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Discrete Probability

Critical exponents for percolation on the binary tree. The purpose of this exercise
sheet is to calculate that on the 3-regular tree T (a.k.a. binary tree) we have that pc = pT = 1/2,
and the critical exponents take on their mean-field values β = γ = ρ = 1 and δ = ∆ = 2, where

χ(p) ' (pc − p)−γ as p↗ pc,

θ(p) ' (p− pc)β as p↘ pc,

Ppc(|C(0)| ≥ n) ' n−1/δ, as n→∞,
Ppc(∃x ∈ C(0) : dist(0, x) = n) ' n−1/ρ, as n→∞,

and the gap exponent ∆ > 0 is defined by,

Ep
[
|C(0)|k+1

]
Ep
[
|C(0)|k]

' (pc − p)−∆ as p↗ pc for k = 1, 2, 3, . . .

with the unwritten assumption that ∆ is independent of k.

1. Recall from Sheet 8, Exercise 2 that the binary tree, pc = 1/2 and

θ(p) =

0 if p < 1/2,

1−
(

1−p
p

)3

if p ≥ 1/2.

Derive that β = 1 for T .

2. Now we address the critical exponent γ. For x 6= o, we write CBP(x) for the forward cluster
of x in T , i.e., those vertices y ∈ T that are connected to x and for which the unique
path from x to y only moves away from the root o. Then,

|C(o)| = 1 +
∑
e∼o

Io,e|CBP(e)|,

where the sum is over all neighbors e of o, (I0,e)e∼o are three independent Bernoullli(p)-
variables, and (|CBP(e)|)e∼o is an i.i.d. sequence independent of (Io,e)e∼o.

Derive the identity Ep|CBP(x)| = 1 + 2pEp|CBP(x)| and conclude

Ep|CBP(x)| = 1

1− 2p

for p < 1/2. Derive further an expression for Ep(|C(o)|) and verify that pT = 1/2. Conlcude
ρ = 1.



3. Next we address the arm exponent ρ. Define

θn = Ppc
(
∃v ∈ CBP(x) such that dist(x, v) = n

)
and proof the recursion relation

1− θn = (1− pcθn−1)2.

Show that θ(n) = 4/n
(
1 +O(1/n)

)
and conclude that ρ = 1.

4. Calculate E
(
|CBP(x)|k

)
and derive ∆ = 2.

Remark. You may verify that the same critical exponents are true for the r-regular tree Tr,
where pc(Tr) = pT (Tr) = 1/(r − 1).
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