Mathematisches Institut der Universität München Markus Heydenreich Exercise sheet 8 10 Dec 2018

Discrete Probability

Note: Parts of Exercise 1 return in different form on the next exercise sheet.

- 1. The correlation length. Fix $d \ge 2$ and set $e_1 = (1, 0, \dots, 0)$.
 - (a) Prove that, for any $p \in [0, 1]$, $n, m \ge 0$,

$$P_p(0\longleftrightarrow (m+n)e_1) \ge P_p(0\longleftrightarrow me_1) \cdot P_p(0\longleftrightarrow ne_1)$$

- (b) Deduce that $\xi(p) = \left(\lim_{n \to \infty} -\frac{1}{n} \log P(0 \leftrightarrow ne_1)^{-1} \text{ exists (the "correlation length")}, \text{ and furthermore } P_p(0 \leftrightarrow ne_1) \leq \exp\{-n/\xi(p)\}.$
- (c) Assuming $0 \longleftrightarrow \partial \Lambda_{n+m}$, show that there exists $x \in \partial \Lambda_n$ such that $\{0 \longleftrightarrow x\} \circ \{x \longleftrightarrow x + \partial \Lambda_m\}$. Deduce that for all n, m,

$$P_p(0 \longleftrightarrow \partial \Lambda_{n+m}) \le |\partial \Lambda_n| P_p(0 \longleftrightarrow \partial \Lambda_n) P_p(0 \longleftrightarrow \partial \Lambda_m).$$

Further, show that $P_p(0 \longleftrightarrow \partial \Lambda_n) \ge \frac{e^{-n/\xi(p)}}{2^d d(2n+1)^{d-1}}$.

(d) Show that for every $n \in \mathbb{N}, x \in \partial \Lambda_n$,

$$\xi(p) \ge \frac{n}{-\log P_p(0 \xleftarrow{\Lambda_n} x)}.$$

Deduce that $\lim_{p \nearrow p_c} \xi(p) = \infty$, and show that $p \mapsto \xi(p)$ is continuous on $[0, p_c)$. (e) Prove that, for any $x \in \partial \Lambda_n$,

$$P_p(0 \longleftrightarrow 2ne_1) \ge P_p(0 \longleftrightarrow x)^2.$$

Deduce that

$$P_p(0\longleftrightarrow x) \ge \frac{c}{\|x\|_{\infty}^{2d(d-1)}} \exp\left\{-\|x\|_{\infty}/\xi_p\right\}.$$

(f) Finally, deduce that for any $x \in \mathbb{Z}^d$,

$$P_{p_c}(0\longleftrightarrow x) \ge \frac{c}{\|x\|_{\infty}^{2d(d-1)}}.$$

This shows an algebraic lower bound for connection probabilities at p_c , and is in contrast to the exponential decay when $p < p_c$. Much more precise estimates are known for $x = ne_1$. These "Ornstein-Zernike-estimates" state that there exists c = c(p) > 0 such that

$$P_p(0 \longleftrightarrow ne_1) = \frac{c}{n^{(d-1)/2}} \exp(n/\xi(p)) \left(1 + o(1)\right).$$

- 2. Percolation on the binary tree. Denote by \mathcal{T} the infinite tree where every vertex has exactly three neighbors. Aim of this exercise is to show that $p_c(\mathcal{T})=1/2$.
 - (a) Show $p_c \ge 1/2$ using a path-counting argument.
 - (b) Observe the following: For any *finite* connected subgraph G of \mathcal{T} , denote by e_G the number of edges inside G, and by b_G the number of boundary edges (an edge b is a *boundary edge* if one of its endpoints belongs to G, and the other does not). Then $e_G = b_G 3$.

Write $1 - \theta(p)$ as a sum over certain finite graphs and show that, for $p \in [0, 1]$,

$$1 - \theta(p) = \left(\frac{1-p}{p}\right)^3 \left(1 - \theta(1-p)\right).$$

(c) Show that, for p > 1/2,

$$\theta(p) = 1 - \left(\frac{1-p}{p}\right)^3,$$

and conclude that this holds as well for p = 1/2.

(d) Finally, consider supercritical percolation on \mathcal{T} with 1/2 . How many infinite components are there? Prove your answer.