∗nL (x)Tα(n),

where UL is the discrete uniform distribution on [−L,L]d ∩ Zd, and Tα is the stable
distribution on N with parameter α/2 6= 1 (cf. the appendix of [76]). The main result by
Chen and Sakai in this setting is the following:
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Theorem 15.7 (η = 0 in x-space [76]). For long-range percolation with edge weights
given by (15.4.4) in dimension d > 3(α∧ 2), α ∈ (0, 2)∪ (2,∞), there is L0 > 0 such that
for every L > L0 there exist constans A = A(d, α, L) and µ ∈ (0, α ∧ 2) such that

(15.4.5) τλc(x) =
A(d, α, L)

|x|d−(α∧2)
+
O(L−(α∧2)+µ)

|x|d−(α∧2)+µ
.

The conclusion of Theorem 15.6 holds for a large class of bond weights DL with the
appropriate decay rates, and universality suggests that the rather restricted result of The-
orem 15.7 generalizes in the same way. It is an open problem to prove this generalization
of Theorem 15.7:

Open Problem 15.6 (Universality in x-space asymptotics
long-range percolation). Extend Theorem 15.7 to more general long-
range setting, for example, that in (15.4.1).

In view of the results presented so far it is tempting to conjecture that virtually all
the results for ordinary percolation in high dimensions hold for long-range percolation
with 2 replaced by α ∧ 2 at appropriate places. This is also quite natural, as we are
comparing the two-point function τλc(x) to the Green’s function of a random walk with
step distribution DL. It is well known that the Green’s function asymptotics |x|−(d−2) is
restricted to random walks with finite variance step distributions, which holds for (15.4.4)
precisely when α > 2. It turns out, however, that α > 2 is not enough for all critical
exponents to take their finite-range mean-field values. As an illustration, we consider
the extrinsic one-arm exponent of Theorem 11.5. The crossover, for which long-range
percolation differs from ordinary percolation, is not for α = 2 as before, but here it is for
α = 4:

Theorem 15.8 (Long-range one-arm exponent [147, 178]). For long-range percolation
in dimension d > 3(α ∧ 2) with α ∈ (0, 2)∪ (2,∞) for which (15.4.5) holds in a bounded-
ratio sense, there is L0 > 0 such that for every L > L0 there exist constants Cex, cex > 0
such that

(15.4.6)
cex

n(α∧4)/2
≤ Pλc(0←→ Zd \ Λn) ≤ Cex

n(α∧4)/2
.

The lower bound in (15.8) does not rely on (15.4.5) , the upper bound does.

We summarize that the critical exponent ρex = 1/2 of ordinary percolation changes to
ρex = 2/(α ∧ 4) in long-range percolation. This may look surprising at first, but indeed
critical branching random walk shows the same behavior, as proven by Hulshof [178] (and
hinted at by Janson and Marckert [184]).

We conclude this discussion by a remark on the continuity of the percolation function.
In the mean-field regime discussed so far, the critical exponent β equals 1, and thus the
percolation function λ 7→ θ(λ) is continuous at λ = λc. This is the case in particular for
d = 1 and α < 1/3. In a celebrated result, Aizenman and Newman [14] show that for
d = 1 and α = 1 (under some minor extra conditions), indeed θ(λc) > 0! This shows that
Open Problem 1.1 does not hold for all percolation models and arguably explains why
proving continuity of p 7→ θ(p) at p = pc for general percolation models has remained
unsolved for such a long time.
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15.5. The asymptotic expansion of the critical value

In this section, we investigate the asymptotics of pc(Zd) as d → ∞. The main result
is as follows:

Theorem 15.9 (The asymptotic expansion of pc(Zd) in powers of 2d [137, 139, 173,
174]). Consider bond percolation on Zd. There are rational numbers ai such that for all
M ≥ 1,

(15.5.1) pc(Zd) =
M∑
i=1

ai(2d)−i +O((2d)−M−1) as d→∞.

Further, a1 = a2 = 1, a3 = 7/2.

The fact that there is an asymptotic expansion to all order was proved by the second
author and Slade in [174]. The first 3 coefficients were first identified by Hara and Slade
in [139] (see also [137]), and they were recomputed in [173]. In the latter paper, the
asymptotic expansion was extended to the critical value on the hypercube pc({0, 1}d),
whose first three coefficients agree with those on Zd. The proof uses the lace expansion,
and a careful analysis of how the lace-expansion coefficients depend on the dimension.
The crucial identity is given by (6.1.6), namely

(15.5.2) 2dpc =
1

1 + Π̂pc(0)
.

The asymptotic expansion is then proved to exist by induction in M and an analysis of
Π̂pc(0) in terms of p and d.

The expansion

(15.5.3) pc(Zd) =
1

2d
+

1

(2d)2
+

7

2(2d)3
+

16

(2d)4
+

103

(2d)5
+ · · ·

was reported by Gaunt and Ruskin in [113], but with no rigorous bound on the remainder.
The fact that pc(Zd) = (1 + o(1))/(2d) has a long history [19, 55, 115, 133, 195], with
various error estimates. It is believed that the full asymptotic expansion

∑∞
i=1 ai(2d)−i

does not converge, the reason being that the absolute values |ai| grow too quickly as
i→∞. However, it appears plausible that the sequence might be Borel summable, which
we explain next.

For convenience, we abbreviate pc(d) = pc(Zd). The main question is, in view of the
(presumed) divergence of the formal series

∑
i ai(2d)−i, how can we reconstruct pc(d) from

the sequence (ai)i≥1? To this end, we consider the Borel transform

(15.5.4) B(t) =
∞∑
i=1

ait
i

i!
,

and assume existence for all t > 0. Suppose that pc (as a function of d ∈ N) can be
extended to an analytic function on an open neighborhood U around pc in the complex
plain C for some specific value d, and assume that

(15.5.5)

∣∣∣∣∣pc(d)−
M∑
i=1

ai(2d)−i

∣∣∣∣∣ ≤ CM M !

(2d)M
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for some fixed constant C > 0. Then

(15.5.6) pc(d) = 2d

∫ ∞
0

e−2dtB(t) dt

and the right hand side, known as the Borel sum, converges. See Graham [116] for details
in the slightly different context of self-avoiding walk.

Open Problem 15.7 (Borel summability of the asymptotic expan-
sion pc(Zd)). Prove that the sequence (ai)i≥1 in (15.5.1) is Borel sum-
mable, that is, prove (15.5.6).

It is instructive to compare the expansion of pc for percolation with another model
called self-avoiding walk. A principle challenge for the study of self-avoiding walk is to
understand the connective constant, which is a parameter for that model similar to pc
for percolation. Indeed, similar expansions to the one in (15.5.1) have been obtained for
the connective constant. Clisby, Liang, and Slade [77] have found rigorously that (for
self-avoiding walk) the first sign change for the sequence (ai)i≥1 appears in the 10th digit.
This supports the picture that (ai)i≥1 is a sequence with fast growing absolute values
and sign changes after blocks of varying length. Graham [116] proved a bound similar to
(15.5.5) in the context of self-avoiding walk.

Computing the coefficients ai becomes increasingly more difficult when i grows large,
since more and more lace-expansion coefficients Π̂(N)

pc (0) need to be taken into account,
and these coefficients become substantially more involved as N grows. Finding an efficient
way to compute the coefficients is the content of the next open problem:

Open Problem 15.8 (Computation coefficients asymptotic expan-
sion pc(Zd)). Find an argument that proves the existence of the as-
ymptotic expansion of pc(Zd) in Theorem 15.9 that avoids the lace
expansion, and use it to compute a4, a5, . . .

As noted earlier, Theorem 15.9 also applies to hypercube percolation with 2d replaced
with d and with the same coefficients a1 = a2 = 1, a3 = 7/2. The proof in [173, 174] hints
at the fact that ai for Zd and the hypercube are different for some i ≥ 4.

Open Problem 15.9 (Computation coefficients asymptotic expan-
sion pc({0, 1}d; 1)). Extend Open Problem 15.8 to the hypercube and
find the first i for which ai on Zd and the hypercube are distinct.

Probably a slightly easier open problem involves the Hamming cube. Indeed, Theorem
13.13 applies to the Hamming cube:

Exercise 15.3 (Hamming graph and its critical behavior). Prove that Theorem 13.13
applies to the Hamming cube.
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Open Problem 15.10 (Computation coefficients asymptotic expan-
sion pc(K

d
n;λ)). Show that the critical value on the Hamming graph

Kd
n satisfies

(15.5.7) pc(K
d
n;λ) =

d/3∑
i=1

ai(d)n−i +O(n−1−d/3).

It is not hard to see that a1(d) = 1/d, but the higher order contributions are less
obvious to determine. For d = 1, 2, 3, however, this completes the proof. Recently,
progress was made in this direction by identifying the second order correction in (15.5.7)
by Federico, the second author, den Hollander and Hulshof [207], with a2(d) = (2d2 −
1)/[2(d − 1)2]. This proves Open Problem 15.10 also for d = 4, 5, 6. For d ≥ 7, also the
third term becomes relevant.

The major distinction between the situation on the hypercube described in Open
Problem 15.9 and that on the Hamming graph in Open Problem 15.10 is that on the
hypercube, any truncation of the asymptotic expansion is not inside the critical window
(assuming that as 6= 0 for infinitely many s, as the scaling window has width Θ(2−d/3)
and any inverse power of d is much larger than Θ(2−d/3)). On the other hand, the width
of the scaling window on the Hamming graph is an inverse power of n, and therefore
eventually the asymptotic expansion is inside the scaling window.

15.6. Percolation on non-amenable graphs

We are now focussing on percolation on a class of infinite transitive graphs G = (V , E)
known as non-amenable graphs. A comprehensive reference for percolation on transitive
graphs is the book of Lyons and Peres [210].

We start by defining what a non-amenable graph is. For a finite set of vertices S ⊆ V ,
we recall from Section 3.2 that its edge boundary ∆S is defined by

(15.6.1) ∆S = {(u, v) ∈ E : u ∈ S, v 6∈ S}.
The notion of amenability is all about whether the size of ∆S is of equal order as that of
S, or is much smaller. To formalize this, we denote the Cheeger constant of a graph G by

(15.6.2) Ch(G) = inf
S⊂V:|S|<∞

|∆S|
|S|

.

A graph is called amenable when Ch(G) = 0, and it is called non-amenable otherwise. Key
examples of amenable graphs are finite-range translation invariant graphs G with vertex
set Zd. The simplest example of a non-amenable graph is the regular tree Tr with r ≥ 3.
For the regular tree Tr with r ≥ 3, it is not hard to see that Ch(Tr) = r − 2. Benjamini
and Schramm [39] prove many preliminary results of percolation on non-amenable graphs,
and state many open questions, some of which have been settled in the mean time. For
example, [39, Theorem 1] proves that pc(G) ≤ 1/(Ch(G) + 1), so that pc(G) < 1 for every
non-amenable graph.

A related definition of non-amenability can be given in terms of the spectral radius of
a graph. Let pn(u, v) be the probability that simple random walk on G starting at u ∈ V
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is at time n at v ∈ V . The spectral radius of G is defined as

(15.6.3) ρ(G) = lim
n→∞

p2n(u, u)1/(2n).

By Kesten’s Theorem [189, 190] (see also [89]), when G has bounded degree, then ρ(G) < 1
if and only if Ch(G) > 0. This exemplifies the fact that there is a close relationship between
graph theoretic properties on the one hand, and the behavior of stochastic processes on the
graph on the other. A similar relation between the existence of invariant site percolation
and amenability of Cayley graphs is proved in [38, Theorem 1.1].

For percolation on Zd, in the super-critical regime, the Burton-Keane argument proves
that the infinite cluster is unique, cf. [66]. It turns out (see e.g., the discussion following
[196, Theorem 4]) that the uniqueness of the infinite cluster is valid for all amenable
graphs. As the Burton-Keane argument shows, there is a close relation between the
surface/volume ratio of the underlying graph on the one side and the uniqueness of the
infinite cluster on the other side, which helps to explain the uniqueness for all amenable
graphs. The situation for trees is very different, as the number of infinite components N
equals N = ∞ a.s. in the supercritical phase, which can be attributed to the fact that
if we remove one edge, then a tree falls apart into two infinite graphs and each of these
has at least one infinite component a.s., so that in total there are infinitely many infinite
clusters. Thus, this phenomenon is more related to there not being any cycles rather than
the boundary being large.

In order to investigate the number of infinite clusters, we define the uniqueness critical
value by

(15.6.4) pu = pu(G) = inf{p : Pp-a.s. there is a unique infinite cluster}.

For the regular tree with r ≥ 3, pu = 1, while for Zd, pu = pc. Below, we give examples
where pc < pu < 1.

While the existence of an infinite cluster is clearly an increasing event, the uniqueness
of the infinite cluster is not. Therefore, it is a priori not at all obvious that for all
p > pu, the infinite cluster is unique. This is the main content of the following theorem by
Schonmann [238]. In its statement, we write N(p) for the number of infinite percolation
clusters under Pp.

Theorem 15.10 (Uniqueness transition [238]). For percolation on a connected, quasi-
transitive, infinite graph of bounded degree, a.s.,

(15.6.5) N(p) =


0 for p ∈ [0, pc);

∞ for p ∈ (pc, pu);

1 for p ∈ (pu, 1].

This theorem is due to Schonmann [238], see also related results by Häggström, Peres
and Schonmann [125, 126]. Note that, in general, not much is known for the critical cases
p = pc and p = pu.

Classical examples of graphs for which 0 < pc < pu < 1 are the Cartesian product
Z×Tr, as shown by Grimmett and Newman [123] and, much more general, any transitive,
non-amenable planar graph with one end (for example, tilings of the hyperbolic plane) as
shown by Benjamini and Schramm [40].
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We continue by studying the nature of the phase transition on non-amenable graphs.
Remarkably, we know that p 7→ θ(p) is continuous for a number of special cases, in
particular for Cayley graphs of non-amenable groups and for quasi-transitive graphs of
exponential growth. We start by defining what a Cayley graph is. Let Γ be a group,
and let S = {g1, . . . , gn} ∪ {g−1

1 , . . . , g−1
n } be a finite set of generators. The Cayley graph

G = G(Γ) with generators S has vertex set V = Γ, and edge set E = {{g, h} : g−1h ∈ S}.
Furthermore, we call a graph G quasi-transitive (or almost transitive) if there is a finite
set of vertices V0 ⊂ V such that any v ∈ V is taken into V0 by some automorphism of G.
The graph is said to have exponential growth whenever

(15.6.6) gr(G) := lim inf
n→∞

∣∣{y ∈ V : dG(x, y) ≤ n}
∣∣1/n > 1,

where x is some vertex of G and dG is the graph distance on G. Mind that the property
(15.6.6) is independent of the initial vertex x if G is quasi-transitive.

Theorem 15.11 (Continuity on non-amenable graphs [37, 38, 180]). Let G be a Cayley
graph of a finitely generated non-amenable group or a quasi-transitive graph of exponential
growth. For percolation on G, there is no infinite cluster at p = pc(G), that is, θ(pc(G)) =
Ppc(|C (v)| =∞) = 0.

This result was proved by Benjamini, Lyons, Peres and Schramm [37, 38], and gen-
eralized earlier work by Wu [257] on Z × Tr with r ≥ 7. The proof makes use of the
mass-transport technique with a clever choice of the mass-transport function. Hutchcroft’s
proof [180] for quasi-transitive graph of exponential growth is more recent and presented
below. As we have discussed earlier for the case of Zd, continuity of the percolation func-
tion at the critical point is a question of high importance in percolation theory. Here is a
stronger form of an earlier formulated open problem:

Open Problem 15.11 (Critical percolation dies out; general form
[39]). For any quasi-transitive graph G with pc(G) < 1, there is no
infinite cluster at criticality, that is θ(pc) = 0.

This generalizes Open Problem 1.1 and was first formulated as Conjecture 4 in Benjamini
and Schramm [39], see also [210, Conjecture 8.15]. Mind that one can construct certain
trees for which there are infinitely many infinite open clusters at criticality, which shows
that quasi-transitivity is essential.

Proof of Theorem 15.11 for quasi-transitive graphs of exp. growth.
We present the argument of Hutchcroft [180]. First we note that on any quasi-transitive
graph, the number N(p) of infinite percolation clusters satisfies N(p) ∈ {0, 1,∞} a.s.
for every p ∈ [0, 1], as shown by Newman and Schulman [218]. Furthermore, the case
N(pc) =∞ can be ruled out, as proven by Burton and Keane [66] and Gandolfi, Keane,
and Newman [112] for amenable quasi-transitive graphs, by Benjamini, Lyons, Peres, and
Schramm [37, 38] for non-amenable, quasi-transitive graphs with an extra assumption
named unimodularity, and finally Timár [254] removed the unimodularity assumption. It
remains to show that N(pc) = 1 cannot occur. To this end, we claim that

(15.6.7) κpc(n) ≤ gr(G)−n,
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where gr(G) > 1 was defined in (15.6.6) and

(15.6.8) κp(n) := inf
{
τp(x, y) : x, y ∈ V , dG(x, y) ≤ n

}
.

To see that this implies the desired claim, assume that N(pc) = 1. By the Harris inequality
(1.3.1),

τpc(x, y) ≥ Ppc(x is in the unique infinite cluster)2,

and hence limn→∞ κpc(n) > 0, thus contradicting (15.6.7).
In order to show (15.6.7), we observe that κp(n) is super-multiplicative in n for any

p, because again the Harris inequality implies for u, v ∈ V with dG(u, v) < n+m that

τp(u, v) ≥ τp(u,w) τp(w, v) ≥ κp(m)κp(n)

for any w ∈ V with dG(u,w) < n and dG(w, v) < m. Taking the infimum yields κp(n+m) ≥
κp(m)κp(n).

For any p ∈ [0, 1] and every n ≥ 1 and any fixed vertex x ∈ V ,

κp(n) ·
∣∣{y ∈ V : dG(x, y) ≤ n}

∣∣ ≤ ∑
y∈V:dG(x,y)≤n

τp(x, y) ≤
∑
y∈V

τp(x, y),

so that by Fekete’s lemma (cf. [211, Lemma 1.2.2]),

sup
n≥1

(
κp(n)

)1/n
= lim

n→∞

(
κp(n)

)1/n ≤ lim sup
n→∞

( ∑
y∈V τp(x, y)∣∣{y ∈ V : dG(x, y) ≤ n}

∣∣
)1/n

.

We next use that
∑

y∈V τp(x, y) = Ep|C (x)| < ∞ whenever p < pc by Theorem 3.1 (the

quasi-transitive case being treated in Antunović and Veselic [22]) and obtain

sup
n≥1

(
κp(n)

)1/n ≤ gr(G)−1.

for every p < pc. Finally, we remark that the left hand side is a supremum of lower semi-
continuous functions and is therefore lower semi-continuous itself, which implies (15.6.7)
and thus finishes the proof. �

Since non-amenable graphs can be thought of as being infinite dimensional, one would
expect that all non-amenable graphs should display mean-field behavior. While no coun-
terexamples exist, also this result is not known in general. We complete this section
by describing the available results on critical exponents. For this, we need to intro-
duce the notions of planar and unimodular graphs. A graph is called planar when it
can be embedded into R2 with vertices being represented by points in R2 and edges by
lines between the respective vertices such that the edges only intersect at their end-
points. For x ∈ V , let the stabilizer S(x) of x be the set of automorphisms of G
that keep x fixed, i.e., S(x) = {γ : γ(x) = x}. The graph G is called unimodular if
|{γ(y) : γ ∈ S(x)}| = |{γ(x) : γ ∈ S(y)}| for every x, y ∈ Zd.

Finally, the number of ends of a graph G is

(15.6.9) E(G) = sup
S⊂V:|S|<∞

{number of infinite connected components of G \ S}.

Then, Schonmann [237, 239] proves that percolation has mean-field critical exponents in
the following cases:
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Theorem 15.12 (Mean-field critical exponent on non-amenable graphs). For percola-
tion on a locally finite, connected, transitive, non-amenable graph G, β = γ = 1, δ = ∆ = 2
in the bounded-ratio sense, in the following cases:

(1) Unimodular graphs G for which h(G) > (
√

2r2 − 1 − 1)/2, where r is the degree
of the graph;

(2) Graphs G that are planar and have one end;
(3) Graphs G that are unimodular and have infinitely many ends.

The proof of case (2) in Theorem 15.12 above proceeds via an embedding into the
hyperbolic plane H2. To this end, let G be an infinite, locally finite, connected transitive
non-amenable planar single-ended graph. Then, Babai [24] proves that G can be embedded
as a graph G ′ in the hyperbolic plane H2 in such a way that the group of automorphisms
Γ on G ′ extends to an isometric action on H2. Moreover, the embedding can be chosen
such that the edges of G ′ are hyperbolic line segments; such embeddings are called ‘nice
embeddings’. Schonmann proceeds by employing results about percolation on hyperbolic
tessellations due to Lalley [202] and Benjamini-Schramm [40] in order to derive a mean-
field criterion. The proof for graphs with infinitely many ends (case (3) above) makes
use of the tree-like structure in this situation. It is worthwhile to note that Schonmann’s
second paper on the matter [239] derives specific mean-field criteria suitable for non-
amenable graphs (they would simply fail for amenable graphs), which are apparently
simpler to verify in the non-amenable situation.

Since percolation in high dimensions is known to have mean-field critical exponents,
which coincide with the critical exponents on the tree (which is a key example of a non-
amenable graph), one would expect that, in great generality, percolation on non-amenable
graphs do so, too:

Open Problem 15.12 (Mean-field behavior of non-amenable
graphs). Show that the percolation phase transition on any transi-
tive non-amenable graph has mean-field critical exponents.





CHAPTER 16

Further open problems

In this chapter, we investigate some topics related to percolation where one would
hope that lace-expansion ideas could prove useful, but they have not been fully explored.
We hope that these lecture notes spark new interest in these topics.

16.1. Invasion percolation

Invasion percolation is a dynamical percolation model that displays self-organised
critical behavior. In invasion percolation, each edge is equipped with an i.i.d. random
weight (Ub)b∈E uniformly distributed on (0, 1). These variables play a similar role as the
i.i.d. uniform random variables present in the Harris coupling of all percolation models for
p ∈ [0, 1]. Then, we start at time zero from G0 = ({0},∅) and iteratively grow a random
graph in discrete time. At time t ∈ N, given the graph Gt−1 = (Vt−1, Et−1), we consider
all the edges in the edge boundary ∆Vt−1 = {(x, y) : x ∈ Vt−1, y 6∈ Vt−1} and pick the one
with the smallest weight:

(16.1.1) bt := arg min
b∈∆Vt−1

Ub.

Denoting bt = (xt, yt), we take Vt = Vt ∪ {yt} and Et = Et ∪ {bt}. Continue indefinitely,
and let IPC denote the limiting graph (which is an infinite tree embedded into Zd since
we do not allow for cycles).1

Invasion percolation is closely related to critical bond percolation. Indeed, color those
bonds whose weight is at most pc red. Once a red bond is invaded, all other red bonds in
its cluster are invaded before the invasion process leaves the cluster. For Zd, where critical
clusters appear on all scales, we expect larger and larger critical clusters to be invaded,
so that the invasion process spends a large proportion of its time in large critical clusters.
When θ(pc) = 0, all critical clusters are finite, so that we have to leave the critical cluster
again, having to accept an edge bt with weight Ubt > pc infinitely often.

A reflection of this is the fact that the number of bonds in IPC with weight above pc+ε
is almost surely finite for all ε > 0, as proved for Zd by Chayes, Chayes, and Newman [74]
and extended to much more general graphs by Häggström, Peres, and Schonmann [126].

Theorem 16.1 (Limsup of edge weights in invasion percolation [74]). Fix d ≥ 1 and
recall that Ubt is the edge weight of the t-th invaded edge. Then, a.s.,

(16.1.2) lim sup
t→∞

Ubt = pc.

The fact that invasion percolation is driven by the critical parameter pc, even though
there is no parameter specification in its definition, makes invasion percolation a prime

1In the literature there are versions of this construction that do allow for cycles; this leads to a
different invasion percolation cluster with the same set of vertices as our construction, but more edges.
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example of self-organised criticality. Intuitively, the above statement is quite obvious.
There is a unique infinite component at p > pc for any p. As soon as we hit the infinite
component for p = pc+ε, we never leave it, so that Uet ≤ pc+ε forever after that. Letting
ε↘ 0 shows the claim.

Interestingly, due to the close connection to critical percolation, the statement that
θ(pc) = 0 is equivalent to the fact that

(16.1.3) lim sup
n→∞

|IPC ∩ Λn|
|Λn|

= 0.

However, also proving (16.1.3) has proved to be difficult. Alternatively, the statement
θ(pc) > 0 is equivalent to the fact that sups≥t Ubs = pc a.s. for all t sufficiently large.

Another reflection of the relation to critical percolation has been established by Járai
[186], who shows for Z2 that the probability of an event E under the incipient infinite
cluster IIC measure (recall Chapter 12) is identical to the probability of the translation
of E to x ∈ Z2 under the IPC measure, conditional on x being invaded and in the limit as
|x| → ∞. It is tempting to take this a step further and conjecture that the scaling limit
of invasion percolation on Zd when d > 6 is the canonical measure of super-Brownian
motion conditioned to survive forever (see [153, Conjecture 6.1]). Indeed, such a result
was proved by the second author, den Hollander and Slade [153, 157] for the IIC of spread-
out oriented percolation on Zd × Z+ when d > 4, and presumably it holds for the IIC
of unoriented percolation on Zd when d > 6 as well. However, in Angel, Goodman, den
Hollander and Slade [21] this conjecture was shown to be false on the tree: the IIC and
IPC have different scaling limits. In fact, their scaling limits even turn out to be mutually
singular. Hints of a discrepancy between the IIC and IPC had been noted earlier by
Nickel and Wilkinson [223]. Remarkably, all critical exponents that we are aware of do
agree for the IIC and IPC on the tree, but the scaling limits differ.

In high dimensions, not much is known about invasion percolation. It appears quite
plausible that, like for the IIC, the two-point function is asymptotic to |x|−(d−4):

Open Problem 16.1 (Invasion percolation two-point function).
Show that there is a constant A such that, for d > 6, as |x| → ∞,

(16.1.4) P(x ∈ IPC) =
A

|x|d−4
(1 + o(1)).

A solution to Open Problem 16.1 is also crucial for insight into the phase structure of
the Edwards-Anderson model of a spin glass, as proved by Newman and Stein [219].

It is tempting to believe that also the IPC, in high dimensions, has a measure-valued
diffusion scaling limit (recall Section 15.1). One would expect this limit to be closely
related to the scaling limit of invasion percolation on the tree:
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Open Problem 16.2 (Scaling limit of invasion percolation). Iden-
tify the scaling limit of the invasion percolation cluster for percolation
for d > 6. In more detail, let the measure Z(n)

nt be given by

(16.1.5) Z(n)

nt (·) =
1

nγ

∑
x∈∂B(IP)(nt)

1{x/
√
n∈·},

where ∂B(IP)(n) consists of those vertices in IPC at graph distance
precisely n from the origin. Show that (Z(n)

nt )t≥0 converges to some
limiting measure-valued process for d > 6. Show that this process
is different from the scaling limit of the IIC in Open Problem 15.3,
and relate it to the scaling limit of invasion percolation on the tree
as identified in [21].

A related, possibly easier, problem is to show that a certain equivalence relation
between IPC and IIC proven by Járai [186] for d = 2 is true in high dimensions as well.
This relation states that the probability of the translation of an event E by x ∈ Zd
under the IPC measure, conditional on x ∈ IPC and in the limit as |x| → ∞, equals
the IIC measure. While this is intuitively obvious, since all the edges invaded close to
x have weight at most pc + o(1) by Theorem 16.1, the difficulty in dealing with invasion
percolation is that it is slightly supercritical, and we do not know a lot about supercritical
percolation (recall also Open Problem 11.1).

Minimal spanning trees. When growing the IPC on Zd, we do not get the entire
graph since the vertices that are surrounded by high weights are never found. On a finite
graph G, this is an entirely different matter. Invasion percolation can be defined in exactly
the same way as for an infinite graph, and we see that we construct a spanning tree of
the graph G, which is a cycle-free connected subgraph of G with the same vertex set.
This tree is called the minimal spanning tree (MST). Given weights (Ub)b∈E(G), the MST
is the spanning tree that minimizes the sum of the weights of all the edges in the tree∑

b∈T Ub. The invasion percolation dynamics is Prim’s algorithm for the construction of
the minimal spanning tree.

The MST can be investigated on any finite graph and for any edge-weight distribution.
In fact, whenever the edge-weight distribution does not have atoms, the distribution of
the edges chosen in the MST is the same. Of course, for the actual weight of the MST,
this is not the case. It turns out to be particularly convenient to assume that the edge
weights (Ub)b∈E(G) are i.i.d. exponential random variables with parameter 1, and we denote
this setting by writing Eb instead of Ub for the edge weight of edge b. For the time being,
we focus on the mean-field situation, where G is the complete graph.

Let us start by introducing some notation to formalize the notion of the MST. For a
spanning tree T , we let W (T ) denote its weight, i.e.,

(16.1.6) W (T ) =
∑
b∈T

Eb.

Here we assume that (Eb)b∈E(G) are i.i.d. exponential random variables with parameter
1. Then, the MST Tn is the minimizer of W (T ) over all spanning trees. When the edge
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weights are all different, this minimizer is unique. Since we assume that the edge weight
distribution Eb is continuous, the MST is a.s. unique.

We discuss two important results on the MST on the complete graph. We start with
Frieze’s result [110] showing that the weight of the MST is asymptotically equal to ζ(3),
where ζ(s) is the zeta-function given by ζ(s) =

∑
n≥1 n

−s :

Theorem 16.2 (The weight of the MST [110]). Let (Eb)b∈E(G) be i.i.d. exponential
random variables with parameter 1 and let Tn denote the MST on the complete graph Kn,
i.e., the tree that minimizes

∑
b∈T Eb over all spanning trees of Kn. Then,

(16.1.7) lim
n→∞

E
[
W (Tn)

]
= ζ(3).

Proof. We follow Addario-Berry [1]. Rather than Prim’s algorithm for computing
the MST, we rely on Kruskal’s algorithm. In Kruskal’s algorithm, we grow the MST by
going through the edges in increasing edge weight, adding each edge as long as it does
not create a cycle. Thus, we grow a forest, and, after having added the (n − 1)th edge,
we have obtained a spanning tree. The fact that this is the MST is not hard, and a nice
exercise:

Exercise 16.1 (Kruskal’s algorithm). Show that the spanning tree obtained in Kruskal’s
algorithm equals the MST.

We write N =
(
n
2

)
for the total number of edges in the complete graph, and order the

exponential edge weights as (E(m))m∈[N ] with E(1) being the smallest weight, and call this
the weight sequence. Further, let b(m) denote the edge that corresponds to the edge weight
E(m). The resulting edge sequence (b(m))m∈[N ] is a sequence of uniform draws without
replacement from [N ]. Since weights have been assigned in an i.i.d. manner, the resulting
edge sequence is independent from the weight sequence (E(m))m∈[N ]. As a result, for any
M ≤ N , (b(m))m∈[M ] is a uniform draw from the edges in the complete graph, so that
(b(m))m∈[M ] is the Erdős-Rényi random graph with a fixed number of edges. By Kruskal’s
algorithm,

(16.1.8) W (Tn) =
∑
m∈[N ]

E(m)1{b(m) does not create a cycle}.

We can now take the expectation and use the independence between edge sequence and
weight sequence to obtain

(16.1.9) E
[
W (Tn)

]
=
∑
m∈[N ]

E[E(m)] P(b(m) does not create a cycle).

The problem has decoupled, and we can investigate each of the terms seperately. By the
memoryless property of the exponential distribution,

(16.1.10) E[E(m)] =
m∑
s=1

1

N − s+ 1
.

This was the easier part of the two. For the second term, let

(16.1.11) χn(λ) = Eλ[|C (1)|]
be the expected cluster size after adding m = λN/(n − 1) = λn/2 edges, where we
recall that N =

(
n
2

)
denotes the total number of edges. This is the susceptibility of
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the Erdős-Rényi random graph when adding m edges, which we call the combinatorial
Erdős-Rényi random graph model (in contrast to the earlier introduced binomial Erdős-
Rényi random graph model, where edges are inserted independently with probability
p = λ/n). The binomial model can be obtained from the combinatorial model by taking
m ∼ Bin(N, λ/n). Morally, they should be the same, since a Bin(N, λ/n) distribution is
very close to its mean λ(n− 1)/2 ≈ λn/2 = m for n large.

It is not too hard to show that

(16.1.12)
χn(λ)

n
→ θ(λ)2,

where θ(λ) is the survival probability of a branching process with a Poisson offspring
distribution with parameter λ. In particular, θ(λ) = 0 when λ ≤ 1, while, for λ > 1, θ(λ)
is the largest solution to

(16.1.13) θ(λ) = 1− e−λθ(λ).

The proof of (16.1.12) is left as an exercise:

Exercise 16.2 (Susceptibility of Erdős-Rényi random graph). Consider the binomial
Erdős-Rényi random graph with edge probability p = λ/n. Prove (16.1.12).

Then, the important fact is that, with λ = nm/N and using (16.1.11) for the combi-
natorial model,

(16.1.14) P(b(m+1) does not create a cycle) = 1− χn(λ)− 1

n− 1− λ
.

To see (16.1.14), we condition on the cluster when we have added m edges. Let Fm

denote the σ-field describing the first m choices of the edges. Then,

(16.1.15) P(b(m+1) creates a cycle | Fm) =
∑
i≥1

|C(i)|(|C(i)| − 1)

2(N −m)
.

Indeed, we have already chosen m edges, so there are N − m edges left. Conditionally
on the structure of the clusters formed up to the addition of the mth edge, we create a
cycle precisely when we choose both endpoints of the next uniform edge inside the same
connected component. There are precisely |C(i)|(|C(i)| − 1)/2 different ways to choose an
edge in the ith largest cluster. We complete the proof of (16.1.14) by noting that

(16.1.16)
∑
i≥1

|C(i)|(|C(i)| − 1) =
∑
v∈[n]

|C (v)| − n,

so we arrive at

(16.1.17) P(b(m+1) does not create a cycle) = 1−
∑
v∈[n]

E[|C (v)|]− n
n(n− 1)− 2m

= 1− χn(λ)− 1

n− 1− λ
.

Since the Erdős-Rényi random graph with λ = (1 + ε) log n is whp connected for any
ε > 0 (see the original paper by Rényi [228] or [156, Section 5.3]), we can restrict to
λ = Θ(log n). Thus, we can approximate

(16.1.18) P(b(m+1) does not create a cycle) ≈ 1− χn(λ)

n
≈ 1− θ(λ)2.

We see that all the action happens when λ ≈ 1. Further, when λ ≤ 1, almost all
edges are accepted, since then θ(λ) = 0, while as soon as λ > 1, a larger and larger
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positive proportion of the edges are rejected. For λ fixed and m = λn/2, we obtain that
E[E(m)] ≈ m/N = 2m/(n(n − 1)) = λ/(n − 1) ≈ λ/n, so that, with the convention that
m = λn/2,

(16.1.19) E
[
W (Tn)

]
≈
∑
m∈[N ]

λ

n
[1− θ(λ)2] ≈ 1

2

∫ ∞
0

λ[1− θ(λ)2]dλ.

We are left to show that the integral equals 2ζ(3). This was first done by Aldous and Steele
[18]. It is remarkable that even though we do not have a nice description of λ 7→ θ(λ), we
can still compute the integral

∫∞
0
λ[1− θ(λ)2]dλ. Let us do this cute computation here.

For this, we first use partial integration to write

(16.1.20)

∫ ∞
0

λ[1− θ(λ)2]dλ =

∫ ∞
0

λ2θ′(λ)θ(λ)dλ =

∫ ∞
1

λ2θ′(λ)θ(λ)dλ,

since θ(λ) = 0 for λ ∈ [0, 1]. Then, we use (16.1.13) to write

(16.1.21) λ = − log[1− θ(λ)]

θ(λ)
,

and rewrite the integral as

∫ ∞
0

λ[1− θ(λ)2]dλ =

∫ ∞
1

(log[1− θ(λ)])2

θ(λ)2
θ′(λ)θ(λ)dλ =

∫ ∞
1

(log[1− θ(λ)])2

θ(λ)
θ′(λ)dλ

(16.1.22)

=

∫ 1

0

(log[1− θ])2

θ
dθ,

using that θ : [1,∞) → [0, 1), λ 7→ θ(λ) is a a bijection. Now using the final change of
variables u = log(1− θ), for which θ = e−u/(1− e−u), we arrive at∫ ∞

0

λ[1− θ(λ)2]dλ =

∫ ∞
0

u2 e−u

1− e−u
du =

∞∑
k=1

∫ ∞
0

u2e−kudu =
∞∑
k=1

2

k3
,(16.1.23)

since
∫∞

0
u2e−kudu = 2/k3. This completes the proof. �

We continue to discuss the scaling of the MST as a tree. It turns out that, properly
rescaled, the MST converges towards a scaling limit, which is a so-called real tree. A
real tree is a continuum object that has many of the properties that we know for finite
trees. As we have already seen above, there are deep relations between the MST and
Erdős-Rényi random graphs. This connection is particularly tight for the scaling limit,
as shown in a sequence of papers by Addario-Berry, Broutin and Goldschmidt [2, 3], the
final work and ‘pièce de résistance’ being jointly with Miermont [4]. In turn, the latter
paper is a follow-up on earlier work of Addario-Berry, Broutin and Reed [5]. We focus
on the results in [4]. We interpret a discrete tree T along with the graph metric on T
as a metric space. Further, for a tree T , we write aT for the tree where graph distances
are rescaled by a factor a. In particular, this changes the unit length of an edge in T to
length a in aT . Rescaled discrete trees are real trees themselves. The main result proved
by Addario-Berry, Broutin, Goldschmidt and Miermont [4] is the following:
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Theorem 16.3 (The scaling limit of the MST [4]). Let Tn denote the MST on the com-
plete graph Kn. Then, the real tree n−1/3Tn converges in distribution to a non-degenerate
limiting real tree T∞. In particular, this implies that the diameter of MST is of order n1/3,
i.e.,

(16.1.24) n−1/3diam(Tn)
d−→ diam(T∞).

The topology is crucial for weak convergence. The weak convergence in Theorem 16.3
is weak convergence in the Gromov-Hausdorff-Prokhorov topology. This is a graph and
measure theoretic notion that we do not explain in more detail. The proof of Theorem
16.3 makes strong use of the scaling limit of critical clusters as identified by Addario-
Berry, Broutin and Goldschmidt in [2, 3]. Loosely speaking, the shape of the scaling limit
of the MST is determined within the scaling window of the Erdős-Rényi random graph.
This is remarkable, since these critical clusters have size n2/3, while the MST has size n.
This discrepancy appears prominently in the fact that the Minkowski dimension of the
scaling limit of large critical clusters is 2, while the Minkowski dimension of the scaling
limit of the MST is 3 [4].

Since we believe that the scaling limit of critical percolation on high-dimensional tori
is closely related to that of critical Erdős-Rényi random graphs, it is natural to believe
that the minimal spanning trees on high-dimensional tori are closely related to that on
the complete graph. This is the content of the following two open problems:

Open Problem 16.3 (Diameter of MST on high-dimensional tori).
Show that the diameter of the MST on high-dimensional tori, as well
as on the hypercube, is of order V 1/3, where V denotes the volume of
the torus.

Open Problem 16.4 (Scaling limit of MST on high-dimensional
tori). Show that the scaling limit of the MST on high-dimensional
tori, as well as on the hypercube, with distances rescaled by V −1/3,
converges in distribution to a multiple of the scaling limit on the
complete graph as identified in Theorem 16.3.

One difficulty arising in these open problems is that the MST is determined by slightly
supercritical edge weights, and thus by slightly supercritical percolation. In high dimen-
sions, we have a reasonably good control over the subcritical and critical regimes, but we
lack control in the supercritical regime.

16.2. Random walk percolation and interlacements

Throughout these lecture notes we have covered bond percolation, where the bonds
(or edges) of the lattice are either occupied or vacant. Another option is to put all the
randomness on the vertices, the corresponding model is called (Bernoulli) site percolation.
In fact, all the results proven for bond percolation so far carry over to site percolation;
the only (yet remarkable) difference is that the critical value pc changes when switching
from bond to site percolation. The prenomial “Bernoulli” is put here to remind us of
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the independence of site (resp., bond) occupation probabilities, which is in contrast to
another percolation model that we discuss next.

We are now concentrating on random interlacements, which –after being established
by Sznitman in 2010 [251]– gave rise to a vast amount of interesting and surprising results.
We shall only touch upon some of the new developments, and refer for further discussions
and details to the recent monographs by Drewitz, Ráth, and Sapozhnikov [91], Sznitman
[252], and Černý and Teixera [71].

Throughout this section, we assume that d ≥ 3, such that random walks on Zd are
transient. Random interlacement is a name of a random set I ⊂ Zd with corresponding
law Pu, u ∈ (0,∞) being a parameter of the model. It shares many properties with
the (unique) infinite component C∞ of supercritical site percolation with corresponding
law Pp, p ∈ (pc, 1): both are infinite, connected, transient, and measure preserving and
ergodic with respect to the spatial shift. Furthermore, both measures Pu and Pp satisfy
positive association in the sense that the FKG inequality is satisfied.

There are several ways to characterize the law Pu. Arguably the easiest way to
characterize random interlacement is via

(16.2.1) Pu(I ∩K) = e− cap(K)

for any finite subset K ⊂ Zd, where cap(K) is the (random walk) capacity of K defined
by

cap(K) :=
∑
x∈K

P
(
simple random walk started in x never returns to K

)
.

Uniqueness of the measure Pu satisfying (16.2.1) is straightforward, because sets of the
form {I ∩K} form a π-stable generator of the corresponding σ-algebra of events. Exis-
tence of Pu requires deeper insight, and has been established by Sznitman [251].

Another, more constructive approach to random interlacement is via bi-infinite paths
of random walk trajectories. Let W ∗ be the set of bi-infinite paths that intersect any
finite set K ⊂ Zd only finitely often. It is possible to construct a sigma-finite measure ν
on W ∗ that assigns weight to the paths in W ∗ as if they were obtained as simple random
walk trajectories “starting and ending at infinity”. With this measure ν at hand, we
can construct a Poisson point process on the product space W ∗ × (0,∞) with intensity
measure ν ⊗ λ (where λ is the Lebesuge measure). The random set I u (which we write
for I under Pu) is then obtained from a realization {(w∗h, uh) : h ∈ N} of this point
process through

(16.2.2) I u =
⋃
uh≤u

range(w∗h).

One advantage of this construction via Poisson processes is that it provides us with a
coupling that immediately yields a monotonicity result in u: the law of I u is stochastically
dominated by the law of I ū if u < ū. This construction of the random interlacement
via a Poisson process of random walk trajectories inspired the naming “random walk
percolation”.

Yet another approach has been worked out by Sznitman [252], where I has been
constructed via Poisson gases of Markovian loops, which are in turn connected to level
sets of Gaussian free fields.

A highly remarkable feature of random interlacement is the polynomially decaying
correlation function for all values of u. To this end, recall from (2.2.8) the definition of
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the random walk Green’s function Cµ(x) with critical value µ = 1, and in particular the
polynomial bound (2.2.9). Denoting Ψx = 1{x∈I }, one can show [251] that

(16.2.3) CovPu(Ψx,Ψy) ∼
2u

C1(0)2
C1(y − x) e−2u/C1(0) as |x− y| → ∞.

This polynomial behavior is quite remarkable, because for many models of statistical
mechanics (for example, for percolation), polynomial decay of correlation is a clear sign
of criticality. Here, we observe it for the entire range of the parameter u.

It might be tempting to suspect that the measures Pu and Pp are stochastically
monotone with respect to each other, but this turns out to be false for all values of
u ∈ (0,∞) and p ∈ (pc, 1), cf. [91, Section 2.3].

As remarked earlier, a random interlacement is concentrated on infinite components
by construction. A more interesting behavior occurs when we consider the vacant set of
random interlacement V := Zd \I , for which a percolation phase transition does occur.
Indeed, there exists u∗ = u∗(d) ∈ (0,∞) such that

(16.2.4) Pu(V has an infinite component) =

{
1 if u < u∗,

0 if u > u∗.

The above should be compared to the fact that the probability that there exists an infinite
component in Bernoulli percolation equals 1 for p > pc, while it equals 0 if p < pc. We
can also define a random interlacement percolation function by considering the function
u 7→ Pu(0 is in an infinite component of V ). Very little is known about the behavior of
the vacant set in the critical setting, i.e., for u = u∗. This leads us to the following two
open problems:

Open Problem 16.5 (Continuity of random walk percola-
tion). Prove that u 7→ Pu(0 is in the infinite component) is
a continuous function. In particular, this would imply that
Pu∗(V has an infinite component) = 0.

Open Problem 16.6 (Upper critical dimension random walk per-
colation). Does random walk percolation have an upper critical di-
mension, and, if so, what is it? What is the scaling limit of a large
finite connected component in the vacant set above the upper critical
dimension?

For the rest of this discussion of random interlacements we focus on the behavior of
random walk on it, as investigated by Sapozhnikov [236]:

Theorem 16.4 (Quenched heat kernel bounds for random walk on random interlace-
ment [236]). For random walk on a realization of the random interlacement I (for any
parameter u), the return probability pn(x) = PI

0 (X(n) = x) satisfies the following bound
Pu( · | 0 ∈ I )-almost surely:

C1 n
−d/2 e−C2|x|2/2 ≤ pn(x) + pn+1(x) ≤ C3 n

−d/2 e−C4|x|2/2 if n > |x|3/2
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for certain constants C1, C2, C3, C4 > 0.

This heat kernel bound is very much in flavor of Barlow’s results on supercritical
percolation clusters [26]. The arguments of Sapozhnikov are fairly robust and extend
also to infinite components of the vacant set of random interlacement (assuming u <
u∗) and level sets of the Gaussian free field. The author also proves parabolic Harnack
inequalities in the style of Barlow and Hambly [127] for the correlated percolation models.
It is expected that the heat kernel bounds in Theorem 16.4 hold in great generality for
dependent percolation models with polynomially decaying correlations, for example for
percolation of the stationary measures of the voter model in dimension d ≥ 5 as identified
by Ráth and Valesin [225].

The quenched heat kernel bounds in Theorem 16.4 suggest that, just as for the infinite
percolation cluster C∞, a quenched invariance principle as in Theorem 14.1 holds. We
leave this as an open problem:

Open Problem 16.7 (Scaling limit of random walk on random
interlacement). Prove a quenched invariance principle for random
walk on random interlacement or on an infinite component of the
vacant set of random interlacement.

16.3. Scale-free percolation

In this section, we define a percolation model that interpolates between long-range
percolation, as defined in Section 15.4, and the scale-free rank-1 inhomogeneous random
graphs as discussed in Section 13.5. This model, termed scale-free percolation in the work
of Deijfen, the second author and Hooghiemstra [83], provides a percolation model in
which the degree of a vertex can have finite mean but infinite variance. Mind that this
phenomenon is impossible for independent percolation models, since the independence of
the edge variables implies that the variance of the degrees is always bounded by their
mean:

Exercise 16.3 (Variance of degree is bounded by its mean in percolation). Let Dx

denote the degree of x ∈ Zd in percolation models where the edge statuses are independent
random variables. Show that Var(Dx) ≤ E[Dx].

Scale-free percolation is defined on the lattice Zd. Let each vertex x ∈ Zd be equipped
with an i.i.d. weight Wx. Conditionally on the weights (Wx)x∈Zd , the edges in the graph
are independent and the probability that there is an edge between x and y is defined by

(16.3.1) pxy = 1− e−λWxWy/|x−y|α ,

for α, λ ∈ (0,∞). We say that the edge {x, y} is occupied with probability pxy and vacant
otherwise.

Let us discuss the role of the different parameters in the scale-free percolation model.
The parameter α > 0 describes the long-range nature of the model, while we think of
λ > 0 as the percolation parameter. The weight distribution is the last parameter that
describes the model. We are mainly interested in settings where the Wx have unbounded
support in [0,∞), and then particularly when they vary substantially.
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Naturally, the model for fixed λ > 0 and weights (Wx)x∈Zd is the same as the one

for λ = 1 and weights (
√
λWx)x∈Zd , so there is some redundancy in the parameters of

the model. However, we view the weights (Wx)x∈Zd as creating a random environment in
which we study the percolative properties of the model. Thus, we think of the random
variables (Wx)x∈Zd as fixed once and for all and we change the percolation configuration
by varying λ. We can thus view our model as percolation in a random environment given
by the weights (Wx)x∈Zd . The downside of scale-free percolation is that the edge statuses
are no longer independent random variables, but are rather positively correlated:

Exercise 16.4 (Positive correlation between edge statuses in scale-free percolation).
Show that, for scale-free percolation, and for all x, y, z distinct and λ > 0,

(16.3.2) P({x, y} and {x, z} occupied) ≥ P({x, y} occupied) P({x, z} occupied),

the inequality being strict when P(W0 = 0) < 1. In other words, the edge statuses are
positively correlated.

Scale-free percolation interpolates between long-range percolation and rank-1 inho-
mogeneous random graphs. Indeed, we retrieve long-range percolation when we take
Wx ≡ 1. We retrieve the Norros-Reittu model in (13.5.21) with i.i.d. edge weights when
we take α = 0, λ = 1/

∑
i∈[n] Wi and consider the model on [n] instead of Zd. Thus,

this model can be considered to be an interpolation between long-range percolation and
rank-1 inhomogeneous random graphs.

Choice of edge weights. We assume that the distribution FW of the weights (Wx)x∈Zd
has a regularly-varying tail with exponent τ−1, that is, denoting by W a random variable
with the same distribution as W0 and by FW its distribution function, we assume that

(16.3.3) 1− FW (w) = P(W > w) = w−(τ−1)L(w),

where w 7→ L(w) is a function that varies slowly at infinity. Here we recall that a function
L varies slowly at infinity when, for every x > 0,

(16.3.4) lim
t→∞

L(tx)

L(x)
= 1.

Examples of slowly-varying functions are powers of logarithms. See the classical work by
Bingham, Goldie and Teugels [52] for more information about regularly-varying functions.
We interpret τ > 1 as the final parameter of our model, next to α, λ (and the dimension
d). Of course, there may be many vertex-weight distributions having the asymptotics in
(16.3.3) with the same τ , but the role of τ is so important in the sequel that we separate
it out.

Write Dx for the degree of x ∈ Zd and note that, by translation invariance, Dx has
the same distribution as D0. The name scale-free percolation is justified by the following
theorem:

Theorem 16.5 (Power-law degrees for power-law weights [83]). Fix d ≥ 1.

(a) Assume that the weight distribution satisfies (16.3.3) with α ≤ d or γ = α(τ −
1)/d ≤ 1. Then P(D0 =∞ | W0 > 0) = 1.

(b) Assume that the weight distribution satisfies (16.3.3) with α > d and γ = α(τ −
1)/d > 1. Then there exists s 7→ `(s) that is slowly varying at infinity such that

(16.3.5) P(D0 > s) = s−γ`(s).
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The fact that the degrees have a power-law distribution is why this model is called
scale-free percolation. The parameter γ measures how many moments of the degree
distribution are finite:

Exercise 16.5 (Degree moments in scale-free percolation [83]). Show that E[Dp
0] <∞

when p < γ and E[Dp
0] = ∞ when p > γ. In particular, the variance of the degrees is

finite precisely when γ > 2.

We continue by studying the percolative properties of scale-free percolation. As before,
we denote by λc the infimum of all λ ≥ 0 with the property P(|C (0)| = ∞) > 0. It is a
priori unclear whether λc <∞ or not. Deijfen et al. [83, Theorem 3.1] prove that λc <∞
holds in most cases. Indeed, if P(W = 0) < 1, then λc <∞ in all d ≥ 2. Naturally, d = 1
again is special and the results in [83, Theorem 3.1] are not optimal. It is shown that if
α ∈ (1, 2] and P(W = 0) < 1, then λc < ∞ in d = 1, while if α > 2 and τ > 1 is such
that γ = α(τ − 1)/d > 2, then λc =∞ in d = 1.

More interesting is whether λc = 0 or not. The following theorem shows that this
depends on whether the degrees have infinite variance or not:

Theorem 16.6 (Positivity of the critical value [83]). Assume that the weight distri-
bution satisfies (16.3.3) with τ > 1 and that α > d.

(a) Assume that γ = α(τ − 1)/d > 2. Then, θ(λ) = 0 for small λ > 0, that is,
λc > 0.

(b) Assume that γ = α(τ−1)/d < 2. Then, θ(λ) > 0 for every λ > 0, that is, λc = 0.

In ordinary percolation, instantaneous percolation in the form λc = 0 can only occur
when the degree of the graph is infinite. The randomness in the vertex weights facilitates
instantaneous percolation in scale-free percolation. We see a similar phenomenon for rank-
1 inhomogeneous random graphs, such as the Norros-Reittu model. The instantaneous
percolation is related to robustness of the random network under consideration. Graph
distances in scale-free percolation have been investigated in [83, 150] by identifying the
number of edges between x and y as a function of |x−y| for x, y in the infinite component.
Again we see that graph distances are rather small if γ ∈ (1, 2), whereas graph distances
are much larger for γ > 2.

There is some follow-up work on scale-free percolation. Hirsch [151] proposes a contin-
uum model for scale-free percolation. Deprez, Hazra and Wüthrich argue that scale-free
percolation can be used to model real-life networks in [84]. Bringmann, Keusch, and
Lengler [62, 63] study this model on a torus and in continuuum space and coin the name
geometric inhomogeneous random graphs. The first author, Hulshof, and Jorritsma [150]
establish recurrence and transience criteria. Deprez et al. [84] show that when α ∈ (d, 2d),
then the percolation function is continuous. For long-range percolation this was proved
by Berger [44] (see Section 15.4). However, in full generality, continuity of the percolation
function as λ = λc when λc > 0 is unknown. Also the existence of critical exponents is in
general unknown:
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Open Problem 16.8 (Critical behavior of scale-free percolation).
Investigate when the scale-free percolation function λ 7→ θ(λ) is con-
tinuous. Identify the critical exponents for scale-free percolation.
What is the upper-critical dimension of scale-free percolation and
how does it depend on the parameters α and τ?

We see that γ ∈ (1, 2), where the variance of the degrees is infinite, is special in the
sense that instantaneous percolation occurs as for rank-1 random graphs. This raises the
questions to which extent the analogy extends. For example, in rank-1 random graphs,
the scaling limits within the scaling window are different for random graphs having infinite
third moments of the degrees than for those for which the third moment is finite (recall
Section 13.5). This indicates that the critical behavior of scale-free percolation might be
different for γ ∈ (2, 3), where the degrees have infinite third moment, compared to γ > 3
where the degrees have finite third moment, particularly in high dimensions. Indeed, we
can think of the Norros-Reittu as a kind of mean-field model for this setting, certainly
when we restrict scale-free percolation to the torus. It would be of great interest to
investigate these models in more detail. Can the lace expansion be applied to investigate
the mean-field behavior of scale-free percolation?

16.4. FK percolation

A key feature in the models considered earlier in these lecture notes is the independence
of the edge occupation probabilities. FK-percolation, also known as the Random Cluster
Model, generalizes percolation to include a certain class of dependencies, that gives a
highly fruitful connection to other models of statistical mechanics. The letters FK refer
to the Dutch scientists Kees Fortuin and Piet Kasteleyn, who invented the model in the
early 1970’s [107].

The FK model has two parameters, p ∈ [0, 1] (as in ordinary percolation) and a
new parameter q ∈ (0,∞). We define the model on a finite graph G = (V , E): for any
ω ∈ Ω = {0, 1}E , we let

(16.4.1) PFK

p,q(ω) =
1

ZFK
p,q

p|{b∈E : ω(b)=1}|(1− p)|{b∈E : ω(b)=0}|qk(ω),

where k(ω) is the number of connected components in ω, and ZFK
p,q is a normalizing sum

to make PFK
p,q a probability measure, i.e.,

(16.4.2) ZFK

p,q =
∑
ω∈Ω

p|{b∈E : ω(b)=1}|(1− p)|{b∈E : ω(b)=0}|qk(ω).

Mind that for q = 1, we observe that ZFK
p,1 = 1, and PFK

p,1 is the ordinary bond percolation
measure on the finite graph G. The parameter q tunes the number of clusters. For q < 1,
it is favorable to have few clusters (and thus large connected components) as in ordinary
percolation. Indeed, in the extreme limit q ↘ 0, the measure ZFK

p,q converges to the uniform
spanning tree, uniform connected subgraph or uniform spanning forest on G (depending
on the behavior of p). For this and many other beautiful results about this model, we
refer to the monograph by Grimmett [122].

It is a major challenge to develop a lace-expansion analysis for the FK model for
q 6= 1, only the case q = 2 has been solved by Sakai [234]. If we review our lace-expansion
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analysis for q = 1 in the first sections, then it becomes clear that correlation inequalities,
such as the Harris or BK inequality, play a central role in analyzing it, and we therefore
focus on them first. One of the first results of Fortuin and Kasteleyn (together with
Ginibre) concerns positive association of the FK model as long as q ≥ 1:

Theorem 16.7 (FKG inequality [108]). For q ≥ 1 and any increasing events A,B,

PFK

p,q(A ∩B) ≥ PFK

p,q(A)PFK

p,q(B).

The FK model is thus positively correlated for q ≥ 1, and this might be used to
derive strong influence bounds, cf. [122, Chapter 2]. Theorem 16.7 generalizes (1.3.1).
We cannot expect a similar result to hold for q < 1.

A bigger challenge is to prove some sort of negative association, which supposedly holds
for q ≤ 1. The weakest possible form of negative association is edge-negative-association,
that is,

(16.4.3) ∀a, b ∈ E : P
(
ω(a) = 1, ω(b) = 1

)
≤ P

(
ω(a) = 1

)
P
(
ω(b) = 1

)
.

A stronger form of negative association is the disjoint-occurrence property (1.3.4) for
increasing events (corresponding to “BK” for percolation), and the strongest form is
the disjoint-occurrence property (1.3.4) for general events (corresponding to the BKR
inequality proved by Reimer [227] for percolation).

Open Problem 16.9 (Negative association for FK percolation).
Prove any form of negative association for the FK model for q < 1.

See [122, Section 3.9] for a more complete discussion and references to results in the
(“extreme”) cases of uniform spanning trees and forests.

Connection to Ising and Potts model. Highly notable is the connection between
FK percolation and the Potts-/Ising model arising for integer values of q. For q ∈ N,
q ≥ 2, the q-Potts model on G = (V , E) with parameter β > 0 is given by

(16.4.4) PPotts
q,β (σ) =

1

ZPotts
q,β

exp
{ ∑
b={x,y}∈E

β1{σ(x)=σ(y)}

}
, σ ∈ Σ = {1, . . . , q}V ,

where the partition sum ZPotts
q,β acts as the normalizing sum. For q = 2, we call this the

Ising model and classically write Σ = {−1,+1}V instead of Σ = {1, 2}V , which leaves the
measure unchanged.

The equivalence between the FK model with parameters (p, q), and the q-Potts model
with β = − log(1 − p) (Ising model for q = 2) is given by the Edwards-Sokal coupling
[96]. Interestingly, the FK model is defined on the edges of the graph, whereas the Potts
and Ising models are defined on the vertices. Indeed, the Edwards-Sokal coupling is at
the basis of many breathtaking very recent developments for the two-dimensional Ising
model, for example Smirnov’s identification of fermionic observables in the Ising model
that are conformally invariant in the scaling limit [248].

We pursue a different route here and focus on rigorous results for the high-dimensional
Ising model on Zd. First of all, we consider the Ising model on the infinite lattice, which we
achieve as the limiting measure of the Ising model on a sequence of growing boxes. Such
thermodynamic limits require sufficient care, but are completely standard in the literature.
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Similarly to percolation, where the triangle condition (4.1.1) implies the existence and
mean-field values of numerous critical exponents, we have the bubble condition for the
Ising model. To this end, denote by βc the critical value for β in (16.4.4) defined by

(16.4.5) βc = sup
{
β > 0:

∑
x

CovPotts
q,β

(
σ(0), σ(x)

)
<∞

}
.

Note the similarity between βc in (16.4.5) and pT in (1.1.4). Indeed, the covariance of
σ(0) and σ(x) plays the same role in the Ising model as the two-point function τp(x) in
percolation; this correspondence is made explicit through the earlier mentioned Edwards-
Sokal coupling. Furthermore, for the Ising model (i.e., q = 2) the phase transition is
sharp in a sense similar to Theorem 3.1, as proven by Aizenman, Barsky, and Fernández
[10]. Duminil-Copin and Tassion [92] give a highly simplified proof of this result using
arguments like the ones presented in Section 3.2. The bubble condition for the Ising model
is the condition that

(16.4.6)
∑
x∈Zd

CovPotts
2,βc

(
σ(0), σ(x)

)2
<∞,

and this is sufficient for various critical exponents to exist and to take on their mean-field
values as shown by Aizenman [7] and Aizenman and Fernandez [11].

In a seminal paper, Fröhlich, Simon, and Spencer [111] use the technical condition
of reflection positivity to derive an infrared bound for the Ising model for d > 4, which
in turn implies (16.4.6). Reflection positivity makes clever use of certain symmetries
of the Ising model, and holds for nearest-neighbor models (which we are considering
here) as well as various long-range versions, such as Kac and power-law interactions. On
the downside, it immediately breaks down for small perturbations of a model satisfying
reflection positivity, and thus is not a very robust or universal property. Sakai [234]
uses the lace expansion to give an alternative proof of the infrared bound for the Ising
model in high dimension. His proof is more robust in the sense that it is fairly flexible
in the interaction, and he achieves highly accurate error estimates. However, in the
nearest-neighbor case, it requires the dimension to be large (which can be compensated
by considering finite spread-out models, as usual, for which Sakai’s results apply to any
d > 4). Here is Sakai’s result:

Theorem 16.8 (Infrared bound for Ising model [234]). There is d0 > 4 such that for
all d ≥ d0 there exists a constant A = A(d) > 0 such that for ε > 0 and all x 6= 0,

CovPotts
2,βc

(
σ(0), σ(x)

)
=

A

|x|d−2

(
1 +O(|x|−

2(d−4)−ε∧2
d )

)
,

where the constant in the O-notation may depend on ε. Consequently, the bubble condition
(16.4.6) holds for d ≥ d0 and the critical exponents take on their mean-field values.

It appears rather surprising that Sakai successfully derived a lace expansion despite
absence of any form of negative association (BK and alike), although this was a crucial
ingredient in Chapter 6. Indeed, Sakai uses the random current representation for the Ising
model, where one works with a series expansion for the exponentials occurring in (16.4.4),
and bounds the lace-expansion coefficients using a so-called source-switching lemma due
to Griffiths, Hurst, and Sherman [118]. However, this “trick” uses special features of the
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Ising model (thus q = 2 in FK percolation), and is not suited for generalization to other
values of q.

Infinite volume FK models. We return to FK percolation for general values of q on
the infinite lattice Zd, which we obtain again as a thermodynamic limit of FK-measures
on a growing sequence of finite boxes. Unlike in percolation, where several proofs of a
sharp phase transition in Theorem 3.1 are known (we have presented two different proofs
in Chapter 3), this is an open problem for FK percolation:

Open Problem 16.10 (Sharp phase transition for FK percolation).
For the FK model on Zd, show the equality

sup
{
p :
∑
x∈Zd

PFK

p,q(0←→ x) <∞
}

= inf
{
p : PFK

p,q(0←→∞) > 0
}

for q > 0, thereby defining the critical value pc(q).

We finally end these lecture notes with a big open problem, that we find highly relevant
even though we have no ideas how to tackle it:

Open Problem 16.11 (Lace expansion for FK percolation). Derive
a lace expansion for FK percolation with q 6∈ {1, 2} and use it to
derive an infrared bound for the Fourier transform of

x 7→ CovPotts
q,βc

(
σ(0), σ(x)

)
.
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