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Abstract. We generalise the Karrass–Pietrowski–Solitar and the Nielsen
realisation theorems from the setting of free groups to that of free prod-
ucts. As a result, we obtain a fixed point theorem for finite groups
of outer automorphisms acting on the relative free splitting complex of
Handel–Mosher, as well as a relative version of the Nielsen realisation
theorem, which is new even for free groups.

The proofs rely on a new version of Stallings’ theorem on groups with
at least two ends, in which some control over the behaviour of virtual
free factors is gained.

1. Introduction

In the 1980’s Marc Culler [Cul], Dmitry Khramtsov [Khr], and Bruno
Zimmermann [Zim] independently proved the Nielsen Realisation theorem
for free groups. It states that every finite subgroup H < Out(Fn) can be
realised as a group of automorphisms of a graph with fundamental group
Fn.

All three proofs rely in a fundamental way on a result of Karrass–Pietrowski–
Solitar [KPS], which states that every finitely generated virtually free group
acts on a tree with finite edge and vertex stabilisers. In the language of
Bass–Serre theory, it amounts to saying that such a virtually free group is a
fundamental group of a graph of groups with finite edge and vertex groups
(compare [HOP] for a different approach to Nielsen realisation).

This result of Karrass–Pietrowski–Solitar in turn relies on the celebrated
theorem of Stallings on groups with at least two ends [Sta1, Sta2], which
states that any finitely generated group with at least two ends splits over
a finite group, that is it acts on a tree with a single edge orbit and finite
edge stabilisers, or equivalently, that it is a fundamental group of a graph
of groups with a single edge and a finite edge group.

The purpose of this article is to generalise these three results to the setting
of a free product

A = A1 ∗ . . . An ∗B
in which we (usually) require the factors Ai to be finitely generated torsion-
free, and B to be a finitely generated free group. Consider any finite group
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H acting on A by outer automorphisms in a way preserving the given free-
product decomposition (up to conjugation). We then obtain a corresponding
group extension

1→ A→ A→ H → 1

In this setting we prove (for formal statements, see the appropriate sections)

Relative Stallings’ theorem (Theorem 2.7): A splits over a finite
group, in such a way that each Ai fixes a vertex in the associated
action on a tree.

Relative Karrass–Pietrowski–Solitar theorem (Theorem 3.4):
A acts on a tree with finite edge stabilisers, and with each Ai fixing
a vertex of the tree, and with, informally speaking, all other vertex
groups finite.

Relative Nielsen realisation theorem (Theorem 5.4): Suppose
that we are given complete non-positively curved (i.e. locally CAT(0))
spaces Xi realising the induced actions of H on the factors Ai. Then
the action of H can be realised by a complete non-positively curved
space X; in fact X can be chosen to contain the Xi in an equivariant
manner.

We emphasise that such a relative Nielsen realisation is new even if all Ai are
free groups. It is used as a crucial ingredient in [HK] by the same authors,
where Nielsen realisation for some classes of right-angled Artin groups is
proven.

The classical Nielsen realisation for graphs immediately implies that a
finite subgroup H < Out(Fn) fixes points in the Culler–Vogtmann Outer
Space (defined in [CV]), as well as in the complex of free splittings of Fn
(which is a simplicial closure of Outer Space).

As another application of the work in this article, we similarly obtain a
fixed point statement (Corollary 4.1) for the graph of relative free splittings
defined by Handel and Mosher [HM].

Throughout the paper, we are going to make liberal use of the standard
terminology of graphs of groups. The reader may find all the necessary
information in Serre’s book [Ser]. We are also going to make use of standard
facts about CAT(0) and non-positively curved (NPC) spaces; the standard
reference here is the book by Bridson–Haefliger [BH].

Acknowledgements. The authors would like to thank Karen Vogtmann
for discussions and suggesting the statement of relative Nielsen realisation
for free groups.

2. Relative Stallings’ theorem

In this section we will prove the relative version of Stallings’ theorem.
Before we can begin with the proof, we need a number of definitions to
formalize the notion of a free splitting that is preserved by a finite group
action.
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When talking about free factor decompositions A = A1 ∗ · · · ∗ An ∗ B
of some group A, we will always assume that at least two of the factors
(including B) are non-trivial.

Definition 2.1. Suppose that φ : H → Out(A) is a homomorphism with a
finite domain. Let A = A1 ∗ · · · ∗ An ∗ B be a free factor decomposition of
A. We say that this decomposition is preserved by H if and only if for every
i and every h ∈ H, there is some j such that h(Ai) is conjugate to Aj .

We say that a factor Ai is minimal if and only if for any h ∈ H the fact
that h(Ai) is conjugate to Aj implies that j > i.

Remark 2.2. Note that when the decomposition is preserved, we obtain an
induced action H → Sym(n) on the indices 1, . . . , n. We may thus speak of
the stabilisers StabH(i) inside H. Furthermore, we obtain an induced action

StabH(i)→ Out(Ai)

The minimality of factors is merely a way of choosing a representative of
each H orbit in the action H → Sym(n).

Remark 2.3. Given an action φ : H → Out(A), with φ injective and A with
trivial centre, we can define A 6 Aut(A) to be the preimage of H = imφ
under the natural map Aut(A) → Out(A). We then note that A is an
extension of A by H:

1→ A→ A→ H → 1

and the left action of H as outer automorphism agrees with the left conju-
gation action inside the extension A.

Observe that then for each i we also obtain an extension

1→ Ai → Ai → StabH(i)→ 1

where Ai is the subgroup of A generated by Ai and a set of elements in A
which bijectively surject to StabH(i) and are contained in the normaliser of
Ai < A. Note that as the normaliser of a free factor in a nontrivial free
product is that free factor, the subgroup Ai does not depend on the choices.

We emphasise that this construction works even when Ai itself is not
centre-free. In this case it carries more information than the induced action
StabH(i) → Out(Ai) (e.g. consider the case of Ai = Z – there are many
different extensions corresponding to the same map to Out(Z)).

We will now begin the proof of the relative version of Stallings’ theorem.
It will use ideas from both Dunwoody’s proof [Dun] and Krön’s proof [Krö]1

of Stallings’ theorem, which we now recall.

Convention. If E is a set of edges in a graph Θ, we write Θ− E to mean
the graph obtained from Θ by removing the interiors of edges in E.

1We warn the reader that Krön’s paper contains some arguments which are not entirely
correct; we will indicate what changes we make below.
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Definition 2.4. Let Θ be a graph. A finite subset E of the edge set of Θ
is called a set of cutting edges if and only if Θ− E is disconnected and has
at least two infinite components.

A cut C is the union of all vertices contained in an infinite connected
complementary component of some set of cutting edges. The boundary of
C consists of all edges with exactly one endpoint in C.

Given two cuts C and D, we call them nested if and only if C or its
complement C∗ is contained in D or its complement D∗. Note that C∗ and
D∗ do not need to be cuts.

We first aim to show the following theorem which is implicit in [Krö].

Theorem 2.5 ([Krö]). Suppose that Θ is a connected graph on which a
group G acts. Let P be a property of subsets of the edge set of Θ, which is
stable under the G-action, taking subsets and unions. If there exists a set of
cutting edges with P, then there exists a cut C whose boundary has P, such
that the cuts C and g.C are nested for any g ∈ G, and such that C∗ is also
a cut.

Sketch of proof. In order to prove this, we recall the following terminology,
roughly following Dunwoody. We say that C is a P-cut, if its boundary
has P. Say that a P-cut is P-narrow, if its boundary contains the minimal
number of elements among all P-cuts. Note that for each P-narrow cut C,
the complement C∗ is also a cut, as otherwise we could remove some edges
from the boundary of C and get another P-cut.

Given any edge e with P, there are finitely many P-narrow cuts which
contain e in its boundary. This is shown by Dunwoody [Dun, 2.5] for narrow
cuts, and the proof carries over to the P-narrow case. Similarly, Krön [Krö,
Lemma 2.1] shows this for sets of cutting edges which cut the graph into
exactly two connected components, and P-narrow cuts have this property.

Now, consider for each P-cut C the number m(C) of P-cuts which are not
nested with C (this is finite by the remark above). Call a P-cut optimally
nested if m(C) is smallest amongst all P-cuts. The proof of Theorem 3.3
of [Krö] now shows that optimally nested P-cuts are all nested with each
other2. This shows Theorem 2.5. �

To use that theorem, recall

Theorem 2.6 ([Dun, Theorem 4.1]). Suppose that there exists a cut C,
such that

(1) C∗ is also a cut; and
(2) there exists g ∈ G such that g.C is properly contained in C or C∗;

and
(3) C and h.C are nested for any h ∈ G.

2Krön’s proof involves intersections of cuts, which by Krön’s definition need not be
cuts (he assumes that the a cut and its complement is connected) – this does not actually
pose a major problem; and does not appear when our definition of a cut is used.
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Figure 1. A local picture of the graph Θ.

Let E be the boundary of C. Then G splits over the stabiliser of E (which is
a finite group), and the stabiliser of any component of Θ−G.E is contained
in a conjugate of a vertex group.

Now we are ready for our splitting result.

Theorem 2.7 (Relative Stallings’ Theorem). Let φ : H → Out(A) be a
monomorphism with a finite domain. Let A = A1 ∗ · · · ∗ An ∗ B be a free
product decomposition with each Ai and B finitely generated, and suppose
that it is preserved by H. Let A be the preimage of H = imφ in Aut(A).
Then A splits over a finite group in such a way that each Ai fixes a vertex
in the associated action on a tree.

Note in particular that the quotient of the associated tree by A has a
single edge.

Proof. Let Ai and B be finite generating sets of Ai and B, respectively (for
all i 6 n). We also choose a finite set H ⊂ A which maps onto H under the
natural epimorphism A → H. Note that

⋃
iAi ∪ B ∪ H is a generating set

of A.
We define Θ to be a variation of the (right) Cayley graph of A with respect

to the generating set
⋃
iAi ∪ B ∪H. Intuitively, every vertex of the Cayley

graph will be “blown up” to a finite tree (see Fig. 1). More formally, the
vertex set of Θ is

V (Θ) = A tA× {0, . . . , n}
We adopt the notation that a vertex corresponding to an element in A will
simply be denoted by g, whereas a vertex (g, i) in the second part will be
denoted by gi.

We now define the edge set, together with a labelling of the edges by
integers 0, 1, . . . , n, as follows:
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• for each g ∈ A and each i ∈ {0, . . . , n} we have an edge labelled by
0 connecting g to gi;
• for each g ∈ A, each i > 1 and each a ∈ Ai, we have an edge labelled

by i from gi to (ga)i;
• for each g ∈ A, and each b ∈ B ∪ H, we have an edge labelled by 0

from g0 to (gb)0.

The group A acts on Θ on the left, preserving the labels. The action is free
and co-compact. The graph Θ retracts via a quasi-isometry onto a usual
Cayley graph of A by collapsing edges connecting g to gi.

Let Ω denote a graph constructed in the same way for the group A with
respect to the generating set

⋃
Ai ∪ B. There is a natural embedding of Ω

into Θ, and hence we will consider Ω as a subgraph of Θ. Note that this
embedding is also a quasi-isometry.

We will now construct n quasi-isometric retractions of Θ onto Ω.
Let us fix i ∈ {1, . . . , n}. For each h ∈ H we pick a representative hi ∈ A

thereof, such that hiAihi
−1 = Aj for a suitable (and unique) j; for 1 ∈ H we

pick 1 ∈ A as a representative. These elements hi are coset representatives
of the normal subgroup A of A.

Such a choice defines a retraction ρi : Θ → Ω in the following way: each
vertex g is mapped to the unique vertex g′ where g′ ∈ A and g′hi = g for
some hi; the vertex gk is then mapped to (g′)k. An edge labelled by 0 con-
necting g to gk is sent to the edge connecting g′ to g′k. The remaining edges
with label 0 are sent in an A-equivariant fashion to paths connecting the
image of their endpoints; the lengths of such paths are uniformly bounded,
since (up to the A-action) there are only finitely many edges with label 0.

Similarly, the edges of label k 6∈ {0, i} are mapped in an A-equivariant
manner to paths connecting the images of their endpoints; again, their length
is uniformly bounded.

Each edge labelled by i is sent A-equivariantly to a path connecting the
images of its endpoints, such that the path contains edges labelled only by
some j (where j is determined by the coset of A the endpoints lie in); such
a path exist by the choice of the representatives hi.

Note that each such retraction ρi is a (κi, κi)-quasi-isometry for some
κi > 1; we set κ = maxi κi.

Now we are ready to construct a set of cutting edges in Θ.
Consider the ball BΩ(1, 1) of radius 1 around the vertex 1 in Ω and let

E′ denote the set of all edges in BΩ(1, 1) labelled by 0. This set disconnects
Ω into at least two infinite components; let us take two vertices of Ω, x and
y, lying in distinct infinite components of Ω− E′, and such that

dΩ(1, x) = dΩ(1, y) > κ2 + 4

Now let E denote the set of all edges lying in the ball BΘ(1, κ2+4) labelled
by 0. We claim that E disconnects Θ into at least two infinite components.
It is enough to show that it disconnects x from y (viewed as vertices of Θ),
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since we may take x and y to be arbitrarily far from 1 in Ω, and thus in Θ
(as Ω and Θ are quasi isometric), and Θ−E has finitely many components,
since E is finite.

Suppose for a contradiction that there exists a path γ in Θ−E connecting
x to y. Using any of the quasi-isometries ρi we immediately see that γ has
to go through BΘ(1, κ2 + 4), since ρi(γ) must intersect E′ ⊆ BΩ(1, 1). We
write γ as a concatenation of paths γ1, . . . , γm, such that each γi intersects
BΘ(1, κ2 + 4) only at edges of one label, and its endpoints lie outside of
BΘ(1, κ2 +4) (this is possible since γ does not intersect E). We modify each
γi by pre- and post-concatenating it with a path of length at most 4 (note
that all the elements of H correspond to edges), so that it now starts and
ends at Ω. Still, the new path (which we will continue to call γi) intersects
BΘ(1, κ2 + 1) only at edges labelled by a single label.

Now we construct a new path γ′ as follows: to each γi we apply the
retraction ρk, where k is the label of edges of γi inside BΘ(1, κ2 + 1); we
now define γ′ to be the concatenation of these paths. Such a construction
is possible, since the maps ρi are retractions, and so in particular they
preserve the endpoints of the paths γj for all j. Also, γ′ runs from x to y.
By construction it does so in Ω, and thus it contains an edge of E′; let us
denote it by e.

There exists an edge f in some γi, such that e lies in the image of f under
the map ρk that we applied to γi. Since ρk is an (κ, κ)-quasi-isometry, the
edge f lies within BΘ(1, κ2 +1). But then ρk(f) is a path the edges of whom
are never labelled by 0, and so in particular e 6∈ E′, a contradiction.

We successively remove edges from E until the newly obtained set satisfies
the definition of a set of cutting edges. We now apply Theorem 2.5, taking
P to be the property of having all edges labelled by 0. Let C denote the cut
we obtain, and let F denote its boundary.

To apply Theorem 2.6 we need to only show that for some g ∈ A we
have g.C properly contained in C or C∗. Since C∗ is infinite, it contains an
element g ∈ A such that g.F 6= F . Taking such a g, we see that either g.C
is properly contained in C∗ (in which case we are done), or C is properly
contained in g.C. In the latter case we have g−1.C ⊂ C. We have thus
verified all the hypotheses of Theorem 2.6.

Since the boundary F of the final cut C is labelled by 0, upon removal of
the open edges in A.F , the connected component containing 1i contains the
entire subgroup Ai, since vertices corresponding to elements of this subgroup
are connected to 1i by paths labelled by i. Thus Ai is a subgroup of a
conjugate of a vertex group, and so it fixes a vertex in the associated action
on a tree. �

3. Relative Karrass–Pietrowski–Solitar theorem

Definition 3.1. Let T be a metric space, and v ∈ T a point which admits a
neighbourhood isometric to the neighbourhood of a vertex in a tree. Let X
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be a connected metric space. We say that the metric space Y is a blow-up
of T at v by X if and only if X embeds into Y , and collapsing X to a point
yields an isometry onto T which collapses X onto v.

We warn the reader that our notion of blow-up is not standard terminol-
ogy (and has nothing to do with blow-ups in other fields).

Proposition 3.2. Let G be a graph of groups with finite edge groups. Let Gv
be the vertex group associated to v, and suppose that Gv acts on a complete
CAT(0) space X. Then there exists a complete CAT(0) space Y on which
π1(G) acts, satisfying the following:

(1) Y is obtained from the universal cover G̃ by blowing up each preimage
u of v by Xu = X;

(2) the restricted action of Gv on Y preserves Xw, where w is the vertex

in G̃ fixed by Gv, and the induced action is the given action of Gv
on Xw = X;

(3) collapsing each Xu individually to a point is π1(G)-equivariant, and
the resulting tree with the π1(G)-action is equivariantly isomorphic

to G̃.

Proof. Let w be the vertex defined in (2). We start by blowing G̃ up at w
by X; such a blow-up will be defined by the way edges emanating from w
are attached to X: let e be such an edge. Its stabiliser is a finite subgroup
of Gv by assumption, and hence there is a point pe ∈ X fixed by the given
action Gv y X (since X is a complete CAT(0) space). We attach the edge
e to this point pe. Let e′ be another edge in the Gv-orbit of e. There exists
x ∈ Gv taking e to e′, and we attach e′ at x.pe. This way we attach all edges
in the orbit of e, and then we proceed to attach edges in the remaining orbits
in the same way.

Now we are going to blow up the other vertices in the preimage of v. Let
u be such a vertex. Its stabiliser is a conjugate of Gv; pick once and for all a
conjugating element x. We now blow up u by Xu = X, and attach the edges
in the following way: each edge f emanating form u is the image under x of
some e emanating from w; we attach f to pe ∈ X = Xw. The space Y we
constructed this way certainly satisfies (1).

Now we are going to construct an action of π1(G) on Y . Let us take
z ∈ π1(G) and p ∈ Y . If p lies outside any of the Xu, then z.p is defined to

be the unique point in Y mapping onto z.p ∈ G̃ under the map collapsing
each Xu individually to a point.

Now let us suppose that p ∈ Xu for some u. Let u′ = z.u ∈ G̃. We
have the identification Xu = X = Xu′ , and when constructing Y we picked
elements x1, x2 ∈ π1(G) such that Stab(u) = x1Gvx1

−1 and Stab(u′) =
x2Gvx2

−1. We now declare z.p to be the image in Xu′ = X of

x1x2
−1z.p ∈ Xw = X

(observing that x1x2
−1x ∈ Gv).
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We have thus defined the action, and it is clear that it satisfies (2) and
(3). �

Remark 3.3. Suppose that the space X in the above proposition is a tree.
Then the resulting space is a tree, and the quotient graph of groups is
obtained from G by replacing v by the quotient graph of groups X//Gv.

The following theorem is a generalisation of a theorem of Karrass–Pietrowski–
Solitar [KPS], which lies behind the Nielsen realisation theorem for free
groups.

Theorem 3.4 (Relative Karrass–Pietrowski–Solitar theorem). Let

φ : H → Out(A)

be a monomorphism with a finite domain, and let

A = A1 ∗ · · · ∗An ∗B
be a decomposition preserved by H, with each Ai finitely generated, non-
trivial and torsion-free, and B a (possibly trivial) finitely generated free
group. Let A1, . . . , Am be the minimal factors. Then the associated exten-
sion A of A by H is isomorphic to the fundamental group of a finite graph
of groups with finite edge groups, with m distinguished vertices v1, . . . , vm,
such that the vertex group associated to vi is a conjugate of the extension Ai
of Ai by StabH(i), and vertex groups associated to other vertices are finite.

Proof. The proof goes along precisely the same lines as the original proof of
Karrass–Pietrowski–Solitar [KPS], with the exception that we use Relative
Stallings’ Theorem (Theorem 2.7) instead of the classical one.

Formally, the proof is an induction on the complexity n+ rk(B), where n
is the number of factors Ai in A, and rk(B) denotes the usual rank of the
free group B. When the complexity of A is 0 the result trivially follows by
looking at the graph of groups with a single vertex and no edges.

In the general case, we apply Theorem 2.7 to the finite extension A. We
obtain a graph of groups P with one edge and a finite edge group, such that
each Ai lies up to conjugation in a vertex group.

Let v be a vertex of P̃ . The group Pv is a finite extension of A ∩ Pv by a
subgroup Hv of H.

Let us look at the structure of Pv ∩A more closely. To this end, consider
the graph of groups associated to the product A1 ∗ . . . An ∗ B and apply
Kurosh’s theorem [Ser, Theorem I.14] to the subgroup Pv ∩ A. We obtain
that Pv ∩ A is a free product of groups of the form Pv ∩ xAix−1 for some
x ∈ A, and a free group.

Let us suppose that the intersection Pv ∩ xAix−1 is non-trivial for some
i and x ∈ A. This implies that a non-trivial subgroup of Ai fixes the vertex
x−1.v. Since Ai is torsion-free, this subgroup is infinite. We also know that

Ai fixes some vertex, say vi, in P̃ , and thus so does the infinite subgroup we
are discussing. But edge stabilisers are finite, and so vi = x−1.v.



10 SEBASTIAN HENSEL AND DAWID KIELAK

Now suppose that Pv∩yAiy−1 is non-trivial for some other element y ∈ A.
Then x−1.v = vi = y−1.v, and so xy−1 ∈ A ∩ Pv. This implies that the two
free factors Pv ∩xAix−1 and Pv ∩ yAiy−1 of Pv ∩A are conjugate inside the
group, and so they must coincide.

Note also that Pv ∩ yAiy−1 being non-trivial forces yAiy
−1 6 Pv.

This discussion shows that Pv ∩ A is is a free product of at most n non-
trivial factors of the form xAix

−1 (at most one for each i), and a free group.

Kurosh’s theorem applied to A 6 π1(P ) = A tells us that A is a free
product of conjugates of its intersections with the vertex groups and a free
group. In particular Pv∩A is a free factor of A, and hence it has at most the
same complexity (by the discussion above), and the equality of complexitites
is equivalent to Pv ∩A = A. Since the splitting P defines is non-trivial, the
index of Pv ∩ A in A is infinite, and thus A is not a subgroup of Pv. We
immediately conclude that the complexity of A ∩ Pv is strictly lower than
that of A.

We have thus shown that Pv is an extension

Pv ∩A→ Pv → Hv

where Hv is a subgroup of H, the group Pv ∩A decomposes in a way which
is preserved by Hv, and its complexity is smaller than that of A. Therefore
the group Pv satisfies the assumption of the inductive hypothesis.

We now use Proposition 3.2 (together with the remark following it) to
construct a new graph of groups Q, by blowing P up at u by the result
of the theorem applied to Pu, with u varying over some chosen lifts of the
vertices of P .

By construction, Q is a finite graph of groups with finite edge groups,
and the fundamental group of Q is indeed A. Also, Q inherits distinguished
vertices from the graphs of groups we blew up with. Thus, Q is as required
in the assertion of our theorem, with two possible exceptions.

Firstly, it might have too many distinguished vertices. This would happen
if for some i and j we have Ai and Aj both being subgroups of, say, Pv,

which are conjugate in A but not in Pv. Let h ∈ A be an element such that
hAih

−1 = Aj . Since both Ai and Aj fix only one vertex, and this vertex is
v, we must have h ∈ Pv, and so Ai and Aj are conjugate inside Pv.

Secondly, it could be that the finite extensions of Ai we obtain as vertex
groups are not extensions by StabH(i). This would happen if StabH(i) is
not a subgroup of Hv. Let us take h ∈ A in the preimage of StabH(i), such

that hAih
−1 = Ai. Then in the action on P̃ the element h takes a vertex

fixed by Ai to another such; if these were different, then Ai would fix an
edge, which is impossible. Thus h fixes the same vertex as Ai. This finishes
the proof. �
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4. Fixed points in the graph of relative free splittings

Consider a free product decomposition

A = A1 ∗ · · · ∗An ∗B

with B a finitely generated free group. Handel and Mosher [HM] (see
also the work of Horbez [Hor]) defined a graph of relative free splittings
FS(A, {A1, . . . , An}) associated to such a decomposition. Its vertices are
finite non-trivial graphs of groups with trivial edge groups, and such that
each Ai is contained in a conjugate of a vertex group; two such graphs of
groups define the same vertex when the associated universal covers are A-
equivariantly isometric. Two vertices are connected by an edge if and only
if the graphs of groups admit a common refinement.

In their article Handel and Mosher prove that FS(A, {A1, . . . , An}) is
connected and Gromov hyperbolic [HM, Theorem 1.1].

Observe that the subgroup Out(A, {A1, . . . , An}) of Out(A) consisting of
those outer automorphisms of A which preserve the decomposition

A = A1 ∗ · · · ∗An ∗B

acts on this graph. We offer the following fixed point theorem for this action
on FS(A, {A1, . . . , An}).

Corollary 4.1. Let H 6 Out(A, {A1, . . . , An}) be a finite subgroup, and
suppose that the factors Ai are finitely generated and torsion-free. Then H
fixes a point in the free-splitting graph FS(A, {A1, . . . , An}).

Proof. Theorem 3.4 gives us an action of the extension A on a tree T ; in
particular A acts on this tree, and this action satisfies the definition of a
vertex in FS(A, {A1, . . . , An}). Since the whole of A acts on T , every outer
automorphism in H fixes this vertex. �

5. Relative Nielsen realisation

In this section we use Theorem 3.4 to prove relative Nielsen Realisation
for free products. To do this we need to formalise the notion of a marking
of a space.

Definition 5.1. We say that a path-connected topological space X with a

universal covering X̃ is marked by a group A if and only if it comes equipped
with an isomorphism between A and the group of deck transformations of

X̃.

Remark 5.2. Given a space X marked by a group A, we obtain an iso-

morphism A ∼= π1(X, p) by choosing a basepoint p̃ ∈ X̃ (where p denotes its
projection in X).

Conversely, an isomorphism A ∼= π1(X, p) together with a choice of a lift

p̃ ∈ X̃ of p determines the marking in the sense of the previous definition.
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Definition 5.3. Suppose that we are given an embedding π1(X) ↪→ π1(Y )
of fundamental groups of two path-connected spaces X and Y , both marked.
A map ι : X → Y is said to respect the markings via the map ι̃ if and only

if ι̃ : X̃ → Ỹ is π1(X)-equivariant (with respect to the given embedding
π1(X) ↪→ π1(Y )), and satisfies the commutative diagram

X̃
ι̃ //

��

Ỹ

��

X
ι // Y

We say that ι respects the markings if and only if such an ι̃ exists.

Suppose that we have a metric space X marked by a group A, and a
group H acting on X. Of course such a setup yields the induced action
H → Out(A), but in fact it does more: it gives us an extension

1→ A→ A→ H → 1

where A is the group of all lifts of elements of H to automorphisms of the

universal covering X̃ of X.
Now we are ready to state the relative Nielsen Realisation theorem for

free products.

Theorem 5.4 (Relative Nielsen Realisation). Let φ : H → Out(A) be a
homomorphism with a finite domain, and let

A = A1 ∗ · · · ∗An ∗B
be a decomposition preserved by H, with each Ai finitely generated, and B a
(possibly trivial) finitely generated free group. Let A1, . . . , Am be the minimal
factors.

Suppose that for each i ∈ {1, . . . ,m} we are given a complete NPC space
Xi marked by Ai, on which Stabi(H) acts in such a way that the associated
extension of Ai by StabH(i) is isomorphic (as an extension) to the extension
Ai coming from A. Then there exists a complete NPC space X realising
the action φ, and such that for each i ∈ {1, . . . ,m} we have a StabH(i)-
equivariant embedding ιi : Xi → X which preserves the marking.

Moreover, the images of the spaces Xi are disjoint, and collapsing each
Xi and its images under the action of H individually to a point yields a
graph with fundamental group abstractly isomorphic to the free group B.

As outlined in the introduction, the proof is very similar to the classical
proof of Nielsen realisation, with our new relative Stallings’ and Karrass–
Pietrowski–Solitar theorems in place of the classical ones.

Proof. Note that the groups Ai are torsion-free, since they are fundamental
groups of complete NPC spaces.

When φ is injective we first apply Theorem 3.4 to obtain a graph of

groups G, and then use Proposition 3.2 and blow up each vertex of G̃ by
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the appropriate X̃i; we call the resulting space X̃. The space X is obtained

by taking the quotient of the action of A on X̃.
If φ is not injective, then we consider the induced map

H/ kerφ→ Out(A)

apply the previous paragraph, and declare H to act on the resulting space
with kerφ in the kernel. �

Remark 5.5. In the above theorem the hypothesis on the spaces Xi being
complete and NPC can be replaced by the condition that they are semi-
locally simply connected, and any finite group acting on their universal
covering fixes at least one point.

Remark 5.6. On the other hand, when we strengthen the hypothesis and
require the spaces Xi to be NPC cube complexes (with the actions of our
finite groups preserving the combinatorial structure), then we may arrange
for X to also be a cube complex. When constructing the blow ups, we may
always take the fixed points of the finite groups to be midpoints of cubes, and
then X is naturally a cube complex, when we take the cubical barycentric
subdivisions of the complexes Xi instead of the original cube complexes Xi.

Remark 5.7. In [HOP] Osajda, Przytycki and the first-named author de-
velop a more topological approach to Nielsen realisation and the Karrass–
Pietrowski–Solitar theorem. In that article, Nielsen realisation is shown
first, using dismantlability of the sphere graph (or free splitting graph) of
a free group, and the Karrass–Pietrowski–Solitar theorem then follows as a
consequence.

The relative Nielsen realisation theorem with all free factors Ai being
finitely generated free groups is a fairly quick consequence of the methods
developed in [HOP] – however, the more general version proved here cannot
at the current time be shown using the methods of [HOP]: to the authors
knowledge no analogue of the sphere graph exhibits suitable properties. It
would be an interesting problem to find a “splitting graph” for free products
which has dismantling properties analogous to the ones shown in [HOP] to
hold for arc, sphere and disk graphs.
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