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Abstract. The outer automorphism group Out(F2g) of a free
group on 2g generators naturally contains the mapping class group
of a punctured surface as a subgroup. Using topological methods
in a suitable 3–manifold we show that this subgroup is undistorted.
We also use topological techniques to give a new proof of a result
of Handel and Mosher [HM10] stating that stabilizers of conjugacy
classes of free splittings and corank 1 free factors in a free group
Fn are undistorted in Out(Fn).

1. Introduction

The mapping class group Map(Sg) of a closed surface Sg of genus g
is defined in topological terms: it is the quotient of the group of home-
omorphisms of Sg by the connected component of the identity. The
classical Dehn-Nielsen-Baer theorem identifies Map(Sg) with a purely
algebraic object, namely the outer automorphism group Out(π1(Sg, p))
of the fundamental group of the surface Sg.

The mapping class group is finitely presented and hence it admits a
family of left invariant metrics which are unique up to quasi-isometry.
Such a metric can be investigated using simple topological objects as
the main tool. In [MM00] the authors construct explicit families of
quasi-geodesics in Map(Sg) using the combinatorics of isotopy classes
of simple closed curves on Sg. This approach leads to a geometric
understanding of the mapping class group and of many of its natural
subgroups.

The outer automorphism group Out(Fn) of the free group with n ≥ 2
generators is a finitely presented group which also has a topological
description. To this end, let Mn be the connected sum of n copies
of S1 × S2. By a theorem of Laudenbach [L74], Out(Fn) is a cofinite
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2 URSULA HAMENSTÄDT AND SEBASTIAN HENSEL

quotient of the group of all isotopy classes of orientation preserving
homeomorphism of Mn.

As in the case of surface mapping class groups, the geometry of
Out(Fn) can be investigated using as a tool the simplest essential sub-
manifolds of Mn, namely embedded spheres. This idea was used by
Hatcher in [Ha95] to show homological stability for Out(Fn). A geo-
metric application of this approach includes an upper bound for the
growth rate of the Dehn function of Out(Fn) (see [HV96]).

The main goal of this note is to initiate an investigation of the large-
scale geometry of Out(Fn) from this topological point of view. Explic-
itly, we analyze the extrinsic geometry of two families of subgroups of
Out(Fn) which can be described as follows.

The fundamental group of a surface Sg,1 of genus g ≥ 1 with one
puncture is the free group F2g. A version of the Dehn-Nielsen-Baer
theorem for the mapping class group Mod(Sg,1) of Sg,1 states that there
is a group isomorphism ι of Mod(Sg,1) onto the subgroup of Out(Fn)
of all outer automorphisms which preserve the conjugacy class defined
by a puncture parallel simple closed curve in Sg,1. We show

Theorem 3.2. The homomorphism ι is a quasi-isometric embedding.

In fact, for any number m ≥ 1, the mapping class group of a surface
S of genus g ≥ 0 with m ≥ 0 punctures and fundamental group Fn

embeds onto a subgroup of Out(Fn). However, we do not investigate
such subgroups in the case m ≥ 2 here.

There is an analog of Theorem 3.2 for graphs which admit cofinite
actions of Mod(Sg,1) and Out(F2g), respectively. Namely, let AG(Sg,1)
be the arc graph of Sg,1. The vertex set of AG(Sg,1) is the set of isotopy
classes of essential embedded arcs connecting the puncture of Sg,1 to
itself. Two such vertices are connected by an edge if the corresponding
arcs are disjoint up to homotopy. The mapping class group Map(Sg,1)
of a once-punctured surface acts on AG(Sg,1). We define the sphere
graph SG(M2g) of M2g as the graph whose vertex set is the set of
isotopy classes of embedded essential spheres in M2g. Two such vertices
are connected by an edge if the corresponding spheres are disjoint up
to homotopy. The tools developed for the proof of Theorem 3.2 also
yield

Proposition 3.9. There is a Map(Sg,1)–equivariant quasi-isometric
embedding of the arc graph AG(Sg,1) into the sphere graph SG(M2g).

The main idea for the proof of Theorem 3.2 is as follows. The map-
ping class group of the 3-manifold M2g acts properly and cocompactly
on the graph S0(M2g) whose vertices are reduced sphere systems, i.e.
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systems of 2g pairwise non-isotopic essential spheres which cut M2g into
a single simply connected region. Consider an embedding ϕ : S1

g → M

of a surface S1
g of genus g with one boundary component into M2g which

induces an isomorphism on the level of fundamental groups. The in-
tersection of a simple sphere system with the image of ϕ (where both
surfaces are supposed to be in general position) defines an embedded
system of arcs on S1

g which decomposes S1
g into simply connected re-

gions. We can use the set of isotopy classes of such arc systems as a
vertex set for a Map(Sg,1)–complex on which Map(Sg,1) acts properly
and cocompactly. The main task is now to show that edge paths in
S0(M2g) can be arranged to trace out edge paths of the same length in
this complex. We also have to establish a topological characterization
of those edge-paths in S0(M2g) which connect two points in a fixed
orbit of ι(Mod(S2g)).

Investigating Out(Fn) via sphere systems and intersections can also
be used to give a short proof of a recent result of Handel and Mosher
[HM10]. We define a procedure which makes a simple sphere system
disjoint from a given essential 2–sphere σ in Mn. This procedure allows
us to show that stabilizers of homotopy classes of essential spheres in
the mapping class group of Mn are undistorted. Recall that a finitely
generated subgroup H of a finitely generated group G is said to be
undistorted if the inclusion map of H into G is a quasi-isometric em-
bedding.

Namely, the stabilizer of the homotopy class of sphere σ in the map-
ping class group of Mn is equivariantly quasi-isometric to the com-
plete subgraph S(Mn, σ) of S(Mn) whose vertices correspond to simple
sphere systems containing σ. Let Σ, Σ′ be two simple sphere systems
containing σ and let Σ1, . . . , ΣN is a shortest path in S(Mn) connect-
ing Σ to Σ′. Applying the intersection procedure to each Σi we obtain
a path of length N in S(Mn, σ) connecting Σ to Σ′. Thus, the sub-
graph S(Mn, σ) is undistorted in S(Mn) and therefore the stabilizer
of σ is undistorted in the mapping class group of Mn. By rephrasing
this result in group theoretic terms, we obtain the following result of
[HM10].

Theorem 2.1. i) The stabilizer of the conjugacy class of a free split-
ting Fn = G ∗ H is undistorted in Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the
conjugacy class of G is undistorted in Out(Fn).

The article is organized as follows. In Section 2, we first give some
background on the manifold Mn and sphere systems. This section also
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contains the proof of Theorem 2.1. Section 3 is devoted to the proof of
Theorem 3.2 and Proposition 3.9. Appendix A contains a topological
lemma about stabilizers of spheres in Mn which is used in Section 2.

2. Stabilizers of spheres

Let Fn be the free group on n generators. By Out(Fn) we denote the
outer automorphism group of Fn. Explicitly, Out(Fn) is the quotient
of the group Aut(Fn) of all automorphisms of Fn by the subgroup of
inner automorphisms.

The purpose of this section is to give a short topological proof of a
theorem of Handel and Mosher [HM10]. For its formulation, we use
the following definitions. A free splitting of the free group Fn consists
of two subgroups G, H < Fn such that Fn = G ∗ H . By this we mean
the following: the inclusions of G and H into Fn induce a natural
homomorphism G ∗ H → Fn, where ∗ denotes the free product of
groups. By stating that Fn = G∗H we require that this homomorphism
is an isomorphism.

We say that an automorphism ϕ of Fn preserves the free splitting
Fn = G ∗ H , if ϕ preserves the groups G and H . It is possible to
define free splittings in a more general way using actions of Fn on trees
(see [HM10, Section 1.4]) but in this article we use the definition given
above.

A corank 1 free factor is a subgroup G of Fn of rank n − 1 such
that there exists a cyclic subgroup H of Fn with Fn = G ∗ H . We say
that an automorphism ϕ of Fn preserves this corank 1 free factor, if ϕ
preserves the group G. We emphasize that ϕ is not required to preserve
the cyclic group H , and that the group H is not uniquely determined
by G.

An element [ϕ] ∈ Out(Fn) is said to preserve the conjugacy class
of the free splitting G ∗ H (or corank 1 free factor G), if there is a
representative ϕ of [ϕ] which preserves the free splitting G ∗H (or the
corank 1 free factor G).

A finite, symmetric generating set of a group G defines a word norm
on G. We call the metric induced by such a norm a word metric on
G. Two different finite generating sets of G give rise to quasi-isometric
metrics. Recall that a map f : X → Y between metric spaces is called
a quasi-isometric embedding, if there is a number K > 0 such that

1

K
dY (f(x), f(x′)) − K ≤ dX(x, x′) ≤ KdY (f(x), f(x′)) + K
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for all x, x′ ∈ X. A finitely generated subgroup H < G of a finitely
generated group G is called undistorted if the inclusion homomorphism
H → G is a quasi-isometric embedding.

We can now state the main theorem of this section.

Theorem 2.1. i) The stabilizer of the conjugacy class of a free split-
ting Fn = G ∗ H is undistorted in Out(Fn).

ii) Let G < Fn be a free factor of corank 1. Then the stabilizer of the
conjugacy class of G is undistorted in Out(Fn).

As indicated in the introduction, we will prove Theorem 2.1 using
the topology of the connected sum Mn of n copies of S2 × S1 (where
Sk denotes the k–sphere). Alternatively, Mn can be obtained by dou-
bling a handlebody of genus n along its boundary. Since π1(Mn) =
Fn, there is a natural homomorphism from the group Diff+(Mn) of
orientation preserving diffeomorphisms of Mn to Out(Fn). This ho-
momorphism factors through the mapping class group Map(Mn) =
Diff+(Mn)/Diff0(Mn) of Mn, where Diff0(Mn) is the connected compo-
nent of the identity in Diff+(Mn). In fact, Laudenbach [L74, Théorème
4.3, Remarque 1)] showed that the following stronger statement is true.

Theorem 2.2. There is a short exact sequence

1 → K → Diffeo+(Mn)/Diffeo0(Mn) → Out(Fn) → 1

where K is a finite group, and the map Diffeo+(Mn)/Diffeo0(Mn) →
Out(Fn) is induced by the action on the fundamental group.

By [L74, Théorème 4.3, part 2)], we can replace diffeomorphisms by
homeomorphisms in the definition of the mapping class group of Mn.

An embedded 2-sphere in Mn is called essential, if it does not bound
a 3-ball in Mn. Throughout the article we assume that 2-spheres are
smoothly embedded, essential and are two-sided in Mn.

The following observation identifies the stabilizers in Map(Mn) which
occur in Theorem 2.1. The statement is an immediate consequence of
Corollary 21 of [HM10] and a standard topological argument which is
for example presented in [AS09]. For completeness of exposition we
provide a purely topological proof in Appendix A.

Lemma A.1. i) Let σ be an essential separating sphere in Mn. Then
the stabilizer of σ in Map(Mn) projects onto the stabilizer of the
conjugacy class of a free splitting in Out(Fn). Furthermore, every
stabilizer of a conjugacy class of a free splitting arises in this way.

ii) Let σ be a nonseparating sphere in Mn. Then the stabilizer of σ
in Map(Mn) projects onto the stabilizer of the conjugacy class of a
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corank 1 free factor in Out(Fn). Furthermore, every stabilizer of
a conjugacy class of a corank 1 free factor arises in this way.

To study stabilizers of essential spheres in Mn we use the following
geometric model for the mapping class group of Mn (compare [Ha95]
and [HV96]).

A sphere system is a set {σ1, . . . , σm} of essential spheres in Mn no
two of which are homotopic. A sphere system is called simple if its
complementary components in Mn are simply connected. The sphere
system graph S(Mn) is the graph whose vertex set is the set of homo-
topy classes of simple sphere systems. Two such vertices are joined by
an edge of length 1 if the corresponding sphere systems are disjoint up
to homotopy.

The mapping class group of Mn acts on S(Mn) properly discontinu-
ously and cocompactly (see e.g. the proof of Corollary 4.4 of [HV96] for
details on this). Furthermore, the surgery procedure described in Sec-
tion 3 of [HV96] shows that S(Mn) is connected. The finite subgroup
K occurring in the statement of Theorem 2.2 of Map(Mn) acts trivially
on isotopy classes of spheres and hence this action factors through an
action of Out(Fn).

For an essential sphere σ, let S(Mn, σ) be the complete subgraph of
S(Mn) whose vertex set is the set of homotopy classes of simple sphere
systems containing σ. The surgery procedure described in [HV96]
shows that the graph S(Mn, σ) is connected. The stabilizer of σ in
Out(Fn) acts cocompactly on S(Mn, σ). Thus the Svarc-Milnor lemma
immediately implies the following.

Lemma 2.3. i) The sphere system graph S(Mn) is quasi-isometric
to Out(Fn).

ii) The graph S(Mn, σ) is equivariantly quasi-isometric to the stabi-
lizer of σ in Out(Fn).

Combining Lemma A.1 and Lemma 2.3, Theorem 2.1 thus reduces
to the following.

Theorem 2.4. The inclusion of S(Mn, σ) into S(Mn) is a quasi-iso-
metric embedding.

The main tool used in the proof of this statement is a surgery proce-
dure that makes a given simple sphere system disjoint from the sphere
σ. On the one hand, this surgery procedure is inspired by the con-
struction used in [HV96] to show that the sphere system complex is
contractible. On the other hand, it is motivated by the subsurface
projection methods of [MM00].
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To describe this surgery procedure we fix an essential sphere σ in
Mn for the rest of this section. We treat separating and nonseparating
spheres in a unified manner using the following notation. If σ is sep-
arating, let M1 and M2 be its complementary components in Mn and
put Ni = M i ∪ σ. We then let N be the disjoint union of N1 and N2.
If σ is nonseparating, let M be its complement. There is a canonical
way to add two copies of σ to M to obtain a compact three-manifold
N whose boundary consists of two spheres.

In both cases, N is a compact three-manifold whose boundary con-
sists of two copies of σ. If no confusion can occur we will often treat N
as if it were a submanifold of Mn and call it the complement of σ. In
particular, we simply speak of the intersection of a sphere system with
N .

Consider now a simple sphere system Σ of Mn. By applying a ho-
motopy, we may assume that all intersections between Σ and σ are
transverse. The intersection of the spheres in Σ with N is a disjoint
union of properly embedded surfaces C1, . . . , Cm, possibly with bound-
ary. Each Ci is a subsurface of a sphere in Σ, and thus it is a bordered
sphere. If Σ contains spheres disjoint from σ then some of the Ci may
be spheres without boundary components. We call the Ci the sphere
pieces defined by Σ.

We say that Σ and σ intersect minimally if the number of connected
components of Σ ∩ σ is minimal among all sphere systems homotopic
to Σ which intersect σ transversely.

Every simple sphere system Σ can be changed by a homotopy to
intersect σ minimally. Unless stated otherwise, we will assume from
now on that spheres and sphere systems intersect minimally. Let Σ′ ⊃
Σ be a simple sphere system and suppose that Σ intersects σ minimally.
Then Σ′ can be homotoped relative to Σ to intersect σ minimally.

Details on the construction of such a homotopy can be found in
[Ha95]. Hatcher also shows the existence of a unique normal form
of spheres with respect to simple sphere systems which gives more
information than minimal intersection. Since we do not use this normal
form here, we refer the reader to [Ha95] for details.

Let C be one of the sphere pieces of Σ, and let α1, . . . , αk be its
boundary components on ∂N . A gluing datum for C is a set of disks
D1, . . . , Dk contained in ∂N such that ∂Di = αi for all 1 ≤ i ≤ k. The
disks Di are called closing disks. Let C ′ be the surface obtained from
C by gluing Di along ∂Di to αi. Since C is a bordered sphere, the
surface C ′ is an immersed sphere in N (which may be inessential). We
say that C ′ is obtained from C by capping off the boundaries according
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to the gluing datum. By a gluing datum D for {Ci, 1 ≤ i ≤ m} (or
gluing datum for Σ) we mean a set of disks on σ consisting of a gluing
datum for each sphere piece Ci of Σ.

We say that a gluing datum D for Σ is admissible if it satisfies the
following compatibility property: if D, D′ ∈ D are two disks which
intersect nontrivially then D ⊂ D′ or D′ ⊂ D. We say that any set of
disks with this property is properly nested.

Note that if Σ is disjoint from σ then the empty set is the only
admissible gluing datum for Σ.

Lemma 2.5. If D is an admissible gluing datum for Σ then every
sphere obtained by capping off the boundary components of a sphere
piece according to D is embedded up to homotopy. Furthermore, the
spheres obtained by capping off the boundary components of all sphere
pieces according to D can be embedded disjointly.

Proof. If D is empty, there is nothing to show.
Otherwise, say that a disk D ∈ D is innermost if D ⊂ D′ for every

D′ ∈ D with D ∩ D′ 6= ∅. Since D is admissible, there is at least one
innermost disk D1 bounded by a curve α1.

In N , the curve α1 occurs twice as the boundary of a sphere piece,
once on each boundary component of N . Let C1 and C2 be the two
sphere pieces having a copy of α1 contained in their boundary.

The disk D1 also occurs on both boundary components of N , and
both of these disks have the property that they only intersect a single
sphere piece in N , namely one of the Cj . Let Dj be the copy of D1

intersecting Cj .
We glue Dj to the corresponding sphere piece Cj and then slightly

push Dj inside N with a homotopy to obtain a properly embedded
bordered sphere C ′j in N . Since D is innermost, this sphere is disjoint
from all sphere pieces Ck 6= Cj , and has one less boundary component
than Cj . We replace the sphere piece Cj by the bordered sphere C ′j

for j = 1, 2.
The collection of bordered spheres obtained in this way is a collection

of disjointly embedded sphere pieces, and D \ {D1} is an admissible
gluing datum for this collection. The lemma now follows by induction
on the number of elements in D. �

For an admissible gluing datum D for Σ, let S(D) be the collection of
disjointly embedded spheres obtained by capping off the boundaries of
each sphere piece according to D. The set S(D) may contain inessential
spheres and parallel spheres in the same homotopy class. We denote
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by πσ(Σ,D) the union of σ with one representative for each essential
homotopy class of spheres occurring in S(D).

To show that the sphere system obtained in this way from a simple
sphere system Σ is again simple, we require the following topological
lemma.

Lemma 2.6. Let C be a sphere piece in N intersecting the boundary
of N in at least one curve α. Let D ⊂ ∂N be a disk with ∂D = α. Let
C ′ be the sphere piece obtained by gluing D to C and slightly pushing
D into N (which might be a sphere without boundary components).

Then every closed curve in N which can be homotoped to be disjoint
from C ′ can also be homotoped to be disjoint from C.

Proof. Pushing the disk D slightly inside of N with a homotopy traces
out a three-dimensional cylinder Q in N . The boundary of Q consists
of two disks (the disk D, and the image of D under the homotopy)
and an annulus A which can be chosen to lie in C (see Figure 1 for an
example).

σ

D

Ci

β

Figure 1. Reducing the number of boundary compo-
nents of a sphere piece.

Suppose that β is a closed curve in N which is disjoint from C ′ but
not from C. Then any intersection point between β and C is contained
in the annulus A. Up to homotopy, the intersection between β and
Q is a disjoint union of arcs connecting A to itself. Since Q is simply
connected, each of these arcs can be moved by a homotopy relative to
its endpoints to be contained entirely in A. Slightly pushing each of
these arcs off A then yields the desired homotopy that makes β disjoint
from C. �

Lemma 2.7. Let Σ be a simple sphere system, and let D be an admis-
sible gluing datum for Σ. Then πσ(Σ,D) is a simple sphere system.

Proof. Let Σ be a simple sphere system, and let D be an admissible glu-
ing datum. As πσ(Σ,D) contains σ by construction, it suffices to show
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that the spheres S ∈ πσ(Σ,D) which are distinct from σ decompose N
into simply connected regions.

Since the fundamental group of N injects into the fundamental group
of M and Σ is a simple sphere system, no essential simple closed curve
in N is disjoint from Σ∩N . In other words, no essential simple closed
curve in N is disjoint from all sphere pieces defined by Σ.

By Lemma 2.6, this property is preserved under capping off one
boundary component on a sphere piece. By induction, no essential
simple closed curve in N is disjoint from all spheres S ∈ S(D). Re-
moving inessential spheres and parallel copies of the same sphere from
S(D) does not affect this property.

This implies that πσ(Σ,D) is a simple sphere system as claimed. �

It is not hard to show that for each Σ there is an admissible gluing
datum (e.g by considering the dual graph to the intersection of Σ with
σ as in the upcoming proof of Lemma 2.8). Since we do not need this
statement in the sequel, we do not give a proof here.

We do however need the following relative version of this statement,
which is the central ingredient for the proof of Theorem 2.4.

Lemma 2.8. Let Σ be a simple sphere system, and let D be an admis-
sible gluing datum for Σ. Suppose that Σ′ is a simple sphere system
which is disjoint from Σ up to homotopy. Then there is an admissible
gluing datum D′ for Σ′ such that πσ(Σ,D) and πσ(Σ′,D′) are disjoint
up to homotopy.

Proof. As a first step, note that if Σ′ is obtained from Σ by removing
some spheres then the claim is immediate – one can simply take D′ as
a subset of D.

Since Σ′ is disjoint from Σ, the union Σ ∪ Σ′ is a simple sphere
system (where we discard multiple copies of the same homotopy class
of a sphere). The sphere system Σ′ is then obtained from Σ ∪ Σ′ by
removing some number of spheres. Therefore, to show the lemma it
suffices to consider the case that Σ′ ⊃ Σ.

Let Σ = {σ1, . . . , σr} and let Σ′ = {σ1, . . . , σr, σ
′
1, . . . , σ

′
s}. We call

the sphere pieces defined by one of the σi old sphere pieces and those
defined by one of the σ′

j new sphere pieces.
The gluing datum D contains a disk for each boundary component

of every old sphere piece. We will construct D′ inductively as an ex-
tension of D. The boundary components of new sphere pieces fall into
two different classes: those that are contained in some disk from the
collection D and those that are disjoint from any disk in D.
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Figure 2. An example of a collection of boundaries of
sphere pieces and the corresponding dual tree.

Let D1, . . . , Dk be the maximal disks in D with respect to the par-
tial order defined by inclusion (this makes sense as D is admissible).
Let α be a boundary component of a new sphere piece C ′ such that
α ⊂ Dl for some l. We then choose the closing disk D(α) to be the
unique embedded disk in σ bounded by α which is contained in Dl.
Let D1 be the union of D with the set of all disks obtained in this
way. By construction, D1 is properly nested in the sense defined before
Lemma 2.5.

If D1 is a gluing datum for Σ′ then we are done. Otherwise, consider
the set of those boundary components α1, . . . , αk of new sphere pieces
which are disjoint from every disk in D and hence also from every disk
in D1. If k = 0 there is nothing to show, so we may assume k ≥ 1.

Let I =
⋃k

i=1 αi ⊂ σ and let T be the dual graph to I. Explicitly,
T is the graph whose vertex set is the set of connected components of
σ\I. Two such vertices corresponding to components U1, U2 are joined
by an edge if there is a component of I contained in the closure of both
Ui. As every circle on a sphere is separating, the graph T is in fact a
tree (see Figure 2).

Let v be a leaf of T , corresponding to a complementary component
whose closure is a disk D(v). This disk D(v) intersects I in a single
component α(v).

If k ≥ 2 then D(v) is the unique disk on σ bounded by α(v) which
is disjoint from all αi 6= α(v). If k = 1 then D(v) is one of the two
embedded disks in σ bounded by α1.

In both cases, if D(v) intersects a disk D ∈ D1, then D ⊂ D(v) since
otherwise α(v) ⊂ D.
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Hence, the set of disks D2 = D1 ∪ {D(v)} is properly nested. Fur-
thermore, the set of boundary components of new sphere pieces that
are not contained in any disk of D2 is {α1, . . . , αk} \ {α(v)}.

The lemma now follows by repeating this procedure, assigning a
closing disk to each αi. �

Proof of Theorem 2.4. Let Σ, Σ′ be two simple sphere systems contain-
ing σ. Choose an edge-path Σ = Σ1, . . . , ΣL = Σ′ of shortest length
connecting Σ to Σ′ in the sphere system graph S(Mn).

Since Σ1 is disjoint from σ by assumption, D1 = ∅ is an admissible
gluing datum for Σ1.

By Lemma 2.8 there is an admissible gluing datum D2 for Σ2 such
that Σ1 = πσ(Σ1,D1) is disjoint from πσ(Σ2,D2).

Inductively applying Lemma 2.8, one obtains admissible gluing data
Di for Σi such that πσ(Σi,Di) is disjoint from πσ(Σi+1,Di+1) for all
i = 2, . . . , L − 1.

As ΣL is disjoint from σ, the only admissible gluing datum is the
empty set, and hence πσ(ΣL,DL) = ΣL.

By construction, the sequence πσ(Σi,Di) for 1 ≤ 1 ≤ L defines an
edge-path in S(Mn, σ) connecting Σ to Σ′. Thus the distance between
Σ and Σ′ in S(Mn) equals the distance between Σ and Σ′ in S(Mn, σ)
and the theorem is shown. �

3. Mapping class groups in Out(Fn)

In this section we study an embedding of a surface mapping class
group into Out(Fn). Let S1

g be a surface of genus g with one bound-
ary component, and let Sg,1 be the surface obtained by collapsing the
boundary component of S1

g to a marked point. We often view the
marked point as a puncture of the surface, so that the fundamental
group of Sg,1 is the free group F2g on 2g generators.

A simple closed curve on Sg,1 which bounds a disk containing the
marked point defines a distinguished conjugacy class in π1(Sg,1) called
the cusp class. The mapping class group of Sg,1 preserves the cusp
class.

The following analog of the Dehn-Nielsen-Baer theorem for punc-
tured surfaces is well-known (see e.g. Theorem 8.8 of [FM11]).

Theorem 3.1. The homomorphism

ι : Map(Sg,1) → Out(F2g)

induced by the action on the fundamental group of Sg,1 is injective. Its
image consists of those outer automorphisms which preserve the cusp
class.
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The goal of this section is to prove

Theorem 3.2. The homomorphism ι is a quasi-isometric embedding.

We employ the following geometric model for the mapping class
group of Sg,1. A binding loop system for Sg,1 is defined to be a col-
lection of embedded loops {a1, . . . , an} based at the marked point of
Sg,1 which intersect only at the marked point and which decompose
Sg,1 into a disjoint union of disks.

Let BL(Sg,1) be the graph whose vertex set is the set of isotopy
classes of binding loop systems. Here isotopies are required to fix the
marked point. Two such systems are connected by an edge if they
intersect in at most K points. As the mapping class group of Sg,1

acts with finite quotient on the set of isotopy classes of binding loop
systems, we can choose the number K > 0 such that the following
lemma is true.

Lemma 3.3. The graph BL(Sg,1) is connected. The mapping class
group of Sg,1 acts on BL(Sg,1) with finite quotient and finite point sta-
bilizers.

Instead of working with binding loop systems of Sg,1 directly we will
frequently use binding arc systems of S1

g . By this we mean a collection
A of disjointly embedded arcs {a1, . . . , an} connecting the boundary
component of S1

g to itself which decompose S1
g into simply connected

regions. We will consider such binding arc systems up to isotopy of
properly embedded arcs. A binding arc system for S1

g defines a binding
loop system for Sg,1 by collapsing the boundary component of S1

g to
the marked point. Note that if A1, A2 are two disjoint binding arc
systems for S1

g then the corresponding binding loop systems for Sg,1 are
uniformly close in BL(Sg,1). By this we mean that there is a number
K > 0 depending only on g such that the distance between the two
binding loop systems in BL(Sg,1) is at most K. The Dehn twist about
the boundary component of S1

g acts trivially on the isotopy class of

any arc system. Thus the action of the mapping class group of S1
g on

binding arc systems factors through an action of Map(Sg,1).

We can now describe the strategy of the proof of Theorem 3.2; details
for each step will be given below. As in Section 2, we use simple
sphere systems in M2g to build a graph S0(M2g) which is quasi-isometric
to Out(F2g) (for technical reasons we choose a subgraph of S(M2g)
in this section, see below for the definition). Let φ ∈ Map(Sg,1) be
given and let F be a diffeomorphism of M2g which represents the outer
automorphism ι(φ) of the fundamental group F2g. We may choose F in
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such a way that it preserves an embedded surface S1
g ⊂ M2g and such

that F restricts to a representative of φ on S1
g . Now consider a shortest

path Σ0, Σ1, . . . , ΣN = F (Σ0) connecting a base sphere system to its
image under F in S0(M2g). The intersections of Σi with the surface
S1

g ⊂ M2g then yield a sequence of binding arc systems A0, . . . , AN

on the surface S1
g and therefore a path of length coarsely bounded by

N in the graph of binding loop systems of Sg,1. Each of the Σi is
only determined up to homotopy and therefore the arc systems Ai are
not defined canonically. The main technical difficulty now consists in
obtaining enough control on the representatives of the homotopy classes
to ensure that AN = ΣN ∩S1

g defines the homotopy class φ(A0). To this

end we also have to successively modify the surface S1
g by homotopies.

Once this is done, the word norm of φ is coarsely bounded by N , and
hence by the word norm of ι(φ) in Out(F2g), showing Theorem 3.2.

We now define the geometric model of Out(F2g) used in this section.
Let M = M2g be the connected sum of 2g copies of S2 × S1. Say that
a simple sphere system Σ for M is reduced if M \ Σ is connected. Let
S0(M) be the complete subgraph of S(M) whose vertices correspond
to reduced sphere systems. We call S0(M) the reduced sphere system
graph.

Lemma 3.4. The graph S0(M) is connected.

This lemma can be shown using a surgery argument which is well-
known in the analogous case of reduced disk systems for handlebodies
(see e.g. [HH11, Lemma 5.2], [St99] or [M86, Lemma 3.2]) For conve-
nience of the reader we sketch a proof in the sphere system case here.

Proof. Let Σ, Σ′ be two reduced sphere systems. We may assume with-
out loss of generality that Σ and Σ′ are in general position and hence
the intersection is a disjoint union of finitely many circles. We prove
the lemma by induction on the number of such intersection circles.

Let σ′ ∈ Σ′ be a sphere which intersects Σ. The intersection σ′∩Σ is
a disjoint union of finitely many circles α1, . . . , αk. There is at least one
such circle α = αi which bounds a disk D′ ⊂ σ′ whose interior contains
no other intersection circle αj, j 6= i. Suppose that α is contained in
the sphere σ ∈ Σ. Denote by D1, D2 the two embedded disks in σ
bounded by α and put σj = Dj ∪D′ for j = 1, 2. Up to homotopy, the
surface σj is a sphere which is disjoint from Σ.

We claim that the sphere system Σj = Σ ∪ {σj} \ {σ} is reduced
for a suitable j. To prove the claim, note that a sphere system with
2g components is reduced if it defines a basis of H2(M, Z). Since Σ is
reduced, for exactly one choice of j = 1, 2 the system Σj defines a basis
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of H2(M, Z) (the corresponding sphere σj has to separate the two sides
of σ in the complement of Σ). This shows the lemma. �

The graph S0(M) is Out(F2g)-invariant. Moreover, the action of
Out(F2g) on S0(M) is proper and thus S0(M) is equivariantly quasi-
isometric to Out(F2g).

The advantage of using reduced sphere systems is that they make
it easy to encode free homotopy classes of curves in M . Namely, let
Σ = {σ1, . . . , σn} be a reduced sphere system. We choose a transverse
orientation for each sphere σi so we may speak of a positive and a
negative side of σi.

Let p ∈ M be a base point in the complement of Σ. A basis dual
to Σ is a set of loops γ1, . . . , γn in M based at p such that the loop
γi is disjoint from σj for all j 6= i and intersects σi in a single point.
We orient γi such that it approaches σi from the positive side. Since
the complement of Σ is simply connected, the loops γi define a basis of
π1(M, p).

Now let α be a closed curve in M . Choose an orientation of α. Up to
applying a homotopy to α we may assume that α and Σ are in general
position and thus intersect in a finite set of points. Apply a homotopy
to α in the complement of Σ such that α passes through the basepoint
p. The resulting based loop α̂ is a representative of the free homotopy
class defined by α. Since the complement of Σ is simply connected, the
sequence of (oriented) spheres in Σ which are consecutively hit by α̂
(and hence α) defines a word in the γ±

i representing α̂. In other words,
the free homotopy class defined by α is determined by the sequence of
sides of spheres in Σ that α intersects.

We next put α in tight position with respect to Σ as follows. Let MΣ

be the complement of Σ in the sense described for a single sphere in
Section 2 – that is, MΣ is a compact connected three-manifold whose
boundary consists of 2n boundary spheres σ+

1 , σ−
1 , . . . , σ+

n , σ−
n . The

boundary spheres σ+
i and σ−

i correspond to the two sides of σi. If α
is not disjoint from Σ then the intersection of α with MΣ is a disjoint
union of arcs connecting the boundary components of MΣ. We call
these arcs the Σ–arcs of α. An orientation of α induces a cyclic order
on the Σ–arcs of α.

We say that α intersects Σ minimally if no Σ-arc of α connects a
boundary component of MΣ to itself.

Lemma 3.5. Every closed curve α in M can be modified by a homotopy
to intersects Σ minimally. Let α and α′ be two simple closed curves
which are freely homotopic and which intersect Σ minimally. Then
there is a bijection f between the Σ–arcs of α and the Σ–arcs of α′
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such that f(a) is homotopic to a for each Σ–arc a of α. If orientations
of α and α′ are chosen appropriately, f may be chosen to respect the
cyclic orders on the Σ–arcs.

Proof. Since MΣ is simply connected, an arc in MΣ connecting a bound-
ary component to itself is homotopic into that boundary component.
This shows the first claim.

To see the other claims, let p be a base point in the complement of
Σ and let γi be a basis of π1(M, p) dual to Σ. The sequence of oriented
spheres from Σ determined by the consecutive intersections of α defines
a word in the γi representing the conjugacy class of α.

If α intersects Σ minimally, this word representing the conjugacy
class of α is reduced and cyclically reduced. The analogous statements
are also true for α′. Since α and α′ are freely homotopic, they define
the same conjugacy class in π1(M, p). Up to cyclic permutation, a
conjugacy class in a free group contains a unique cyclically reduced
word. Therefore, the words in γi defined by α and α′ are equal up to
cyclic permutation and possibly reversing the orientation of α′. This
implies the lemma. �

Now let V = S1
g×[0, 1] be the trivial oriented interval bundle over S1

g .
We identify M = M2g with the three-manifold obtained by doubling V
along its boundary. To simplify notation, we put n = 2g.

As can be seen from the description of M as the double of V , the
surface S1

g ×{1
2
} is incompressible in M . Let ϕ0 : S1

g → M be the thus

defined embedding of S1
g into M . Let β be the boundary curve of S1

g .
The image ϕ0(β) is an embedded closed curve in M which maps to the
cusp class in π1(Sg,1) = π1(M).

Next we put ϕ0(S
1
g ) and ϕ0(β) in good position with respect to a

given reduced sphere system. Since for surfaces and curves in M ho-
motopy is in general not the same as isotopy, we need to take some
care in defining these notions.

Consider the more general case of a surface ϕ(S1
g ), where ϕ : S1

g → M

is any embedding of S1
g into M which is homotopic to ϕ0 (note that

such an embedding need not be isotopic to ϕ0). Up to modifying ϕ
with a small isotopy, we may assume that Σ intersects the surface
ϕ(S1

g ) transversely. Then the preimage ϕ−1(Σ) is a one-dimensional

submanifold of S1
g , and hence it is a disjoint union of simple closed

curves and properly embedded arcs.

Definition 3.6. We say that ϕ is in ribbon position with respect to Σ
if each component of ϕ−1(Σ) is a properly embedded arc. It is said
to be in minimal position if in addition ϕ(β) is in minimal position
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with respect to Σ. In either case, we call the preimage ϕ−1(Σ) the arc
system induced by Σ and ϕ.

Note that a priori the homotopy class of the arc system induced by
Σ and ϕ need not be determined by the isotopy class of Σ even if ϕ is
in minimal position with respect to Σ.

A main step towards the proof of Theorem 3.2 consists in establishing
some control over the homotopy class of the arc system induced by
ϕ and a sphere system associated to the an element in the image of
Map(Sg,1). To make this precise, fix an embedded binding arc system
A0 = {a0

1, . . . , a
0
2g} of S1

g consisting of precisely 2g arcs which cut Sg,1

into a single disc. We require that β intersects each arc a0
i in two

points, and that a subarc of β defined by the intersection points with
a0

i approaches a0
i from the same side at both of its endpoints. Such a

binding arc system can easily be obtained from the standard description
of S1

g as a one-holed 4g–gon with opposite sides identified.
The interval bundle over A0 is a disk system in the handlebody V

which cuts V into a ball. Doubling this disk system across the boundary
of V , we obtain a reduced simple sphere system Σ0 in M2g such that the
arc system induced by ϕ0 and Σ0 is the arc system A0. Similarly, any
diffeomorphism f of Sg,1 extends in this way to a diffeomorphism I(f)
of M by first extending f to a product map of Sg,1 and then extending
further by doubling. The action of I(f) on homotopy classes of sphere
systems then coincides with the action of the image of the projection
of f to Map(S1

g ) under the inclusion ι : Map(S1
g ) → Out(Fn). This

observation is used in the following lemma which gives control on some
classes of arc systems.

Lemma 3.7. Let f be an orientation preserving diffeomorphism of S1
g

and let Σ be a simple sphere system which is homotopic to I(f)(Σ0).
Suppose that ϕ : S1

g → M is homotopic to ϕ0 and in minimal position
with respect to Σ. Then the arc system induced by ϕ and Σ is homotopic
to f(A0).

Proof. Let f be an orientation preserving diffeomorphism of S1
g and let

F = I(f). The sphere system F (Σ0) is then in minimal position with
respect to ϕ0, and ϕ−1

0 (F (Σ0)) = f(A0) by construction. By applying
an isotopy to M which maps Σ to F (Σ0) we may assume without loss
of generality that Σ = F (Σ0). If we replace ϕ by its composition with
this isotopy then this does not change ϕ−1(Σ).

With respect to the sphere system Σ = F (Σ0), the curve ϕ0(β) is
in minimal position. Furthermore, by choice of the arc system A0, the
curve ϕ0(β) intersects each sphere σj in Σ in exactly two points x′

j
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and y′
j. Let β ′1

j and β ′2
j be the two subarcs of ϕ0(β) defined by these

intersection points.
By Lemma 3.5, minimal position of curves is unique and only de-

pends on the homotopy class of the curve and of the sphere system.
Therefore the curve ϕ(β) intersects each sphere σj ∈ Σ also in two
points, say xj and yj. Denote by β1

j and β2
j the two subarcs of ϕ(β)

defined by these intersection points. Again by uniqueness of minimal
position of curves, the arc βr

j is homotopic to β ′r
j with endpoints sliding

on σj for r = 1, 2 (after possibly exchanging β1
j and β2

j ).
Let aj ⊂ S1

g be the preimage of σj under ϕ and let a′
i be the preimage

of σj under ϕ0. The boundary of a regular neighborhood of β ∪ aj in
S1

g is the union of two simple closed curves d1
j , d

2
j and the boundary

curve β, and the boundary of a regular neighborhood of β ∪a′
j consists

of two simple closed curves d′1
j , d′2

j and the boundary curve β.

Up to exchanging d1
j and d2

j , the curve ϕ(dk
j ) ⊂ M is freely homotopic

to a curve δk
j = βk

j ∗αj obtained by concatenating βk
j and an embedded

arc αj on σj . Similarly, the curve ϕ0(d
′k
j ) is freely homotopic to a curve

δ′kj = β ′k
j ∗ α′

j obtained by concatenating β ′k
j and an embedded arc α′

j

on σi.
Since σj is simply connected and β ′k

j is homotopic to βk
j relative to

σj , the curves δ′kj and δk
j are freely homotopic. Since ϕ and ϕ0 induce

the same isomorphism on the level of fundamental groups, this implies
that also the simple closed curves dk

j and d′k
j in S1

g are freely homotopic.

The curves β, d1
j and d2

j bound a pair of pants Pi on S1
g . The arc

aj is up to isotopy the unique essential embedded arc in Pj connecting
β to itself. Similarly, β, d′1

j and d′2
j bound a pair of pants P ′

j , which
is isotopic to Pj . As a′

j is the unique essential embedded arc in P ′
j

connecting β to itself, it is therefore isotopic to aj .
Hence we have shown that the arc system induced by a map ϕ and

a sphere system Σ as in the statement is isotopic to the arc system
induced by ϕ0 and Σ, hence isotopic to f(A0). �

To apply Lemma 3.7 we have to keep ϕ in minimal position when
changing the sphere system. For this we use an inductive method which
is described in the next lemma. For its proof, we need the following
observation, which also motivates the terminology “ribbon position”.

Suppose that ϕ is in ribbon position with respect to the reduced
sphere system Σ. Since ϕ is homotopic to ϕ0, it induces an isomorphism
between the fundamental groups of S1

g and M . The intersection of
ϕ(S1

g ) with MΣ is a union of surfaces P1, . . . , Pk. As Σ is a simple

sphere system, the arc system ϕ−1(Σ) on S1
g is binding and hence each
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of the surfaces Pi is a disk whose boundary is not completely contained
in a boundary component of MΣ.

Pick one such disk, say Pi, and consider its boundary curve δi. We
can write this curve in the form

δi = a1 ∗ b1 ∗ · · · ∗ ar ∗ br

where each ai is an arc contained in one of the boundary spheres of
MΣ, and each bi is a properly embedded arc in MΣ. Let Γi ⊂ Pi be
an embedded graph in Pi defined in the following way. The graph Γi

has one distinguished vertex v0 contained in the interior of Pi and one
vertex vr contained in each arc ar. Each vertex vr (r ≥ 1) is connected
by an edge to the vertex v0. The oriented surface Pi determines a ribbon
structure on Γi. Here a ribbon structure on Γi is simply a cyclic order
of the half-edges at v0.

To reconstruct ϕ(S1
g ) from the ribbon graphs Γi we equip Γi with a

twisting datum. Namely, fix the arcs ar and an orientation of each of
the arcs ar, so that we can refer to the left and right endpoint of each
ar. A twisting datum on Γi associates to each edge of Γi a sign + or
−. We call the graph Γi equipped with a twisting datum a decorated
ribbon graph.

The surface associated to a decorated graph Γi is defined in the fol-
lowing way. Put a small embedded oriented disk D at the central vertex
v0 of Γi containing a neighborhood of v0 so that the cyclic order of the
edges at v0 corresponds to the counterclockwise order on D. Connect
each arc ar to the disk D with a band, i.e. an embedded product of two
intervals [0, 1] × [0, 1] in M , as follows. One of the sides of Br is the
arc ar, and the opposite side is contained in ∂D. We call these sides
the horizontal sides. Correspondingly, the vertical sides are properly
embedded arcs in M . The orientation of ∂D determines a left and
right endpoint of each of these intervals. Up to homotopy, there are
two ways to glue a band between two prescribed horizontal sides which
correspond to the two ways of pairing the endpoints of these intervals.
If the edge corresponding to the band Br is decorated with a +, we
match the left endpoint of ar with the left endpoint of the interval on
∂D, otherwise we pair the left with the right endpoint. If the twist-
ing data on Γi is chosen appropriately, the surface associated to Γi is
homotopic to Ui relative to ∂MΣ to Ui.

Lemma 3.8. Suppose that ϕ is in minimal position with respect to Σ.
Let σ′ be an embedded sphere disjoint from Σ. Suppose that there is a
sphere σ ∈ Σ such that Σ′ = Σ∪ {σ′} \ {σ} is a reduced sphere system.

Then there is an embedding ϕ′ : S1
g → M with the following proper-

ties.
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i) ϕ′ is homotopic to ϕ.
ii) ϕ′ is in minimal position with respect to Σ′.
iii) The arc system induced by ϕ′ and Σ is the same as the arc system

induced by ϕ and Σ.

Proof. By assumption, ϕ is in ribbon position with respect to Σ. Let
P1, . . . , Pk be the components of ϕ(S1

g ) ∩ MΣ. By applying an isotopy

to ϕ that does not change ϕ−1(Σ), we may assume that each Pi is the
surface associated to a decorated ribbon graph Γi as described after
Definition 3.6. We may choose Γi in such a way that no intersection
point of σ′ with Γi is a vertex of Γi and that σ′ intersects each Γi

transversely. Hence the intersection between σ′ and Γi consists of a
finite union of points, and the intersection between Pi and σ′ consists of
a disjoint union of arcs. Namely, the surface associated to a decorated
ribbon graph may be chosen to lie in an arbitrarily small neighborhood
of the graph.

As a consequence, the sphere σ′ intersects each component of ϕ(S1
g )∩

MΣ in a disjoint union of arcs. Each component of ϕ(S1
g ) ∩ MΣ∪{σ′} is

a disk whose boundary contains a subarc of β and hence ϕ is in ribbon
position with respect to Σ ∪ {σ′} and thus also with respect to Σ′.

It remains to show that ϕ can be changed by a homotopy as claimed
in the lemma.

Let b be a Σ′–arc of β. Assume first that b also is a Σ–arc. Then
b has both endpoints on a sphere distinct from σ. By assumption on
Σ, the arc b does not connect the same boundary component of MΣ to
itself. This then also holds true for b viewed as a Σ′-arc.

If b is not of this form, at least one of its endpoints is contained
in the sphere σ′. Suppose that both endpoints of b are contained on
the same side of σ′ (alternatively, on the same boundary component
of MΣ′). We call such subarcs of β problematic. A problematic subarc
b does not intersect the sphere σ. Namely, we observed in the proof
of Lemma 3.4 that in MΣ, the sphere σ′ separates the two boundary
components corresponding to σ. Thus if b intersected σ, a subarc of b
would return to the same side of σ. By assumption on Σ, this is not
the case.

Let Pi be the component of ϕ(S1
g )∩MΣ containing b in its boundary.

Choose small open tubular neighborhoods U1 ⊂ U2 of Σ so that U1 ⊂ U2

and that U 2 is disjoint from σ′. We also assume that ϕ(S1
g ) intersects

U2 in a union of disjoint embedded rectangles with two opposite sides
on two different boundary components of U2. Choose a homotopy H
supported in the complement of U1 such that in the complement of U2

the image of Pi under this homotopy is Γi.
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We compose this homotopy with ϕ such that the resulting map col-
lapses Pi to the graph Γi. Explicitly, this means that we modify ϕ with
a homotopy to obtain a map ϕ1 : S1

g → M in the following way. On the
set ϕ−1((M \ Pi) ∪ U1), the maps ϕ and ϕ1 coincide. On ϕ−1(Pi \ U2)
we set ϕ1 to be the postcomposition of ϕ with the endpoint of the
homotopy H .

The map ϕ1 is not an embedding of S1
g into M since it collapses the

region ϕ−1(Pi ∩U2) to the graph Γi ∩U2. However, by construction, ϕ1

is homotopic to ϕ0 and the preimage ϕ−1
1 (Σ) is the same as ϕ−1(Σ).

Since b is contained in a boundary arc of Pi and connects a side of σ′

to itself, the same is true for the graph Γi. Since each complementary
component of σ′ in MΣ is simply connected, the graph Γi is therefore
homotopic with fixed endpoints to a graph Γ′

i in MΣ which intersects
σ′ in fewer points than Γi and which is disjoint from all other Γj, j 6= i.
The graph Γ′

i inherits the structure of a decorated ribbon graph from
Γi.

We now modify ϕ1 using this homotopy (in the same way that we
constructed ϕ1) to obtain a map ϕ2 : S1

g → M which maps ϕ−1(Pi∩U2)

to Γ′
i ∩ U2 and still agrees with ϕ on S1

g \ ϕ−1(Pi).
As a last step, we modify ϕ2 by a homotopy to make it again an

embedding. Namely, let P ′
i be the surface defined by the decorated

graph Γ′
i as described above. Then P ′

i is homeomorphic to the disk Pi

with a homeomorphism that induces an isomorphism of the decorated
graphs Γ′

i and Γi and restricts to the identity on each component Pi ∩
∂MΣ.

Hence we can apply a homotopy to the map ϕ2 (supported on ϕ−1(Pi\
U1)) to obtain a embedding ϕ3 : S1

g → M with the following proper-

ties. On ϕ−1(MΣ \ Pi), the maps ϕ3 and ϕ agree. Furthermore, the
set ϕ−1(Pi ∩ U2) is mapped to the surface P ′

i which can be chosen to
be contained in a small regular neighborhood of Γ′

i in M . Finally,
ϕ−1(Σ) = ϕ−1

3 (Σ). We can choose this homotopy such that ϕ3 is in
ribbon position with respect to Σ′ by the same argument as before.

By construction, the image of β under ϕ3 has fewer problematic arcs
than the image of β under ϕ. The existence of the desired ϕ′ follows
then by inductively applying this procedure (with ϕ3 in the place of
ϕ). �

We now have collected all the necessary tools to prove the main
theorem of this section.

Proof of Theorem 3.2. Let f ∈ Map(Sg,1) be given. To prove the the-
orem, we need to show that the word norm of f as an element of the
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surface mapping class group is coarsely bounded by the word norm of
ι(f) in Out(F2g).

The word norm of ι(f) in Out(F2g) is coarsely equal to the distance
between Σ0 and ι(f)(Σ0) in the reduced sphere system graph.

Choose a shortest path connecting Σ0 to ι(f)(Σ0) in the reduced
sphere system graph, and denote the corresponding sphere systems by
Σ0, Σ1, . . . , ΣN .

We now inductively define a sequence of binding arc systems. By
construction, ϕ0 is in minimal position with respect to Σ0. As Σ1 is
connected to Σ0 by an edge in the reduced sphere system graph, Σ1 is
obtained from Σ0 by replacing a single sphere.

Thus Lemma 3.8 applies, and yields a reduced sphere system Σ′
1

which is homotopic to Σ1 and disjoint from Σ0, and furthermore an
embedding ϕ1. This embedding is homotopic to ϕ0, in minimal position
with respect to Σ1 and such that ϕ−1

1 (Σ0) = ϕ−1
0 (Σ0). Put A1 =

ϕ−1
1 (Σ′

1). By the choice of ϕ1, the arc system A1 is binding and disjoint
from A0.

Inductively applying Lemma 3.8, we obtain a sequence of sphere
systems Σ′

i and embeddings ϕi : S1
g → M such that the following

holds. Each Σ′
i is homotopic to Σi and each ϕi is homotopic to ϕ0.

Furthermore, the arc systems Ai induced by Σ′
i and ϕi define a path in

the graph BL(Sg,1) whose length is coarsely bounded by N .
By Lemma 3.7 the arc system AN is homotopic to f(A0). Hence,

as the binding loop system graph is quasi-isometric to Map(Sg,1), the
theorem follows. �

The method employed in the proof of Theorem 3.2 has another appli-
cation. For its formulation, recall that the arc graph of S1

g is the graph
whose vertex set is the set of isotopy classes of embedded essential arcs
connecting the boundary of S1

g to itself. Again, isotopies are only re-
quired to fix the boundary component setwise. Two such vertices are
joined by an edge if the corresponding arcs can be embedded disjointly.
Similarly, define the sphere graph of M to be the graph whose vertex
set is the set of isotopy classes of essential 2-spheres in M . Two such
vertices are connected by an edge if the corresponding spheres can be
realized disjointly.

Let a be an arc representing a vertex of the arc graph of S1
g . The

interval bundle over a is a disk D(a) in the handlebody V = S1
g × [0, 1].

The isotopy class of this disk only depends on the isotopy class of a,
since the Dehn twist about the boundary of S1

g is contained in the

kernel of the map Map(S1
g ) → Map(V ). We let σ(a) be the essential

sphere in M which is obtained by doubling D(a) along ∂V .
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Proposition 3.9. The map sending a to σ(a) induces a quasi-isometric
embedding of the arc graph of S1

g into the sphere graph of M .

In particular, this theorem immediately implies the following.

Corollary 3.10. For each g ≥ 1 the sphere graph of M2g has infinite
diameter.

Proof of Proposition 3.9. Let a, a′ be two essential arcs in S1
g . Since the

mapping class group of S1
g acts transitively on the set of isotopy classes

of essential arcs in S1
g , there is a mapping class f such that f(a) = a′.

Furthermore, we may assume that a is contained in the standard arc
system A0.

A single arc in S1
g does not separate the surface S1

g . Thus the sphere
σ(a) is a nonseparating essential sphere in M .

Let σ(a) = σ1, σ2, . . . , σN = σ(a′) be a shortest path in the sphere
graph of M . We may assume without loss of generality that each σi

is a nonseparating sphere. Namely, suppose that σi is separating and
let M1, M2 be its two complementary components. If σi−1 and σi+1 are
contained in different components, then they are connected by an edge
in the sphere graph. In this case, the sphere σi can be removed from
the edge-path. If σi−1 and σi+1 are contained in the same component,
say M1, then one can replace σi by a nonseparating sphere σ′

i contained
in M2.

Choose reduced sphere systems Σi containing σi. Let Σ
(1)
i , . . . , Σ

(Ni)
i

be a path in the reduced sphere system graph connecting Σi to Σi+1

such that each Σ
(j)
i contains σi for each 1 ≤ j ≤ Ni − 1.

We now argue as in the proof of Theorem 3.2. Applying Lemma 3.8

inductively, we change the sphere systems Σ
(j)
i by isotopy and obtain

a sequence of embeddings ϕ
(j)
i which intersect Σ

(j)
i minimally. Let A

(j)
i

be the arc systems induced by ϕ
(j)
i and Σ

(j)
i .

By construction, for 1 ≤ j ≤ Ni − 1 the arc systems A
(j)
i contain

a common arc ai. The sequence ai defines an edge-path in the arc
graph of length at most 2N . Furthermore, by Lemma 3.5, the arc
aN is contained in f(A0) and thus is adjacent to a′. This proves the
theorem. �

Appendix A. Stabilizers of spheres

In this appendix we identify the stabilizers of conjugacy classes of
free splittings and corank one free factors of a free group topologically.
To this end, let Mn be the connected sum of n copies of S1 × S2.
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As explained in Section 2, the mapping class group of Mn projects
onto Out(Fn) with a finite kernel. Our goal is to give an elementary
topological proof of the following

Lemma A.1. i) Let σ be an essential separating sphere in Mn. Then
the stabilizer of σ in Map(Mn) projects onto the stabilizer of the
conjugacy class of a free splitting in Out(Fn). Furthermore, every
stabilizer of a conjugacy class of a free splitting arises in this way.

ii) Let σ be an essential nonseparating sphere in Mn. Then the stabi-
lizer of σ in Map(Mn) projects onto the stabilizer of the conjugacy
class of a corank 1 free factor in Out(Fn). Furthermore, every sta-
bilizer of a conjugacy class of a corank 1 free factor arises in this
way.

Proof. Let σ be as in i), and denote by M1 and M2 the two comple-
mentary components of σ in Mn. We let N i = M i∪σ. Since σ is simply
connected, the van-Kampen theorem yields that the fundamental group
of Mn can be written as a free product π1(Mn) = π1(N

1)∗π1(N
2). The

fundamental groups of N1 and N2 are thus free groups of rank n − i
and i, respectively. A mapping class of Mn that stabilizes σ (up to
homotopy) induces an outer automorphism of π1(Mn) that stabilizes
the free splitting π1(Mn, x) = π1(N

1, x) ∗ π1(N
2, x) up to conjugation

(here, x is an arbitrary basepoint on σ).
Conversely, let [ϕ] ∈ Out(Fn) be an outer automorphism fixing the

conjugacy class of the free splitting Fn = π1(N
1, x)∗π1(N

2, x). We can
choose a representative ϕ which fixes the free splitting itself. Such an
automorphism ϕ induces automorphisms of the groups π1(N

1, x) and
π1(N

2, x). By the pointed version of Theorem 2.2 ([L74, Théorème 4.3,
part 1)]), there are homeomorphisms fi of Ni which induce ϕ|π1(Ni,x)

on the respective fundamental groups. By gluing f1 and f2 across σ we
obtain a homeomorphism of Mn which fixes S and which induces [ϕ]
as desired. This shows that the stabilizer of σ maps onto the stabilizer
of the conjugacy class of the free splitting π1(Mn, x) = π1(N1, x) ∗
π1(N2, x).

Let now Fn = G ∗ H be an arbitrary free splitting, where G has
rank i and H has rank n − i. Choose a sphere σi separating Mn into
N1 and N2 as above, such that the rank of π1(N

1, x) is i (and thus
the rank of π1(N

2, x) is n − i). Since the automorphism group of Fn

acts transitively on the set of free splittings with fixed ranks, the last
sentence of part i) follows from Theorem 2.2.

To prove part ii), let σ be a non-separating sphere. Choose a base-
point p ∈ M \ σ. Then the subgroup G < π1(M, p) = Fn of all homo-
topy classes of loops which do not intersect σ is a free factor of corank
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one. Any diffeomorphism of M which preserves σ also preserves the
conjugacy class of G. Therefore the stabilizer of σ in Out(Fn) injects
into the stabilizer of the conjugacy class of G.

To show that it is equal to this stabilizer, let ϕ ∈ Out(Fn) be an
outer automorphism which preserves the conjugacy class of G. We
may choose a diffeomorphism f of M which fixes p and such that the
induced isomorphism f∗ of the fundamental group is contained in the
conjugacy class defined by ϕ and fixes G.

Let σ′ = f(σ) be the image of σ under f . Since f∗ preserves the
group G, the subgroup of all homotopy classes of loops which do not
intersect σ′ is equal to G.

By Lemma 2.2 of [HV98] the group G is thus the subgroup of π1(M, p)
defined by all homotopy classes of loops which do not intersect both σ
and σ′ simultaneously. We now argue by contradiction, supposing that
σ and σ′ are not homotopic.

Suppose first that σ′ and σ are disjoint up to homotopy. Then the
fundamental group of the complement of σ∪σ′ has rank at most n−2.
This is a contradiction since G has rank n − 1.

If σ and σ′ intersect, we argue similarly. Namely, at least one con-
nected component of σ′ \ σ is an open disk. Let D be the closure of
this component in σ′. The surface D is a closed disk whose boundary
curve ∂D is contained in σ. Let D′ be a complementary component of
∂D on σ. The union S = D ∪ D′ is an essential sphere which, up to
homotopy, is disjoint from σ.

Furthermore, every loop which is disjoint from both σ and σ′ is
also disjoint from S ′. Thus G can be identified with the subgroup of
π1(M, p) of those loops which are disjoint from σ, σ′ and S.

Since σ and S are disjoint, the fundamental group of the complement
of σ ∪ S has rank at most n − 2. Since removing σ′ as well decreases
the rank of the fundamental group further, this again contradicts the
fact that G has rank n − 1.

Thus, f preserves the homotopy class of σ. �
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