Discrete Probability

1. Let P be a transition matrix and μ, ν two probability distributions on S. Show that

$$\|\mu P - \nu P\|_{TV} \le \|\mu - \nu\|_{TV}.$$

This implies that advancing a chain moves it closer to stationarity (w.r.t. $\|\cdot\|_{TV}$).

2. Let Ψ be an irreducible transition matrix and π a probability distribution on \mathcal{S} . Show that

$$p(x,y) := \begin{cases} \psi(x,y) \left[\frac{\pi(y)\psi(y,x)}{\pi(x)\psi(x,y)} \wedge 1 \right] & \text{if } y \neq x; \\ 1 - \sum_{z:z \neq x} \psi(x,z) \left[\frac{\pi(z)\psi(z,x)}{\pi(x)\psi(x,z)} \wedge 1 \right] & \text{if } y = x \end{cases}$$

defines a reversible Markov chain with stationary distribution π .

3. (A generalized hard-core model) We consider a generalization of the hard-core model which allows different "packing intensities" of 1's in the graph. To this end, we introduce a parameter $\lambda > 0$ ("fugacity") and change the probability measure μ_G into a probability measure $\mu_{G,\lambda}$ defined by

$$\mu_{G,\lambda}(\xi) = \begin{cases} \frac{\lambda^{n(\xi)}}{Z_{G,\lambda}} & \text{if } \xi \text{ is feasible} \\ 0 & \text{otherwise,} \end{cases}$$

where $n(\xi)$ is the number of 1's in ξ and

$$Z_{G,\lambda} = \sum_{\xi \in \{0,1\}^V} \lambda^{n(\xi)} \mathbb{1}_{\{\xi \text{ is feasible}\}}$$

is a normalizing constant. The conditional probability that v takes the value 1, given the values at all other vertices, equals $\frac{\lambda}{\lambda+1}$ if all neighbors are vacant, otherwise it is 0. The case $\lambda = 1$ has been treated in the lecture.

Construct an MCMC algorithm for this generalized hard-core model (and verify that it is irreducible and aperiodic chain).

4. (Glauber dynamics for the Ising model) Consider the Ising model on a finite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: for $\sigma \in \mathcal{S} = \{-1, +1\}^V$ let

$$\mu(\sigma) = \frac{1}{Z(\beta)} e^{-\beta H(\sigma)},$$

where $\beta > 0$ is a parameter (commonly known as "inverse temperature"),

$$H(\sigma) = -\sum_{\{v,w\}} \sigma(v)\sigma(w)$$

describes the energy of the configuration σ and

$$Z(\beta) = \sum_{\sigma \in \mathcal{S}} e^{-\beta H(\sigma)}$$

is the partition function. Prove that the Glauber dynamics for the Ising model

$$P_{\sigma,\sigma'} = \frac{1}{V} \sum_{w \in \mathcal{V}} \frac{\exp\{\beta \sum_{v:\{w,v\} \in \mathcal{E}} \sigma'(w)\sigma'(v)\}}{\exp\{-\beta \sum_{v:\{w,v\} \in \mathcal{E}} \sigma'(v)\} + \exp\{\beta \sum_{v:\{w,v\} \in \mathcal{E}} \sigma'(v)\}} \mathbb{1}_{\{\sigma(v) = \sigma'(v) \text{ for all } v \neq w\}}$$

gives a reversible Markov chain with stationary distribution μ .

5. (An alternative proof of the convergence theorem for Markov chains)

Let $(X_n, Y_n)_n$ be two coupled Markov chains (with same irreducible and aperiodic transition matrix P) on \mathcal{S} satisfying

if
$$X_k = Y_k$$
 then $X_n = Y_n$ for all $n \ge k$.

(a) Show that, if $X_0 \sim \mu$ and $Y_0 \sim \nu$, then

$$\|\mu P^n - \nu P^n\|_{TV} \le \mathbb{P}(\tau_{\text{couple}} > n),$$

with

$$\tau_{\text{couple}} := \min\{k \mid X_n = Y_n \text{ for all } n \ge k\}$$

(b) If in (a) we take $\nu = \pi$ (the stationary measure) then we obtain a bound on the difference between μP^n and π . The only thing left to show is that $P(\tau_{\text{couple}} < \infty) = 1$. Show that if the two chains are taken independent of each other (until they meet), then they are assured to eventually meet.