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Interacting particle system (IPS)

Continuous-time Markov process X on E = {0, 1}Λ ∼= P(Λ)
For example Λ graph with edge set E .
The local state space is S = {0, 1}.

”neighbouring sites interact”

Λ = Z i− 1 i i + 1

Λ = ΛN
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Interacting particle system (IPS)

Classical dynamics: terminology ”1” - particle ”0” - empty site

One site i: i map
death 1 7→ 0 deathi
birth 0 7→ 1 birthi

Two neighbouring sites ij ij map
branching/contact 10 7→ 11 braij
random walk and coalescence 10 7→ 01 11 7→ 01 rwij
random walk and annihilation 10 7→ 01 11 7→ 00 annij
voter 10 7→ 11 01 7→ 00 votij
exclusion 01 7→ 10 excij

Three neighbouring sites ijk ijk map
cooperative branching 110 7→ 111 cobijk
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Markov processes and random mapping representations

With theses maps one can formulate the IPS as follows:
Let X = (Xt)t≥0 be a continuous-time Markov chain with (nice)
state space E and generator G . Then G can be written in the form
of a random mapping representation:

Let G ⊂ F(E ,E ) := {m : E → E} and
let (rm)m∈G be nonnegative constants.

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ E .

Note: This kind of representation is not unique.
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Stochastic flow construction of Markov processes

The random mapping representation can be used for a Poissonian
construction of the Markov process: stochastic flow.
Let ∆ be a Poisson point subset of G ×R with local intensity rmdt.
For s ≤ u, set ∆s,u := ∆ ∩ (G × (s, u]).
Define random maps Xs,t : E → E (s ≤ t) by

Xs,t(x) := mn ◦ · · · ◦m1(x) when

∆s,t := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn.

Note that Xt,u ◦ Xs,t = Xs,u for all s ≤ t ≤ u.
Well defined for E finite, with additional conditions locally for IPS.

Poissonian construction of a Markov process
Let X0 be an E -valued r.v., independent of ∆. Setting for s ∈ R,

Xt := Xs,s+t(X0), t ≥ 0

defines a Markov process X = (Xt)t≥0 with generator G .



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Stochastic flow construction of Markov processes
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Stochastic flow construction of Markov processes
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Stochastic flow construction of Markov processes

Local picture for IPS gives the graphical construction:
Contact process

Λ0
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Stochastic flow construction of Markov processes

Local picture for IPS gives the graphical construction:
Contact process
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Stochastic flow construction of Markov processes

Local picture for IPS gives the graphical construction:
Contact process

Λ0

t

10 1 1 10 1 1 1 0 0 1 1 0 1
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Stochastic flow construction of Markov processes

Local picture for IPS gives the graphical construction:
Contact process

Λ0

t

10 1 1 10 1 1 1 0 0 1 1 0 1

0 0 1 1 1 1 1 0 1 1 0 0 0 1 1



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Graphical representation

Graphical representation using random maps
of the cooperative branching model with deaths
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Determining Xt from the stochastic flow

Our goal is to determine

I Xt = x ′ by looking at the relevant history of the stochastic
flow in [0, t] backwards in time,

I the state of one site Xt(i) (or several sites) in the case of IPS
by looking at the configurations at all sites that were relevant
for that site.
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Determining Xt from the stochastic flow
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Determining Xt from the stochastic flow
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But there are many paths back into the past from x ′!
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Determining Xt from the stochastic flow
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Determining Xt from the stochastic flow

Λ0

t
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Determining Xt from the stochastic flow

Λ0

t
Xt(i)

To determine Xt(i) trace ancestry of all (possibly) relevant sites:
Here, contact process with percolation structure.
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Determining Xt from the stochastic flow

Graphical representation for cooperative branching with deaths:

Possible ancestry is more complicated than in percolation picture.
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Determining Xt from the stochastic flow

Graphical representation for cooperative branching with deaths:

Possible ancestry is more complicated than in percolation picture.
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Determining Xt from the stochastic flow

If we want to find a process running backwards in time that
characterises a suitably large class of functions of Xt then this
leads to the concept of (pathwise) duality.

Terminology, overview: Jansen and Kurt ’14
More literature and examples later.
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Pathwise duality

Let X and Y have state spaces E and E ′ and generators

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

Hf (y) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
.

Proposition (Pathwise duality)

Let ψ : E × E ′ → R be a function such that

(∗) ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
x ∈ E , y ∈ E ′, m ∈ G.

Then, X and Y are pathwise dual: They can be coupled such that

s 7→ ψ(Xs ,Yt−s)

is almost surely constant on [0, t] with t ≥ 0, and Xs− is
independent of Yt−s , s ∈ [0, t].
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Pathwise duality from the Poissonian construction

Let ∆, ∆̂ be graphical representations for X and Y with

∆̂ := {(m̂,−t) : (m, t) ∈ ∆}.

Let Xs,t− and Ys,t be the respective Poissonian constructions.
Then, for all x ∈ S , y ∈ S ′, the function

[0, t] 3 s 7→ ψ
(
X0,s−(x),Y−t,−s(y)

)
is a.s. constant.



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Construction of a pathwise dual
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Construction of a pathwise dual
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Construction of a pathwise dual
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Construction of a pathwise dual

In a random mapping representation construct for any m ∈ G a
dual map m̂ and ψ such that (*) holds.

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
.

General possibility
Let E ′ = P(E ), the set of all subsets of E , and

m̂(A) = m−1(A) := {x ∈ E : m(x) ∈ A}, A ∈ P(E ).

Then equality holds in (*) with respect to the duality function

ψ(x ,A) := 1{x∈A}, x ∈ E ,A ∈ P(E ).
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General duality function

ψ(x ,A) := 1{x∈A}, x ∈ E ,A ∈ P(E ), m̂(A) = m−1(A)

Example: E = {0, 1}Λ

A = {x ∈ E : xi = 1} and 1{x∈A} = 1{xi=1}.

”The dual with state space P(E ) tracks the set of configurations
that a particular (set of) configuration(s) may have emerged from.”

Find more useful dualities with values in subspaces of P(E ) that
are invariant under the inverse image maps m−1 for all m ∈ G.

Concentrate on E partially ordered with m monotone or additive:
Sturm, Swart JTP 2016
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Little excursion: Partially ordered sets

Let (E ,≤) be a (finite) partially ordered set.

I For A ⊂ E define A↓ := {x ∈ E : x ≤ y for some y ∈ A}.
I Pdec(E ) are the decreasing sets A with A↓ ⊂ A.

I P!dec(E ) is a principal ideal if it consists of A with

A = {z}↓ for some z ∈ E .

Define analogously A↑,
increasing sets Pinc(E ) and principle filters P!inc(E ).
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Little excursion: Partially ordered sets

I In a join-semilattice P!inc(E ) is closed under finite
intersections and the supremum is well defined via

{x ∨ y}↑ := {x}↑ ∩ {y}↑

I x ∨ y is the minimal element such that

x ≤ x ∨ y and y ≤ x ∨ y .
Example:
For IPS we have E = {0, 1}Λ and ∨ corresponds to the coordinate
wise maximum. If we consider E ∼= P(Λ) then ≤ corresponds to ⊂
and ∨ corresponds to ∪.

I For E a join-semilattice we have ∅ 6= A ∈ P!dec(E ) ⇔
A ∈ Pdec(E ) and x , y ∈ A implies x ∨ y ∈ A.
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Little excursion: Monotone and additive functions

I A function m is monotone if

x ≤ y implies m(x) ≤ m(y), x , y ∈ E .

I A function m is additive on a join-semilattice
with minimal element 0 if

m(x ∨ y) = m(x) ∨m(y), x , y ∈ E

as well as m(0) = 0.

Remark:

I Additive functions are monotone.

I Monotone functions are superadditive:
m(x ∨ y) ≥ m(x) ∨m(y)
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Invariant subspaces for monotonefunctions

Proposition (Monotone functions)

Equivalent:

I m is monotone.

I m−1 maps Pdec(E ) into itself (invariant subspace!).

I m−1 maps Pinc(E ) into itself (invariant subspace!).

I For A ∈ Pdec(E ) consider x ≤ y and y ∈ m−1(A).

I Then by monotonicity m(x) ≤ m(y) ∈ A
and since A is decreasing m(x) ∈ A.

I It follows x ∈ m−1(A) and m−1(A) decreasing.
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Invariant subspaces foradditive functions

Proposition (Additive functions)

Equivalent (on a finite join-semilattice with minimal element):

I m is additive.

I m−1 maps P!dec(E ) into itself (invariant subspace!).

I m−1(A) ∈ Pdec(E ) for A ∈ P!dec(E ) (additive functions monotone)

I x , y ∈ m−1(A)⇒ x ∨ y ∈ m−1(A):
m(x ∨ y) = m(x) ∨m(y) and m(x) ∨m(y) ∈ A.

I Taken together this implies m−1(A) ∈ P!dec(E ).
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Monotonically and additively representable processes

If a Markov process X has random mapping representation

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ E

where

I G contains only monotone functions then we call X
monotonically representable.

I G contains only additive functions then we call X
additively representable.
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Pathwise duality for additively representable processes

E ′ is a dual of E if there is a bijection E 3 x 7→ x ′ ∈ E ′ (x ′′ = x):

x ≤ y ⇔ x ′ ≥ y ′

Note: m(x) ∈ {y ′}↓ ⇔ m(x) ≤ y ′. So consider for x ∈ E , y ∈ E ′

ψ(x , y) = 1{x≤y ′} = 1{y≤x ′}

Lemma (Duals to additive maps)

For additive m : E → E there exists (a unique) m′ : E ′ → E ′ with

(∗) 1{m(x)≤y ′} = 1{x≤(m′(y))′}, x ∈ E , y ∈ E ′.

I Due to additivity there exists z ∈ E such that m−1
(
{y ′}↓

)
= {z}↓

I Set m′(y) = z ′, y ∈ E ′ such that

m(x) ≤ y ′ if and only if x ≤ z = z ′′ = (m′(y))′
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Pathwise duality for additively representable processes

Theorem (Additive systems duality)

Let E be a finite lattice and let X be a Markov process in E whose
generator has a random mapping representation of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
, x ∈ E ,

where all maps m ∈ G are additive (additively representable).
Then the Markov process Y in E ′ with generator

Hf (y) :=
∑
m∈G

rm
(
f (m′(y))− f (y)

)
, y ∈ E ′

is pathwise dual to X with respect to the duality function

ψ(x , y) = 1{x≤y ′}, x ∈ E , y ∈ E ′.
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Pathwise duality for additively representable processes

Examples:

I 1 E ′ := E equipped with the reversed order and x ′ = x .

I 2 For E = {0, 1}Λ ⊂ P(Λ) equipped with ⊂ take for
x ′ := Λ\x = xC , the complement of x , and
E ′ := {x ′ : x ∈ E}.

Recall that for x ∈ E , y ∈ E ′

ψ(x , y) = 1{x≤y ′} = 1{y≤x ′}

I 1 ψ(x , y) = 1{x≤y ′} = 1{x≤y}
Siegmund’s duality on a totally ordered space E
mappings monotone with m(0) = 0

I 2 ψ(x , y) = 1{x⊂Λ\y} = 1{x∩y=∅}
Additive interacting particle systems
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Examples for additive maps and their dual maps

Standard additive interacting particle system dynamics on
E = {0, 1}Λ ∼= P(Λ)

I Voter dynamics:
votij : 01→ 11, 10→ 00

I Contact dynamics:
braij : 10→ 11

I Symmetric random walk with coalescence:
rwij : 10, 11→ 01

I Spontaneous death of particles:
deathi : 1→ 0

I Exclusion dynamics:
excij : 10→ 01, 01→ 10

Let E ′ = E and x ′ = xC . Then the duality functions are

vot′ij = rwij , bra
′
ij = braji , rw

′
ij

= votij , death
′
i = deathi , exc

′
ij = excij
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Percolation structure for additively representable processes

Equip E := P(Λ) with ⊂ and let m be an additive map E → E .
Define M ⊂ Λ× Λ via

m(x) = {j ∈ Λ : (i , j) ∈ M for some i ∈ x} for all x ∈ E .

Vice versa, any such M ⊂ Λ× Λ
corresponds to an additive map m.
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Percolation structure for additively representable processes

Let E ′ = E and x ′ = xC . Then we have an additive m′ : E → E
dual to m with the duality function

ψ(x , y) = 1{x⊂Λ\y} = 1{x∩y=∅}, x , y ∈ E .

The M ′ ⊂ Λ× Λ corresponding to m′ is given by

M ′ =
{

(j , i) : (i , j) ∈ M
}
.
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Percolation structure for additively representable processes

Percolation representation

Plot space-time Λ× R with time upwards.
At rate rm we consider the M associated to m and

I draw an arrow from (i , t) to (j , t) (i 6= j) whenever (i , j) ∈ M

I place a “blocking symbol” at (i , t) whenever (i , i) 6∈ M

”Open paths”  travel upwards along arrows and avoid blocking
symbols. Then

Xs,u(x) = {j ∈ Λ : (i , s) (j , u) for some i ∈ x},

and the dual process is obtained via open paths using the reversed
arrows (in reversed time).
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Percolation structure for additively representable processes

Voter model
E = {0, 1}Λ ∼= P(Λ).
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Percolation structure for additively representable processes

Extensions
The above percolation structure statements also apply if

I Λ is a partially ordered set and E = Pdec(Λ).

I E is a distributive lattice with

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x , y , z ∈ E .

One can show that E ∼= Pdec(Λ) for a partially ordered set Λ
by Birkhoff’s representation theorem.

In this case for i , j , i ′, j ′ ∈ Λ

(i) (i , j) ∈ M and i ≤ i ′ implies (i ′, j) ∈ M,

(ii) (i , j) ∈ M and j ≥ j ′ implies (i , j ′) ∈ M.
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Percolation structure for additively representable processes

Two stage contact process (Krone ’99)
E = {0, 1, 2}Λ ”1” younger individual ”2” older individual.
Older individuals give birth to younger individuals who ”grow up”
and possibly die at a higher rate than older individuals.

E ∼= Pdec(Λ× {1, 2})
with x(i) = 1 ∼= (i , 1) ∈ x and x(i) = 2 ∼= (i , 1), (i , 2) ∈ x
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Pathwise duality for monotonically representable processes

Now consider the duality function

φ(x ,B) := 1{x∈{B′}↓} = 1{x≤y ′ for some y∈B}, x ∈ E , B ∈ P(E ′).

Y0 = y ∈ Pdec(E ) implies Yt ∈ Pdec(E ), t ≥ 0

⇒ Define a process Z such that Yt = Z ↓t , t ≥ 0.

Lemma (Duals to monotone maps)

For monotone m : E → E there exist m∗ : P(E ′)→ P(E ′) with

(∗) 1{m(x)≤y ′ for some y∈B} = 1{x≤y ′ for some y∈m∗(B)}.

I By monotonicity m−1 maps decreasing sets of the form
A = {B ′}↓ into sets of this form.

I Construct appropriate m∗ :m∗(B)′ :=
⋃

x∈B(m−1({x ′}↓))max
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Pathwise duality for monotonically representable processes

Theorem (Monotone systems duality)

Let E be a finite partially ordered set and let X be a Markov
process in E whose generator has a random mapping
representation of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
x ∈ E ,

where all maps m ∈ G are monotone (monotonically rep.).
Then the P(E ′)-valued Markov process Y ∗ with generator

H∗f (B) =
∑
m∈G

rm
(
f (m∗(B))− f (B)

)
, B ∈ P(E ′)

is pathwise dual to X with respect to the duality function φ.
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Monotone/monotonically representable processes

Classical concept of monotone Markov chains:
A continuous-time Markov chain X with values in the partially
ordered set E is monotone if

x 7→ E x(f (Xt))

is monotone for all monotone f : E → E .

In other words:
stochastically ordered initial distributions
stay stochastically ordered for all time.

Remark:

I Monotonic representability is a stronger concept than
monotonicity in the classical sense (see Fill, Machida ’01).

I However, there is equivalence if E is totally ordered
(see Kamae, Krengel, O’Brien ’77, Fill, Machida ’01).
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Pathwise duality for monotonically representable processes

Example: Cooperative branching coalescent with death
IPS with state space {0, 1}Λ ∼= P(Λ)

I Spontaneous death of particles:
deathi : 1→ 0

I Symmetric random walk with coalescence:
rwij : 10, 11→ 01

I Pairs of particles produce a new particle:
cobijk : 110→ 111
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Pathwise duality for cooperative branching coalescent

All maps m are monotone, all but cooperative branching are
additive. Let E ′ = E and x ′ = xC . Then the duality function is

φ(x ,B) = 1{x⊂yC for some y∈B} = 1{x∩y=∅ for some y∈B}

for x ∈ E ,B ∈ P(E ).
For the additive functions m there are dual functions m′ with

m(x) ∩ y = ∅ ⇔ x ∩m′(y) = ∅

namely
rw′ij = votij and death′i = deathi

We set m∗(B) = {m′(x) : x ∈ B}.
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Pathwise duality for cooperative branching

Notation: For m : E → E define m : P(E )→ P(E ) by
m(Y ) = {m(y) : y ∈ Y }

For the cooperative branching map we have

cob∗ijk(B) = b
(1,C)
ijk (B) ∪ b

(2,C)
ijk (B)

with the definition (restricted to sites ijk)

b(1,C) : 001→ 011, b(2,C) : 001→ 101

since we have x ′ := xC and

(
cob−1

(
{x}↓

))
max

=

{
{100, 010} if x = 110,

{x} otherwise.
= b(1)(x)∪b(2)(x)

for b(1) : 110→ 100, b(2) : 110→ 010.
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Pathwise duality for cooperative branching

Another natural choice is to consider E ′ = E with x ′ = x .

Using the invariance of decreasing sets this leads to the duality
function: For x ∈ E , B ∈ P(E ),

φ(x ,B) := 1{x∈{B}↓} = 1{x≤y for some y∈B}

The dual maps are

rw∗ij(B) = votji (B)

cob∗ijk(B) = b
(1)
ijk (B) ∪ b

(2)
ijk (B)

where b(1) : 110→ 100, b(2) : 110→ 010.
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Pathwise duality for cooperative branching

Let now 1 = . . . 1111111 . . . .

With the duality we can study the particle density

P[Xt(i) = 1] = 1− P[Xt(i) = 0] = 1− P[Xt ≤ y i
0]

for y i
0 = 1− ei = . . . 1111101111 . . . .

Also, for the density of particle pairs we have

P[Xt(i) = Xt(j) = 1] = 1− P[Xt(i) = 0 or Xt(j) = 0]

= 1− P[Xt ≤ y for some y ∈ Y0]

for Y0 = {y i
0, y

j
0}.
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Pathwise duality for cooperative branching

But for X0 = 1 = . . . 1111111 . . . we have in either case

1− P[Xt ≤ y for some y ∈ Y0] = 1− P[X0 ≤ y for some y ∈ Yt ]

= 1− P[1 ∈ Yt ] = P[1 /∈ Yt ]

Thus we get a bounds if we consider Y t andY t instead of Yt

with
Y t ⊂ Yt and Yt ⊂ Y t
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Pathwise duality for cooperative branching coalescent

Sturm, Swart ’15
Λ = Z without spontaneous death

I rwij : Random walk with coalescence rate 1

I cobijk : Cooperative branching rate α

I Results regarding phase transitions:

αsurv := inf{α > 0 : the process survives (pairs of particles)},
αupp := inf{α > 0 : the upper invariant law is nontrivial}.

We have 1 ≤ αupp, αsurv <∞.
Conjecture: αupp = αsurv

I Application of a version of this dual:
Decay rates of the survival probability of pairs and the density
in the subcritical regime is order t−1/2.
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Pathwise duality for cooperative branching coalescent

Particle density and density of particle pairs
Without cooperative branching we get a lower bound:
Here, for Yt there are just coalescing random walks to consider:
The interfaces of the voter dynamics for y i

0

1 1 1 1 | 0 | 1 1 1 1 1

1 1 | 0 0 0 0 0 | 1 1 1

I Density of particles:
Let τ (2) = τi(i+1) until two random walkers meet:

⇒ P[Xt(i) = 1] = P[1 /∈ Yt ] ≥ P[τ ≥ t] ∼ Ct−1/2
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Pathwise duality for cooperative branching coalescent

Particle density and density of particle pairs
Without cooperative branching we get a lower bound for the
density of particle pairs by considering the interfaces of
y i

0 and y i+1
0 :

1 1 1 1 | 0 | 1 1 1 1 1
1 1 1 1 1 | 0 | 1 1 1 1

1 1 1 | 0 0 0 | 1 1 1 1
1 1 1 1 1 0 | 0 0 0 | 1

I Density of particle pairs:
Let τ (3) = τi(i+1) ∧ τ(i+1)(i+2) be the time for two out of three
independent walkers to meet:
⇒ P[Xt(i) = Xt(i + 1) = 1] ≥ P[τ (3) ≥ t] ∼ Ct−3/2
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Pathwise duality for cooperative branching

With cooperative branching we add a (dependent)
branching process:

1 1 1 1 | 0 | 1 1 1 1 1
1 1 1 1 1 | 0 | 1 1 1 1

1 1 1 | 0 0 0 | 1 1 1 1
1 1 1 1 1 0 | 0 0 0 | 1

1 | 1 | 0 0 0 0 | 1 1 1 1
1 0 | 1 | 0 0 0 | 1 1 1 1
1 1 1 1 1 0 | 0 0 0 | 1

Suffices to follow:
1 1 1 | 0 0 0 | 1 1 1 1
1 1 1 1 1 0 | 0 0 0 | 1

1 | 1 | 0 0 0 0 0 0 0 0
1 0 | 1 | 0 0 0 0 0 0 0
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Pathwise duality for cooperative branching

With cooperative branching we have (roughly)

I triples of random walks die as soon as two out of the three
meet

I with rate α a triple can give birth to a new triple of random
walks started on neighbouring positions

As long as the cooperative branching rate is small enough this
branching process dies out and the probability to be alive at time t
decays as before without branching.
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Cooperative branching coalescent: Pathwise superduality

Z

t I1 I2

I ′1 I ′2

One can also show for the survival probability of pairs

− ∂
∂tP
[
|X ei+ei+1

t | ≥ 2
]

= P
[
X

ei+ei+1
t = {i , i + 1} for some i ∈ Z

]
≤ E[Nt ] ≤ Ct−3/2.

where Nt is the number of three paths in the dual.
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Pathwise duality for monotonically representable IPS

This kind of duality was considered by Gray ’86 for
monotone IPS with births and deaths:

Generator:

Gf (x) =
∑
i∈Λ

βi (x)
(
f (x + ei )− f (x)

)
+
∑
i∈Λ

δi (x)
(
f (x − ei )− f (x)

)
.

Here, βi (x) and −δi (x) are assumed to be monotone.

For equivalence see Sturm, Swart ’16.



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Outline

1 Interacting particle systems, graphical representations and
duality

2 Pathwise duality for monotone and additive processes

3 Interacting particle system on the complete graph
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General definition

Markov process X = (Xt)t≥0

I Complete graph ΛN with vertices [N] := {1, . . . ,N}
I Polish local state space S

I X takes values in E = SN : x = (x1, . . . , xN)

I Dynamics are invariant under permutation of the coordinates

Random mapping representation At a certain rate
choose a function g to apply to the current configuration x :

I g : Sk → S for some k ∈ N
I Replace state at a randomly chosen site by g applied to the

state at k distinct randomly chosen sites.

Alternative:
Site of replacement is part of the k randomly chosen sites.
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Example: Cooperative branching with death

This is the case for cooperative branching with death:
We choose S = {0, 1} and set

cob(x1, x2, x3) = x1 ∨ (x2 ∧ x3), S3 → S

dth(∅) = 0, S0 → S

where the corresponding rates are

rcob = α ≥ 0 and rdth = 1.

Here, the map cob applied to xi1 , xi2 , xi3 replaces xi1 in x .
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A graphical representation

time

space

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0
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A graphical representation

time

space
X0

Xt = X0,t(X0)

0 1 1 0 1 1 0 1 1 0

1 0 1 0 1 1 0 0 1 0

The Poisson events define a random map x 7→ X0,t(x).
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Graphical/random mapping representation

Some notation
Polish space Ω models external randomness:
Consider measurable maps

I κ : Ω→ N and Ωk := {ω ∈ Ω : κ(ω) = k}
I Ωk × Sk 3 (ω, x) 7→ γ[ω](x) ∈ S

Let G := {γ[ω] : ω ∈ Ω}.

Also consider a nonzero finite measure r on Ω with total mass
|r| := r(Ω) and set rg := r

(
{ω ∈ Ω : γ[ω] = g}

)
for g ∈ G.

Let [N]〈k〉 denote the set of all sequences i = (i1, . . . , ik)
for which i1, . . . , ik ∈ [N] are all different.
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Graphical/random mapping representation

Evolution of X :

I At the times of a Poisson process with intensity |r|, an element
ω ∈ Ω is chosen according to the probability law |r|−1r.

I If κ(ω) ≤ N, then i ∈ [N]〈κ(ω)〉 and j ∈ [N] are selected
independently and uniformly

I Xt−(j) is replaced by Xt(j) = γ[ω]
(
Xt−(i1), . . . ,Xt−(iκ(ω))

)
.

Alternative: Let j = i1 instead of a random choice.

(Note: In the limit N →∞ this does not make a difference.)
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Stochastic flow

We can view X as a stochastic flow: For x ∈ SN consider

mω,i,j(x)j ′ :=

{
γ[ω](xi1 , . . . , xiκ(ω)

) if j ′ = j ,

xj ′ otherwise,

Let Π be a Poisson point set on{
(ω, i, j , t) : ω ∈ Ω, i ∈ [N]〈κ(ω)〉, j ∈ [N], t ∈ R

}
with intensity

r(dω)
1

N〈κ(ω)〉
1

N
dt.

and for s < u

Πs,u := {(ω, i, j , t) ∈ Π : s < t ≤ u}
=

{
(ω1, i1, j1, t1), . . . , (ωn, in, jn, tn)

}
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Stochastic flow

Then
Xs,u = mωn,in,jn ◦ · · · ◦mω1,i1,j1 .

defines a stochastic flow with

Xs,s = Id and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

If X (0) is an SN -valued random variable independent of Π then

Xt := X0,t

(
X (0)

)
(t ≥ 0).
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Coupling via the stochastic flow

Coupling via the stochastic flow

I Let (X 1
0 , . . . ,X

n
0 ) be a random variable with values in (SN)n,

independent of (Xs,u)s≤u:(
X 1
t , . . . ,X

n
t

)
:=
(
X0,t(X 1

0 ), . . . ,X0,t(X n
0 )
)

I (X 1
t , . . . ,X

n
t )t≥0 consists of n coupled Markov processes with

initial states X 1(0), . . . ,X n(0).
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The mean-field limit

Consider the empirical measure

µ{x} := 1
N

∑
i∈[N] δxi .

Since the dynamics is invariant under permutations

µt := µNt := µ{Xt} (t ≥ 0)

defines a Markov process.

Let P(S) be the space of all probability measures on S , equipped
with the topology of weak convergence.

Goal: Consider the limit as N →∞ with convergence in P(S)

Note: Analogously, we can define and consider µ(n){x} ∈ P(Sn)
for n coupled processes with x ∈ (SN)n.
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The mean-field equation

For any measurable map g : Sk → S we define a measurable map
Tg : P(S)→ P(S) by

Tg (µ) := the law of g(X1, . . . ,Xk),

where (Xi )i=1,...,k are i.i.d. P(S)-valued with law µ.

Consider (weak) solutions to the mean-field equation

∂
∂tµt =

∫
Ω

r(dω)
{

Tγ[ω](µt)− µt
}

:

For each bounded measurable function φ : S → R, the function
t 7→ 〈µt , φ〉 is continuously differentiable and

∂
∂t 〈µt , φ〉 =

∫
Ω

r(dω)
{
〈Tγ[ω](µt), φ〉 − 〈µt , φ〉

}
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Example: Cooperative branching with death

Let S = {0, 1} and G = {cob, dth} with rates α and 1.
Then the mean-field equation is

∂
∂tµt = α

{
Tcob(µt)− µt

}
+
{

Tdth(µt)− µt
}
.

Here, it suffices to keep track of pt := µt({1})
∂
∂t pt = αp2

t (1− pt)− pt (t ≥ 0).

Fixed points:

I For α < 4 : zlow := 0

I For α ≥ 4 : zlow and

zmid := 1
2 −

√
1
4 − 1

α and zupp := 1
2 +

√
1
4 − 1

α .

zlow and zupp are stable, zmid is unstable.
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Cooperative branching

Fα(p)

p

α = 3
0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

For α < 4 the equation ∂
∂t pt = αp2

t (1− pt)− pt =: Fα(pt)
has a single, stable fixed point p = 0.
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Cooperative branching

Fα(p)

pα = 4

0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

For α = 4, a second fixed point appears at p = 0.5.
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Cooperative branching

Fα(p)

p

α = 5

0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

For α > 4 there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.
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Cooperative branching

zupp

zmid

zlow

p

α

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Fixed points of ∂
∂t pt = Fα(pt) for different values of α.



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Uniqueness of the mean-field equation

Theorem

Let r satisfy ∫
Ω

r(dω)κ(ω) <∞.

Then the mean-field equation has a unique solution (µt)t≥0 for
each initial state µ0 ∈ P(S).
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Convergence to the mean-field equation

Let d be a metric that corresponds to
the topology of weak convergence.

Theorem

If in addition one of the following two conditions is satisfied:

I P
[
d(µN0 , µ0) ≥ ε] −→

N→∞
0 for all ε > 0, and

r
(
{ω : κ(ω) = k, γ[ω] is discontinuous at x}

)
= 0.

I
∥∥E[(µN0 )⊗n]− µ⊗n0

∥∥
TV
−→
N→∞

0 for all n ≥ 1.

Then for ε > 0, T <∞,

P
[

sup0≤t≤T d(µNNt , µt) ≥ ε
]
−→
N→∞

0,

where (µt)t≥0 solves the mean-field equation with initial state µ0.
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Convergence to the mean-field equation

I We could more generally consider maps that change not only
one but m sites simultaneously:

(x1, . . . , xk) 7→ (g1(x1, . . . , xk), . . . , gm(x1, . . . , xk)) ∈ Sm.

However, applying such a map with rate r has in the
mean-field limit the same effect as independently applying
g1(x1, . . . , xk) to gm(x1, . . . , xk) all at rate r .

I Also, the alternative of j = i1 instead of a random choice
leads to the same mean-field equation.
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The n-variate equation

We are also interested in n coupled mean field equations:

For g : Sk → S we define g (n) : (Sk)n → Sn by
g (n)

(
x1, . . . , xn) :=

(
g(x1), . . . , g(xn)

)
(x1, . . . , xn ∈ Sk).

Then the n-variate mean field equation is

∂
∂tµ

(n)
t =

∫
Ω

r(dω)
{

Tγ(n)[ω](µ
(n)
t )− µ(n)

t

}
with µ

(n)
t ∈ P(Sn).

For this equation invariant spaces are

I Psym(Sn) : symmetric with respect to permutations

I P(Sn
diag) : concentrated on the diagonal
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Example: Cooperative branching with death

n = 2 :
Bivariate equation for cooperative branching with deaths:
For α > 4 there are four fixed points in Psym({0, 1}2) :

ν
(2)
low, ν

(2)
mid, ν

(2)
mid, and ν(2)

upp.

which are uniquely characterized by their respective marginal
means

zlow, zmid, zmid, zupp

as well as the fact that ν
(2)
low, ν

(2)
mid, and ν

(2)
upp are concentrated on

{0, 1}2
diag = {(0, 0), (1, 1)}, but ν

(2)
mid is not.



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

A random recursive tree representation

Recall: XN is described via Poisson point process/stochastic flow.

Goal: Stochastic representation of solutions to (n-variate)

mean-field equation (µ
(n)
t )t≥0 analogous to duality:

I As N →∞ for any randomly chosen j ∈ [N], XN
t (j) is

approximately distributed as µt
I The state of XN

t (j) depends on the map γ[ω] that affected
site j in the past

I It took an input from the states at site i1, . . . , iκ(ω)

(as N →∞ all distinct with high probability)

I Continue to determine those states...
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A random recursive tree representation

Tracing back this ”genealogy” leads to a representation of µt via a
marked branching process.

∅

cob

1

dth 2

cob

3

cob

21

cob

X22

22

X23

23

31

cob

32

cob

33

cob

211

dth
212

dth

213

dth

311

dth

312

dth

X313

313

321

dth

X322

322

X323

323

331

dth

X332

332

333

dth

t
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A random recursive tree representation

Let d ∈ N+ ∪ {∞} and let

T := Td
= {i = i1 · · · in, n ∈ N, ik ∈ [d ], k ∈ [n]}

denote the space of all finite words made up from the alphabet [d ].

The random subtree T ⊂ T is the family tree of a continuous
-time branching process with additional structure given by
the maps γ[ωi] (i.i.d. r) attached at the branch points as well
as independent lifetimes (σi)i∈T (i.i.d. exp(|r|)).

We also consider the random subtrees

Tt :=
{

i ∈ T : τ †i ≤ t
}

and ∂Tt =
{

i ∈ T : τ∗i ≤ t < τ †i
}

where τ∗i and τ †i , i ∈ T are birth and death times ( σi = τ †i − τ∗i ).

(|∂Tt |)t≥0 is a branching process with offspring law κ and rate |r|.
The assumption

∫
Ω r(dω)κ(ω) <∞ corresponds to a finite

offspring mean.
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A random recursive tree representation

A stochastic flow on T is given by γ[ωi], i ∈ T :

I For any finite subtree U ⊂ T with leaves ∂U containing the
root ∅ define inductively for each (xi)i∈∂U = x ∈ S∂U

xi := γ[ωi](xi1, . . . , xiκ(ωi)) (i ∈ U).

I The value x∅ is given by the function GU : S∂U → S defined
by

GU
(
(xi)i∈∂U

)
:= x∅

I The process xi is a kind of
Markov process where time has a tree like structure.
The forward time direction is towards the root. Consider

Gt := GTt (t ≥ 0)
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A random recursive tree representation

For any random measure µ on S define E[µ] via∫
φ dE[µ] := E[

∫
φ dµ] for any bounded measurable φ : S → R.

Theorem

For each µ0 ∈ P(S), the solution (µt)t≥0 of the mean-field
equation with initial state µ0 is given by

µt = E
[
TGt (µ0)

]
Interpretation as a (generalized) duality relationship between
(µt)t≥0 and (Gt)t≥0 with (generalized) duality function
H : G × P(S)→ P(S) given by

H(g , µ) = Tg (µ).

We have µt = H(G0, µt) = E[H(Gt , µ0)] and obtain a usual
real-valued duality by integrating against φ.
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A random recursive tree representation

Let Ft := σ
(
∂Tt , (ωi, σi)i∈Tt

)
, t ≥ 0 and let (Xi)i∈Tt∪∂Tt be

random variables defined recursively as before with

(Xi)i∈∂Tt |Ft i.i.d with law µ0.

We then have the following consistency relationship:

Lemma

Fix t > 0. Then, for each s ∈ [0, t],

(i) (Xi)i∈∂Ts |Fs are i.i.d. with common law µt−s

(ii) Xi = γ[ωi]
(
Xi1, . . . ,Xiκ(ωi)

)
(i ∈ Ts),

where (µs)s≥0 solves the mean-field equation with initial state µ0.
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Unique ergodicity

Unique ergodicity: The mean-field equation has a unique fixed
point ν and any solution µt started in an arbitrary initial law µ0

satisfies that
||µt − ν|| → 0, t →∞

where || · || denotes the total variation norm.

An easy sufficient criterion:

Proposition

If we have

R :=

∫
Ω

r(dω) (κ(ω)− 1) ≤ 0

(and κ is not identically 1) then unique ergodicity holds.
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Unique ergodicity

Proof If R =
∫

Ω r(dω) (κ(ω)− 1) < 0 then (∂Tt)t≥0 is a
subcritical branching process, respectively for R = 0 a nontrivial
critical branching process so that the tree Tt is a.s. finite.

Thus, ∂T = ∅ and GT is a.s. constant. Set ν := P[GT ∈ ·] and
observe that as t → 0,

Gt = GTt → GT a.s.
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Unique ergodicity

For the cooperative branching model we have

R = α · (3− 1) + 1 · (0− 1) = 2α− 1

which gives unique ergodicity for α ≤ 1
2 .

In this case we already found that unique ergodicity holds iff α < 4.

The previous criterion can be generalised with the same proof:

Proposition

Assume that

P[∃t <∞ such that Gt is constant ] = 1

then unique ergodicity holds.

Note: Gt is constant if there exists a finite root determining subtree
of Tt . This is a tree-valued version of coupling from the past.
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Unique ergodicity

Example: A minimal root determining subtree. In this example,
X∅ = 0 regardless of the values of X22,X23,X313,X322,X323,X332.

One can show that this exists a.s. iff α ≤ 4.
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Unique ergodicity

This is due to the monotonicity of the maps involved.

Monotonicity is a sufficient condition for equivalence in the
previous lemma:

Proposition

Assume that S is a finite partially ordered set that contains a
minimal 0 and maximal 1 element, and assume that γ[ω] is
monotone for each ω ∈ Ω. Then unique ergodicity holds if and
only if

P[∃t <∞ such that Gt is constant ] = 1
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Unique ergodicity

Proof

I Due to monotonicity

X upp
∅ = lim

t→∞
Gt(1, . . . , 1)

X low
∅ = lim

t→∞
Gt(0, . . . , 0)

exist a.s. and their laws νupp and νlow are invariant such that
for any other invariant law ν: νlow ≤ ν ≤ νup

I If ν is unique then νlow = νup and due to monotonicity for
any x ∈ S∂Tt

Gt(0, . . . , 0) ≤ Gt(x) ≤ Gt(1, . . . , 1)

which implies since the left and right hand side converge to
the same distribution so that for t large enough (S finite!)
they need to be equal a.s.
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Open subtrees

In the case of monotone maps and S = {0, 1} we can also
characterise νupp and νlow via open subtrees:

An open subtree is a subtree such that for all nodes of the subtree
if all inputs from branches included in the subtree is a 1 then the
output of the function at the node will also be a 1.
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Open subtrees

Proposition

Assume that S = {0, 1} and γ[ω] is monotone for all ω ∈ Ω. Then

νupp({1}) = P
[
there exists an open subtree of T

]
νlow({1}) = P

[
there exists a finite open subtree of T

]
.

I A similar statement can also be made for general finite
partially ordered sets S .

I Open subtrees are closely connected to the monotone duality
considered previously.
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Open subtrees and monotone duality
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Open subtrees and monotone duality
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Mean field fixed points and recursive tree processes

Let ν ∈ P(S) be a fixed point of the mean-field equation:

T (ν) := |r|−1

∫
Ω

r(dω)Tγ[ω](ν) = ν

which is equivalend to X
D
= ν solving the

Recursive Distributional Equation (RDE)

X
D
= γ[ω](X1, . . . ,Xκ(ω)),

X1,X2, . . . are i.i.d. copies of X and ω is an independent random
variable with law |r|−1r.

RDE appear in many applications, overview: Alsmeyer ’12+



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

Mean field fixed points and recursive tree processes

We can to the fixed points to the RDE associate (continuous-time)
Recursive Tree Processes (RTP).
Aldous and Bandyopadhyay ’05 studied the discrete time case.

Theorem

Let ν be an RDE solution. Then there exist random variables
(ωi,Xi)i∈T whose joint law is characterized by

(i) (ωi)i∈T are i.i.d. with law |r|−1r.

(ii) For each finite subtree U ⊂ T with ∅ ∈ U,
(Xi)i∈∂U are i.i.d. with law ν and independent of (ωi)i∈U.

(iii) Xi = γ[ωi]
(
Xi1, . . . ,Xiκ(ωi)

)
(i ∈ T).

Continuous time extension: If (σi)i∈T are independent and i.i.d.
exponential with mean |r|−1 then for each t ≥ 0,

(Xi)i∈∂Tt |Ft are i.i.d. with common law ν.
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n-variate process

The stochastic flow XN contains more information than the
Markov process XN . In particular, it allows us to describe the
evolution of n coupled processes leading to the n-variate mean-field

equation (µ
(n)
t )t≥0 with associated fixed points (to T(n)) and RTP.

Some notation and facts:

I Let P(Sn)µ ⊂ P(Sn) have all marginals be µ ∈ P(S).

I Psym(Sn)µ := Psym(Sn) ∩ P(Sn)µ.

I For µ ∈ P(S) let µ(n) ∈ P(Sn)µ be concentrated on the
”diagonal” Sn

diag = {x ∈ Sn : x1 = · · · = xn}.

I If T (ν) = ν then P(Sn)ν is an invariant space for µ
(n)
t .

I Psym(Sn) and measures concentrated on Sn
diag are invariant

spaces for µ
(n)
t .
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n-Variate processes

If ν = P[X ∈ · ] solves the RDE T (ν) = ν then

ν(n) := P
[
(X , . . . ,X︸ ︷︷ ︸

n times

) ∈ ·
]

solves the n-variate RDE T (n)(ν(n)) = ν(n).

Question:
Are all fixed points of the n-variate RDE of this form?
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Example: Cooperative branching with death

Bivariate equation for cooperative branching with deaths: For

α > 4 the domains of attraction for µ
(2)
t are:

ν
(2)
low

{
µ

(2)
0 : µ

(1)
0 ({1}) < zmid

}
,

ν
(2)
mid

{
µ

(2)
0 : µ

(1)
0 ({1}) = zmid, µ

(2)
0 6= ν

(2)
mid

}
,

ν
(2)
mid

{
ν

(2)
mid

}
,

ν(2)
upp

{
µ

(2)
0 : µ

(1)
0 ({1}) > zmid

}
.

This means in particular that

I ν
(2)
mid is an unstable fixed point

I ν
(2)
mid is a stable fixed point (as well as ν

(2)
low and ν

(2)
upp)
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Intuition for the particle system

Let (Xt)t≥0 be the process in SN with initial law
(X0(i))1≤i≤N i.i.d. with mean zmid.

Let
(
X ′t
)
t≥0

be a process with modified initial state:

X ′0(i) = X0(i) except for an ε-fraction of sites i ,
which are redrawn using independent randomness.

In the mean-field limit, so intuitively when N is large:

The fraction of sites where X ′t(i) 6= Xt(i) tends to a (nontrivial)
limit even if ε is small.

More precisely: The joint empirical law of Xt ,X
′
t converges as

(first N →∞ and then) t →∞ to ν
(2)
mid.
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Endogeny of the RTP

This kind of noise sensitivity associated to a fixed point ν is
connected to endogeny.

An RTP (ωi,Xi)i∈T is called endogenous if

X∅ is a.s. measurable w.r.t. (ωi)i∈T.
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Endogeny and bivariate uniqueness

Theorem

Let ν be a solution of the RDE.
Then the following statements are equivalent.

(i) The RTP corresponding to ν is endogenous.

(ii) Tm
(n)(µ) =⇒

m→∞
ν(n) for all µ ∈ P(Sn)ν and n ≥ 1.

(iii) ν(2) is the only fixed point of T(2) in the space Psym(S2)ν .

Continuous-time extension of (ii):

(iv) For any µ
(n)
0 ∈ P(Sn)ν and n ≥ 1, the solution (µ

(n)
t )t≥0 to

the n-variate equation started in µ
(n)
0 satisfies µ

(n)
t =⇒

t→∞
ν(n).
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Example: Cooperative branching with death

Bivariate equation for cooperative branching with deaths:
Recall that for α > 4 there are four distinct fixed points in
Psym({0, 1}2) :

ν
(2)
low, ν

(2)
mid, ν

(2)
mid, ν(2)

upp.

with marginals
νlow, νmid, νmid, νupp.

Thus, by our previous theorem:

I RTPs corresponding to νlow and νupp are endogenous.

I RTP corresponding to νmid is not endogenous.
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The higher-level equation

The n-variate map T (n) is defined even for n =∞,
and T (∞) maps Psym(SN+) into itself.

By De Finetti’s theorem, (Xi )i∈N+ have a law in Psym(SN+) if and
only if there exists a random probability measure ξ on S such that
conditional on ξ, the (Xi )i∈N+ are i.i.d. with law ξ.
Let ρ := P[ξ ∈ · ] the law of ξ. Then ρ ∈ P(P(S)).

The map T (∞) : Psym(SN+)→ Psym(SN+) corresponds to a
higher-level map Ť : P(P(S))→ P(P(S)).



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

The higher-level equation

For any measurable map g : Sk → S define ǧ : P(S)k → P(S) by

ǧ := the law of g(X1, . . . ,Xk),

where (X1, . . . ,Xk) are independent with laws µ1, . . . , µk .

Proposition

We have
Ť (ρ) := the law of γ̌[ω](ξ1, . . . , ξκ(ω))

with ω as before and ξ1, ξ2, . . . i.i.d. with law ρ.

Namely, if (ρt)t≥0 solves the higher-level mean-field equation

corresponding to Ť , then its n-th moment measures (ρ
(n)
t )t≥0

solve the n-variate equation.

n-th moment measure of ρ: Draw a law according to ρ.
Consider the law of n independent random variables drawn
according to this law. One can show Ť (ρ)(n) = T (n)(ρ(n).
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The higher-level equation

Equip P(P(S))ν = {ρ : ρ(1) = ν} with the convex order

ρ1 ≤cv ρ2 iff

∫
φ dρ1 ≤

∫
φ dρ2 ∀ convex φ.

Define ν := P[δX ∈ · ] with P[X ∈ · ] = ν.

Maximal and minimal elements in the convex order are ν and δν :

δν ≤cv ρ ≤cv ν ∀ρ ∈ P(P(S))ν .

Note: The n-th moment measures of δν and ν are given by

δ(n)
ν = P

[
(X1, . . . ,Xn) ∈ ·

]
ν(n) = P

[
(X , . . . ,X ) ∈ ·

]
,

where X1, . . . ,Xn are i.i.d. with common law ν and X has law ν.



Interacting particle systems, graphical representations and duality Pathwise duality for monotone and additive processes Interacting particle system on the complete graph

The higher-level equation

Proposition

Ť is monotone w.r.t. the convex order. There exists a solution ν
to the higher-level RDE such that

Ť n(δν) =⇒
n→∞

ν and Ťt(δν) =⇒
t→∞

ν

and any solution ρ ∈ P(P(S))ν to the higher-level RDE satisfies

ν ≤cv ρ ≤cv ν ∀ρ ∈ P(P(S))ν .
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The higher-level equation

Proposition

Let (ωi,Xi)i∈T be the RTP corresponding to γ and ν. Set

ξi := P
[
Xi ∈ · | (ωij)j∈T

]
.

Then (ωi, ξi)i∈T is an RTP corresponding to γ̌ and ν.
Also, (ωi, δXi

)i∈T is an RTP corresponding to γ̌ and ν.

ν = P
[
δX∅ ∈ ·

]
corresponds to “perfect knowledge” while

ν = P
[
P
[
X∅ ∈ · | (ωi)i∈T

]
∈ ·
]

corresponds to the knowledge about X∅ that is contained in the
random variables (ωi)i∈T.

Corollary The RTP is endogenous iff ν = ν.
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Example: Cooperative branching with death

Here P(P({0, 1})) ∼= P[0, 1] and for η1, η2, η3 ∈ [0, 1],

d̂th(∅) = 0 and ĉob(η1, η2, η3) = η1 + (1− η1)η2η3

so that the higher-level RDE is

η
D
= χ ·

(
η1 + (1− η1)η2η3

)
,

where η takes values in [0, 1], η1, η2, η3 are independent copies of η
and χ is an independent Bernoulli r.v. with P[χ = 1] = α/(α + 1).

This RDE has three “trivial” solutions

ν... = (1− z...)δ0 + z...δ1 (. . . = low,mid,upp),

and a nontrivial solution

νmid = lim
n→∞

Ť n(δzmid
).
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Thank you!
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