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1. Introduction

Let Vg be a handlebody of genus g, and let Hg be the handlebody group,
i.e. the mapping class group of Vg. The action on the fundamental group of
Vg defines a natural homomorphism

A : Hg → Out(Fg).

The purpose of this short note is to prove the following theorem.

Theorem 1.1. Let g ≥ 4 be arbitrary. Then A does not split over any
finite index subgroup Γ of Out(Fg). That is, for any finite index subgroup
Γ < Out(Fg) there is no homomorphism s : Γ → Hg so that A ◦ s is the
identity.

Note that for g = 1 the theorem is obviously false (since there are no outer
automorphisms of Z). In genus 2 the theorem is also false: consider a torus
T with one boundary component. The trivial interval bundle T × [0, 1] is a
handlebody of genus 2. In this way we get a homomorphism i : Mcg(Σ1,1)→
H2. But the mapping class group of a once-punctured torus Σ1,1 is Out(F2),
and i yields a section to A : H2 → Out(F2).

In the case g = 3 our methods fail; it is not entirely clear to the author if
the result remains true.

2. The proof

We will prove the theorem by contradiction. We begin by picking a free
basis x1, . . . , xg of Fg, and identify the subgroup generated by xi, i > 1 once
and for all with the free group Fg−1. Now, for any w ∈ Fg−1 we consider
the automorphisms Lw, Rw : Fg → Fg defined by

Lw(x1) = wx1, Lw(xi) = xi, i > 1

Rw(x1) = x1w, Rw(xi) = xi, i > 1

Note that for any w,w′ the automorphisms Lw, Rw′ commute. Also note
that

(Lw)n = Lwn , (Rw)n = Rwn .

To prove Theorem 1.1 we will show that for w,w′ chosen suitably, no powers
of Lw, Rw′ admit lifts to Hg which commute, showing the theorem.
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To choose w,w′ we use an fully irreducible non-geometric automorphism
Θ′ : Fg−1 → Fg−1 (these exist since g−1 ≥ 3 by our assumption) and extend
it to an automorphism Θ of Fg by setting

Θ(x1) = x1, Θ(xi) = Θ′(xi), i > 1.

We then have the following facts

(1) If x ∈ Fg is an element which is fixed up to conjugacy by some power
of Θ, then x is conjugate to xn1 for some n ∈ Z.

(2) If Fg = A ∗ B or Fg = A∗ is a one-edge splitting of the free group
which is preserved by Θ up to conjugacy, then A (or B in the first
case) is conjugate to Fg−1.

Recall that a meridian is an essential simple closed curve on ∂Vg which
bounds a disk in Vg. Alternatively, consider the map

p : π1(∂Vg)→ π1(Vg) = Fg

induced by the inclusion of the boundary into the handlebody. A meridian
is a simple closed curve in the kernel of p. If α is a meridian, and D is a
disk bounded by α, then by the van Kampen theorem D defines a one-egde
splitting of Fg. Up to conjugacy, this splitting depends only on the free
isotopy class of α, and we call it the splitting defined by α. The following
lemma is now immediate from the two facts about Θ above.

Lemma 2.1. Let Ψ ∈ A−1(Θ) be any handlebody group element representing
Θ, and suppose Ψ(α) = α for a simple closed curve. Then either p(α) is
conjugate to xn1 for some n, or α is a meridian which defines a free splitting
compatible with 〈x1〉 ∗ Fg−1.

By definition
Θ ◦ Lw ◦Θ−1 = LΘ(w)

Θ ◦Rw′ ◦Θ−1 = RΘ(w′)

Suppose that A admitted a section s over some finite index subgroup Γ <
Out(Fn). Up to replacing Θ and w,w′ by large enough powers we may
assume Θ, Lw, Rw′ ∈ Γ. Let ψ = s(Θ), λ = s(Lw), ρ = s(Lw′) be the
supposed lifts into Hg. We then have

Lemma 2.2. If α is a simple closed curve which is fixed both by ψ and λ
(or ρ) then α is a meridian defining the co-rank 1 free factor Fg−1 < Fg.

Proof. If ψ(α) = α, then by the previous lemma we have to exclude two
possibilities.

α maps to xn1 in π1(Vg) for some n 6= 0: In this case, Lw (or Rw′)
would also fix the conjugacy class of xn1 , which they clearly do not.

α is a meridian and defines the splitting 〈x1〉 ∗ Fg−1: In this case,
Lw (or Rw′) would also fix this splitting. However, they map x1 to
an element not conjugate to x1, therefore this is impossible.
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Since Lw, Lw′ commute, the same is true for λ and ρ. In fact, we have

ψnλψ−n = s(Θ)ns(Lw)s(Θ)−n = s(ΘnLwΘn) = s(LΘn(w))

and therefore conclude that ψnλψ−n and ρ commute for all n.
Lw and Rw′ generate a free Abelian subgroup of rank 2 in Out(Fg), and

therefore λ, ρ also generate a free Abelian subgroup of rank 2 in Hg. To
exploit this information, we now consider Hg as a subgroup of the mapping
class group Mcg(Σg) of a genus g surface (via the restriction homomorphism
Hg → Mcg(∂Vg) which is injective).

As mapping classes of Σg ρ, λ cannot be pseudo-Anosov, since pseudo-
Anosov mapping classes can never generate a free Abelian group of rank 2.
In fact, there will be a multicurve C so that ρ(C) = C = λ(C) (the canonical
reduction system of the subgroup generated by ρ, λ). Up to passing to
powers, we may assume that both λ and ρ preserve each curve in C, and
each complementary component of C. Additionally, we may assume that in
each non-annular complementary component of C, the restrictions of λ and
ρ are either the identity, or pseudo-Anosov maps. Call a region active for λ
or ρ if it restricts to a pseudo-Anosov there.

Note that there has to be at least one active region, as otherwise λ and ρ
would have a power which is equal, which is clearly false for Lw, Rw′ .

Denote the active regions of λ by Y1, . . . , Yr, and consider ψkYj . These

are the active regions for λk = ψkλψ−k. As the mapping class λk commutes
with ρ we have that for each j either

A: ψkYj is contained in some inactive region of ρ for infinitely many
k, or

B: ψkYj is equal to some active region Z of ρ for infinitely many k,
and a suitable power λrk|Z commutes with (the pseudo-Anosov map)
ρ|Z as mapping classes of Z.

In both cases, we first observe that some power of ψ fixes a region which is
also fixed by ρ – and therefore, by Lemma 2.2, this region is the complement
of a single meridian α, which defines the splitting 〈x1〉∗Fg−1. Thus, we have
either

A: ρ is a Dehn twist about α. Or,
B: ρ restricts to a pseudo-Anosov on Σ − α, and (up to passing to a

power) ψ and λ preserve Σ− α.

The first case is impossible, since A(ρ) is nontrivial, and Dehn twist about
meridians act trivially on π1(Vg).

In case B), since λk and ρ commute, the pseudo-Anosov ψ on Σ−α itself
would have to commute with ρ (after possibly passing to powers). Namely,
if λk is an infinite order element commuting with ρ, it has a power which is
a pseudo-Anosov with the same stable and unstable foliations as ρ. But in
this case, the stable and unstable foliations of λk are the images of those of
λ under ψk. Hence, ψk preserves these foliations and has therefore a power
which is equal to a power of λk.
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However, case B) also cannot occur for all choices of w′ – since in that
case all Rw′ would have powers which agree, which is clearly false. Therefore
both possibilities lead to a contradiction, proving Theorem 1.1.


