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UPCOMING MATERIAL
0.1. The Sphere Diameter Rigidity theorem (not covered in class).

Theorem 0.1. Suppose M™ is complete and Ky > H > 0 and diam(M ) =
7/V/H. Then M is isometric to Ny.

Proof. Pick p,q realise the diameter. Take 7, : [0,t9] — M be any geo-
desic segment starting in p, and let v be a minimal geodesic from p to q.
Consider a comparison hinge on Ny. By the length assumption on s, it
connects antipodal points, which means that the geodesic closing the hinge
in Ny has length /v H — tg. The actual geodesic closing the hinge in M
is shorter. But, since p, q realise diameter, this implies that the length is
exactly /v H — to. Hence, v, extends to time /v H and connects p to ¢.
In particular, any Jacobi field along any minimal geodesic starting in p and
which vanishes at 0, also vanishes at 7/v/H the next time. Together with
the curvature condition this implies that all curvatures spanned by ~/(0)
and any other vector are exactly H, and exp, is nonsingular on the ball of

radius 7/ VH.

By the previous lemma, this implies that the ball of radius 7/ VH is actu-
ally isometric to the corresponding ball in S™. This isometry extends to a
distance-preserving map M — S, which is then the desired isometry. [

0.2. More about the index form. As the final topic, we will relate con-
jugate points to minimisers.

Lemma 0.2. Let v : [0,]] — M be a geodesic starting in p = ~(0). If
q = ~(t) is not conjugate to p along v, then for any V,V' there is a unique
Jacobi field J with J(0) =V, J(t) = V.

Proof. Let J be the space of Jacobi fields with J(0) = 0. This is a n—
dimensional vector space, and the evaluation map J — J(t) is an injective
linear map (as ¢ is not conjugate to p along ). Hence, it is an isomorphism,
showing the lemma in the special case where V = 0. The same argument
(reversing the geodesic) shows the special case where V/ = 0. This shows
the existence of the J in the general case. For dimension reasons this gives
uniqueness as well. O
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We return to studying the index form and Jacobi fields.

Now, take a subdivision of the interval 0 =ty < t; < ... <ty = [ on which
the geodesic is defined, and so that ~y[t;, t;11] is contained in a totally normal
neighbourhood. In particular, there are no conjugate points on [t;, ti11].
Let V™ be the subspace of V of those fields V' so that V|[t;, ti+1] is a Jacobi
field. Let VT be the subspace of those W which are zero at all ¢;.

Lemma 0.3. V = V&V~ and the decomposition is orthogonal with respect
to I. The form I is positive definite restricted to V7.

Proof. The direct sum claim is a direct consequence of the fact that since
v(ti+1) is not conjugate to y(¢;), the endpoints determine a unique Jacobi
field and vice versa. Orthogonality is clear from the definition of I.

Since the ~[t;,t;+1] are minimising geodesics, they are a minimum of any
variation. By the second variation formula, this implies that I is positive
semidefinite of V.

If I(V,V) =0 for V€ V*, then note that for W € V*

0<I(V+ W,V 4 W) =2cI(V,W) + I(W, W)

for all ¢. This implies I(V, W) = 0. In fact, V is in the nullspace of I, by
the orthogonality. Thus V is a Jacobi field, vanishing at all the ¢;, hence
ZEro. (]

In particular, the index (or nullity) of I is the index (or nullity) of I restricted
to V7, which is finite.

Theorem 0.4 ((Morse) Index theorem). The index of I is finite, and the
number of conjugate points on y[0,t] counted with multiplicity.

Before/Instead giving the proof, we note corollaries:

Corollary 0.5. Suppose v : [0,a] — M is a geodesic segment so that v(a)
is not conjugate to ¥(0) along ~y. Then v has no conjugate points on (0, a)
if and only if for all proper variations of v energy can be reduced.

Proof. By the Morse index theorem there are conjugate points exactly if
there is a proper variation field V' with I,(V, V) < 0. By the variational for-
mula for energy this implies the second variation of energy for that variation
is negative. ([

Corollary 0.6. After the first conjugate point, geodesics stop to be min-
1mising.
Proof of the index theorem. e Let 7 be the restriction of 7 to [0,t], I
the corresponding index form and i(¢) its index.
e Since the initial segment of v has no conjugate points, ¢ is 0 close to
0.
e Further, 7 is nondecreasing: one can just extend every vector field in
the negative definite subspace of I, to [0,s],s > r by 0.
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e i(t) does not depend on the chosen subdivision of the interval. Thus,
to study 4 near a fixed ¢, we may assume t € (t;_1,1;).

e We know that the index of I; is the same restricted to V~(0,t), and
since elements in that space are determined by their values on the
breaks we have

V7(0,8) 2 P Ty = S;
i<j
in particular the index forms I;,t € (tj_1,t;) can all be interpreted
as forms on S, and these vary continuously in ¢ (Jacobi solutions
vary continuously).

e i(t —¢) = i(t) for small €, since: it could only go down, but by
continuity negatively definite subspaces stay negatively definite.

o i(t +¢€) <i(t) + d for small € and d the nullity of v(t): dim(S;) =
n(j — 1) and I; is positive definite on a subspace of dimension n(j —
1) —i(t) — d (total dim minus neg def minus nullity). By continuity
this stays positive definite for small values above ¢, which shows the
claim.

e Suppose that V' € S; satisfies V/(t;—1) # 0. Let V}, be the piecewise
Jacobi field which agrees with V on the ¢;,7 < j and vanishes at
to € (tj_l,tj). Then

Ito(‘/;m Vto) > Ito-&-é(‘/;fo—&-a V;fo-l-e)
Namely: If we define W the field which is equal to V4, up to to and
then becomes zero, then by the Index Lemma
Ito (‘/:‘,05 ‘/to) - It0+€(W) W) > It0+€(‘/to+€7 ‘/to-‘re)

since W on the last segment is not a Jacobi field.
e i(t+¢€) >i(t) +d, since if I;(V,V) =0, then I;;(V,V) < 0, so the
null space becomes negative definite.
O

0.3. Cut points. To understand minimisers versus conjugate points in more
detail, we use

Definition 0.7. Given a geodesic 7 : [0,1] — M. We say that ¢ = v(to) is
a cut point of p along ~ if
to = sup{t[d(p,~(t)) = t}

Given a point p € M, the cut locus C),(p) is the set of all cut points of p.
Proposition 0.8. Suppose that ¢ = ~y(tg) is a cut point of p = v(0) along
~v. Then

e cither y(ty) is the first conjugate point of p along ~y.

e or there is a geodesic o # 7y joining p to q of the same length as .

Conversely, if one of these hold, then v(t') = ¢’ is a cut point of p along v
for some t' < ty.
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Proof. First the converse: non-minimising after the first cutpoint we did
already. If we had two geodesics, we could find a broken arc of length tg+ €
connecting to y(to +€) (follow along o and then shortcut in a geodesic ball).
Since broken paths are never geodesic, this means that the minimiser is
actually shorter thatn ty + €.

Now suppose that % is as in the assumption.

Find ¢y + €; — to and o; minimisers from p to ¢; = y(to + €).
Up to subsequence, we can let the o; converge, and the limit ¢ is a
minimiser from p to q.

e If 0 = v we are done.
e Otherwise, suppose that ¢/(0) = 7/(0) and that d exp,, is not singular

at toy'(0). Hence, there is a neighbourhood U of that point where
exp, is a diffeomorphism.
We have

~y(to + Gj) = O'j(t() + 6;)
with €; < ¢; (as the o; are minimisers and 7 is not anymore). We

may assume that the o;(fo + ¢;) are in the neighbourhood U.
Then

exp,(to + €)Y (0) = ~(to +€j) = oj(to + 6;) = exp,(to + 6;-)0’;- (0)

and by our assumption on U this means
(to +€5)7'(0) = (to + €})07(0)

which implies 7/(0) = 07(0) as both are unit norm
This would mean that ~ is minimising after tp, contraditing cut
point.
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