Discrete Probability

- 1. Show that any measurable event can be approximated by events depending on finitely many edges in the following sense: for any $A \in \mathcal{F}$ (the sigma-algebra of events), there exists as sequence of events (B_n) such that B_n depends only on the state of edges in a box of radius n, and $P_p(A\Delta B_n) \xrightarrow{n\to\infty} 0$.
- 2. Show that $p_c(\mathbb{Z}) = 1$. Show that $p_c(\mathbb{Z} \times \{0, \ldots, n\}) = 1$ for any $n \in \mathbb{N}$.
- 3. (a) Verify that the Harris-/FKG-inequality holds for decreasing events, too.
 - (b) If A and B are increasing events, then

$$\{A \circ B\} = \{\omega \mid \exists K \subseteq \mathcal{E} \colon \omega_K \in \mathcal{A}, \omega_{\mathcal{E} \setminus K} \in B\}$$

where $(\omega_K)_e = \begin{cases} \omega_e & \text{if } e \in K, \\ 0 & \text{otherwise.} \end{cases}$

- (c) Show that $(A \circ B) \circ C = A \circ (B \circ C)$.
- 4. Proof of the BK-inequality for increasing events. Consider two increasing events A and B that depend on the edges in $E = \{e_1, \ldots, e_n\}$ only. Consider the duplicated set $\{e_1, \ldots, e_n, e'_1, \ldots, e'_n\}$ and the product measure \mathbb{P} where each coordinate is a Bernoulli(p) variable. For $j \leq n$, set $\omega^j = (\omega_{e_1}, \ldots, \omega_{e'_j}, \ldots, \omega_{e'_j})$ and

$$\tilde{A}^j = \{ \tilde{\omega} \colon \omega^j \in A \} \text{ and } \tilde{B} = \{ \tilde{\omega} \colon \omega^{n+1} \in B \}, \qquad j \in \{1, \dots, n+1\}.$$

- (a) Show that $\mathbb{P}(\tilde{A}^1 \circ \tilde{B}) = P_p(A) P_p(B)$ and $\mathbb{P}(\tilde{A}^{n+1} \circ \tilde{B}) = P_p(A \circ B)$.
- (b) Show next that $j \mapsto \mathbb{P}(\tilde{A}^j \circ \tilde{B})$ is decreasing in j by constructing a measure-preserving injection $\tilde{\omega} \mapsto s(\tilde{\omega})$ from $\tilde{A}^{j+1} \circ \tilde{B}$ to $\tilde{A}^j \circ \tilde{B}$. Let $\tilde{\omega}$ be a configuration in $\tilde{A}^{j+1} \circ \tilde{B}$. Let K and J be "witnesses" of \tilde{A}^{j+1} and \tilde{B} , respectively, for $\tilde{\omega}$. If there exists K not containing e_j , then simply set $s(\omega) = \omega$. Otherwise (K contains e_j) obtain $s(\tilde{\omega})$ by exchanging e_j and e'_i . Check that s is one-to-one and that $\mathbb{P}(\tilde{\omega}) = P_p(s(\tilde{\omega}))$.
- (c) Deduce the BK-inequality.
- 5. Denote by $\Lambda_n = [-n, n]^d \cap \mathbb{Z}^d$ the box of radius *n* around the origin. Suppose that the edges of this box are open with probability $p \in [0, 1]$ and closed otherwise, independently of each other. We interpret the box as a porous stone that is put in water, where only the open edges transport water. Denote by X_n the fraction of vertices of the box that get wet. Show

$$E_p(X_n) \to \theta(p)$$
 as $n \to \infty$.