Discrete Probability

- 1. A transition matrix P is symmetric if P(x, y) = P(y, x) for all $x, y \in S$. Show that if P is symmetric, then the uniform distribution on S is stationary for P.
- 2. Prove Lemma 1.8 from the lecture: Let P be a transition matrix.
 - (a) Show that all eigenvalues λ satisfy $|\lambda| \leq 1$.
 - (b) Show that all real eigenvalues of the lazy chain (P+I)/2 are nonnegative.
 - (c) Let P be irreducible. Show that $\mathcal{T}(x) := \{n \in \mathbb{N}_0 \mid P^n(x, x) > 0\} \subset 2\mathbb{Z}$ iff -1 is an eigenvalue of P.
 - (d) More generally, let P be irreducible and $z \in \mathbb{C}$ a kth root of unity. Show that $\mathcal{T}(x) \subset k\mathbb{Z}$ if and only if z is an eigenvalue of P.
- 3. Prove Lemma 1.10 from the lecture: For any $n \in \mathbb{N}$,

$$\|P^{n}(x,\cdot) - \pi(\cdot)\|_{TV} \le \max_{y \in S} \left(1 - \frac{P^{n}(x,y)}{\pi(y)}\right), \qquad x \in S$$

and thus $d(n) \leq s(n)$ (where the separation distance s(n) is defined as the maximum of the right hand side).

4. Prove Lemma 1.11 from the lecture: Let P be a transition matrix of an irreducible and reversible Markov chain. Show that for a function $f: S \to \mathbb{R}$,

$$\mathbb{V}_{\pi}(P^{n}f) \leq \lambda_{\star}^{2n} \mathbb{V}_{\pi}(f),$$

where $\lambda_{\star} := \max\{|\lambda| : \lambda \text{ is eigenvalue of } P, \lambda \neq 1\}.$

5. Complete the proof of Lemma 1.13 from the lecture by showing that the measure $q \in \mathcal{M}_1(S \times S)$ is a *coupling* of the measures $\mu, \nu \in \mathcal{M}_1(S)$, where

$$q(x,x) = \mu(x) \land \nu(x), \qquad x \in S,$$

and for $x \neq y$,

$$q(x,y) = \begin{cases} 0 & \text{if } q(x,x) = \mu(x) \text{ or } q(y,y) = \nu(y); \\ \frac{(\mu(x) - \nu(x)) (\nu(y) - \mu(y))}{1 - \sum_{z} q(z,z)} & \text{elsewhere.} \end{cases}$$

6. Prove Theorem 1.6 from the lecture ("Ergodic theorem for Markov chains"): Let $(X_n)_{n \in \mathbb{N}_0}$ be an irreducible Markov chain on the state space S starting in $x \in S$ with stationary distribution π , let $f: S \to \mathbb{R}$ be an \mathbb{R} -valued function and

$$S_n := \sum_{k=0}^{n-1} f(X_k).$$

Define $\tau_{x,0}^+ := 0$ and, recursively,

$$\tau_{x,k}^+ := \min\{n > \tau_{x,k-1}^+ \mid X_n = x\}.$$

- (a) Show that $\lim_{n\to\infty} \frac{S_{\tau^+_{x,n}}}{n} = \mathbb{E}_{\pi}(f)\mathbb{E}(\tau^+_{x,1})$.
- (b) Show that $\lim_{n\to\infty} \frac{\tau_{x,n}^+}{n} = \mathbb{E}(\tau_{x,1}^+)$ a.s.
- (c) Conclude that $\lim_{n\to\infty} \frac{S_n}{n} = \mathbb{E}_{\pi}(f)$ a.s.. What would be the generalization to arbitrary starting distributions?