Exercise sheet 10 7 Jan 2018

Discrete Probability

1. Prove

$$\frac{2|k|^2}{\pi^2} \le \sum_{j=1}^d \left(1 - \cos(k_j)\right) \le \frac{|k|^2}{2}$$

for every $k = (k_1, ..., k_d) \in [-\pi, \pi)^d$.

2. Prove rigorously that

$$\chi(p) \ge \frac{1}{2d(p_c - p)},$$

i.e., $\gamma \leq 1$. To this end, consider the functions $\tau_p^n(x, y) := P_p(x \leftrightarrow y \text{ in } \Lambda_n)$ (with $\Lambda_n = \{-n, \ldots, n\}^d$) and

$$\chi^n(p) := \max_{x \in \Lambda_n} \sum_{y \in \Lambda_n} \tau_p^n(x, y).$$

Prove that the functions $p \mapsto 1/\chi^n(p)$ are equicontinuous and $\chi^n(p) \to \chi(p)$ for every $p \in [0, 1]$. Deduce that $p \mapsto 1/\chi(p)$ is continuous and, in particular, $\chi(p_c) = 0$.

3. For $p < p_c$ and $k \in [-\pi, \pi)^d$, prove that

 $\hat{\tau}_p(k) \ge 0.$

For this purpose, it is most convenient to view $\tau_p(x, y)$ ($=\tau_p(y - x)$) as an operator and prove that it is of positive type, that is,

$$\sum_{x,y\in\mathbb{Z}^d}\bar{f}(x)\tau(x,y)f(y)\geq 0$$

for any summable function $f: \mathbb{Z}^d \to \mathbb{C}$ (where $\overline{f}(x)$ is the complex conjugate of f(x)). Then the claim follows from Bochner's theorem.

4. Let $p < p_c$. Prove that the triangle diagram is maximal at the origin:

$$\Delta_p(0) = \max_{x \in \mathbb{Z}^d} \Delta_p(x).$$

More generally, show that $\tau_p^{*s}(x) \leq \tau_p^{*s}(0)$ and $(D * D * \tau_p^{*s})(x) \leq (D * D * \tau_p^{*s})(0)$ for every $x \in \mathbb{Z}^d$ and $s \geq 1$, where $D(x) = \mathbb{1}_{\{|x|=1\}}$. Conclude that these bounds also hold for $p = p_c$.