Prof. Dr. Sebastian Hensel

Solution to Set 8, Problem 1

We consider the variation \tilde{h} as in the problem, with associated Jacobi field $\tilde{J} = \sin(t)\tilde{U}(t)$ where \tilde{U} is parallel. Explicitly,

$$\widetilde{U}(t) = \widetilde{u}$$

The first step is to realise that the projection $p \circ \tilde{h} = h$ is also a geodesic variation in $\mathbb{C}P^n$. To see this, note that every geodesic $t \mapsto \tilde{h}(s,t)$ has horizontal velocity (by the explicit construction of \tilde{h} we can compute

$$\frac{d}{dt}\tilde{h}(s,t) = -\sin(t)\tilde{m} + \cos(t)(\cos(s)\tilde{v} + \sin(s)\tilde{u})$$

and the scalar product of $i\frac{d}{dt}\tilde{h}(s,t)$ with $\tilde{h}(s,t)$ is zero since $\langle \tilde{m}, i\tilde{m} \rangle = \langle \tilde{u}, i\tilde{u} \rangle = \langle \tilde{v}, i\tilde{v} \rangle = 0$ (where we use that \rangle, \langle is the real scalar product and i acts by a rotation by $\pi/2$ in each complex coordinate) and $\langle \tilde{m}, i\tilde{u} \rangle = \langle \tilde{m}, i\tilde{v} \rangle = 0$ by assumption). Thus, by the hint, the projection stays geodesic:

$$\frac{\nabla}{dt}h(s,t) = p_*\frac{\widetilde{\nabla}}{dt}\widetilde{h}(s,t) = 0$$

Now, since h is a geodesic variation, its variational field J is a Jacobi field.

a) If \tilde{u} is orthogonal to $i\tilde{v}$, then observe that \tilde{U} is parallel and horizontal. Thus, U is parallel again, and we can compute

$$J''(t) = -\sin(t)U(t) = -J(t)$$

By the Jacobi equation (evaluated at 0) this means

$$-u = R(v, u)v$$

which shows the claim.

b) If $\tilde{u} = i\tilde{v}$, then we can explicitly compute a horizontal projection \tilde{U}_h of \tilde{U} as

$$\widetilde{U}_{h}(t) = \widetilde{U}(t) - \langle \widetilde{U}(t), ih(0, t) \rangle ih(0, t)$$

$$= \widetilde{u} - \langle \widetilde{u}, \cos(t)i\widetilde{m} + \sin(t)i\widetilde{v} \rangle (\cos(t)i\widetilde{m} + \sin(t)i\widetilde{v})$$

$$= i\widetilde{v} - \sin(t)(\cos(t)i\widetilde{m} + \sin(t)i\widetilde{v}) = \cos(t)^{2}i\widetilde{v} - \cos(t)\sin(t)i\widetilde{m}$$

$$= \cos(t)i\frac{d}{dt}\widetilde{h}(0, t)$$

We thus have

$$\widetilde{J}(t) = \cos(t)\sin(t)i\frac{d}{dt}\widetilde{h}(0,t)$$

Consider the vector field

$$\widetilde{Y}(t) = i \frac{d}{dt} \widetilde{h}(0,t) = -\sin(t)i\widetilde{m} + \cos(t)i\widetilde{v}.$$

along $\tilde{h}(0,t)$. It stays tangent to the sphere, so we can compute its covariant derivative as the usual derivative:

$$\widetilde{Y}'(t) = -\cos(t)i\widetilde{m} - \sin(t)i\widetilde{v}.$$

and observe that this is totally vertical (i.e. a multiple of $i\tilde{h}$). Thus, even though \tilde{Y} is not parallel, its projection $Y = p\tilde{Y}$ is.

So, we now have

$$J(t) = \cos(t)\sin(t)Y(t)$$

where Y is parallel, and we can compute:

$$J''(t) = -4J(t)$$

Arguing as above, this shows R(v, u)v = 4u as claimed.

c) The last part is simply a small computation using symmetries and linearity of the curvature tensor.