OUT (F_n) DOES NOT VIRTUALLY LIFT TO THE HANDLEBODY GROUP

SEBASTIAN HENSEL

1. INTRODUCTION

Let V_g be a handlebody of genus g, and let \mathcal{H}_g be the handlebody group, i.e. the mapping class group of V_g . The action on the fundamental group of V_g defines a natural homomorphism

$$A: \mathcal{H}_q \to \operatorname{Out}(F_q).$$

The purpose of this short note is to prove the following theorem.

Theorem 1.1. Let $g \geq 4$ be arbitrary. Then A does not split over any finite index subgroup Γ of $Out(F_g)$. That is, for any finite index subgroup $\Gamma < Out(F_g)$ there is no homomorphism $s : \Gamma \to \mathcal{H}_g$ so that $A \circ s$ is the identity.

Note that for g = 1 the theorem is obviously false (since there are no outer automorphisms of \mathbb{Z}). In genus 2 the theorem is also false: consider a torus T with one boundary component. The trivial interval bundle $T \times [0, 1]$ is a handlebody of genus 2. In this way we get a homomorphism $i : \operatorname{Mcg}(\Sigma_{1,1}) \to$ \mathcal{H}_2 . But the mapping class group of a once-punctured torus $\Sigma_{1,1}$ is $\operatorname{Out}(F_2)$, and i yields a section to $A : \mathcal{H}_2 \to \operatorname{Out}(F_2)$.

In the case g = 3 our methods fail; it is not entirely clear to the author if the result remains true.

2. The proof

We will prove the theorem by contradiction. We begin by picking a free basis x_1, \ldots, x_g of F_g , and identify the subgroup generated by $x_i, i > 1$ once and for all with the free group F_{g-1} . Now, for any $w \in F_{g-1}$ we consider the automorphisms $L_w, R_w : F_g \to F_g$ defined by

$$L_w(x_1) = wx_1, \quad L_w(x_i) = x_i, \ i > 1$$

 $R_w(x_1) = x_1w, \quad R_w(x_i) = x_i, \ i > 1$

Note that for any w, w' the automorphisms $L_w, R_{w'}$ commute. Also note that

$$(L_w)^n = L_{w^n}, \quad (R_w)^n = R_{w^n}.$$

To prove Theorem 1.1 we will show that for w, w' chosen suitably, no powers of $L_w, R_{w'}$ admit lifts to \mathcal{H}_g which commute, showing the theorem.

Date: November 15, 2017.

To choose w, w' we use an fully irreducible non-geometric automorphism $\Theta': F_{g-1} \to F_{g-1}$ (these exist since $g-1 \ge 3$ by our assumption) and extend it to an automorphism Θ of F_q by setting

$$\Theta(x_1) = x_1, \quad \Theta(x_i) = \Theta'(x_i), \ i > 1.$$

We then have the following facts

- (1) If $x \in F_g$ is an element which is fixed up to conjugacy by some power of Θ , then x is conjugate to x_1^n for some $n \in \mathbb{Z}$.
- (2) If $F_g = A * B$ or $F_g = A *$ is a one-edge splitting of the free group which is preserved by Θ up to conjugacy, then A (or B in the first case) is conjugate to F_{q-1} .

Recall that a *meridian* is an essential simple closed curve on ∂V_g which bounds a disk in V_q . Alternatively, consider the map

$$p: \pi_1(\partial V_g) \to \pi_1(V_g) = F_g$$

induced by the inclusion of the boundary into the handlebody. A meridian is a simple closed curve in the kernel of p. If α is a meridian, and D is a disk bounded by α , then by the van Kampen theorem D defines a one-egde splitting of F_g . Up to conjugacy, this splitting depends only on the free isotopy class of α , and we call it the splitting defined by α . The following lemma is now immediate from the two facts about Θ above.

Lemma 2.1. Let $\Psi \in A^{-1}(\Theta)$ be any handlebody group element representing Θ , and suppose $\Psi(\alpha) = \alpha$ for a simple closed curve. Then either $p(\alpha)$ is conjugate to x_1^n for some n, or α is a meridian which defines a free splitting compatible with $\langle x_1 \rangle * F_{q-1}$.

By definition

$$\Theta \circ L_w \circ \Theta^{-1} = L_{\Theta(w)}$$
$$\Theta \circ R_{w'} \circ \Theta^{-1} = R_{\Theta(w')}$$

Suppose that A admitted a section s over some finite index subgroup $\Gamma < \operatorname{Out}(F_n)$. Up to replacing Θ and w, w' by large enough powers we may assume $\Theta, L_w, R_{w'} \in \Gamma$. Let $\psi = s(\Theta), \lambda = s(L_w), \rho = s(L_{w'})$ be the supposed lifts into \mathcal{H}_q . We then have

Lemma 2.2. If α is a simple closed curve which is fixed both by ψ and λ (or ρ) then α is a meridian defining the co-rank 1 free factor $F_{q-1} < F_q$.

Proof. If $\psi(\alpha) = \alpha$, then by the previous lemma we have to exclude two possibilities.

- α maps to x_1^n in $\pi_1(V_g)$ for some $n \neq 0$: In this case, L_w (or $R_{w'}$) would also fix the conjugacy class of x_1^n , which they clearly do not.
- α is a meridian and defines the splitting $\langle x_1 \rangle * F_{g-1}$: In this case, L_w (or $R_{w'}$) would also fix this splitting. However, they map x_1 to an element not conjugate to x_1 , therefore this is impossible.

Since $L_w, L_{w'}$ commute, the same is true for λ and ρ . In fact, we have

$$\psi^n \lambda \psi^{-n} = s(\Theta)^n s(L_w) s(\Theta)^{-n} = s(\Theta^n L_w \Theta^n) = s(L_{\Theta^n(w)})$$

and therefore conclude that $\psi^n \lambda \psi^{-n}$ and ρ commute for all n.

 L_w and $R_{w'}$ generate a free Abelian subgroup of rank 2 in $\operatorname{Out}(F_g)$, and therefore λ, ρ also generate a free Abelian subgroup of rank 2 in \mathcal{H}_g . To exploit this information, we now consider \mathcal{H}_g as a subgroup of the mapping class group $\operatorname{Mcg}(\Sigma_g)$ of a genus g surface (via the restriction homomorphism $\mathcal{H}_g \to \operatorname{Mcg}(\partial V_g)$ which is injective).

As mapping classes of $\Sigma_g \rho$, λ cannot be pseudo-Anosov, since pseudo-Anosov mapping classes can never generate a free Abelian group of rank 2. In fact, there will be a multicurve C so that $\rho(C) = C = \lambda(C)$ (the canonical reduction system of the subgroup generated by ρ , λ). Up to passing to powers, we may assume that both λ and ρ preserve each curve in C, and each complementary component of C. Additionally, we may assume that in each non-annular complementary component of C, the restrictions of λ and ρ are either the identity, or pseudo-Anosov maps. Call a region *active* for λ or ρ if it restricts to a pseudo-Anosov there.

Note that there has to be at least one active region, as otherwise λ and ρ would have a power which is equal, which is clearly false for $L_w, R_{w'}$.

Denote the active regions of λ by Y_1, \ldots, Y_r , and consider $\psi^k Y_j$. These are the active regions for $\lambda_k = \psi^k \lambda \psi^{-k}$. As the mapping class λ_k commutes with ρ we have that for each j either

- A: $\psi^k Y_j$ is contained in some inactive region of ρ for infinitely many k, or
- **B:** $\psi^k Y_j$ is equal to some active region Z of ρ for infinitely many k, and a suitable power $\lambda_k^r |_Z$ commutes with (the pseudo-Anosov map) $\rho |_Z$ as mapping classes of Z.

In both cases, we first observe that some power of ψ fixes a region which is also fixed by ρ – and therefore, by Lemma 2.2, this region is the complement of a single meridian α , which defines the splitting $\langle x_1 \rangle * F_{g-1}$. Thus, we have either

A: ρ is a Dehn twist about α . Or,

B: ρ restricts to a pseudo-Anosov on $\Sigma - \alpha$, and (up to passing to a power) ψ and λ preserve $\Sigma - \alpha$.

The first case is impossible, since $A(\rho)$ is nontrivial, and Dehn twist about meridians act trivially on $\pi_1(V_q)$.

In case B), since λ_k and ρ commute, the pseudo-Anosov ψ on $\Sigma - \alpha$ itself would have to commute with ρ (after possibly passing to powers). Namely, if λ_k is an infinite order element commuting with ρ , it has a power which is a pseudo-Anosov with the same stable and unstable foliations as ρ . But in this case, the stable and unstable foliations of λ_k are the images of those of λ under ψ^k . Hence, ψ^k preserves these foliations and has therefore a power which is equal to a power of λ_k .

SEBASTIAN HENSEL

However, case B) also cannot occur for all choices of w' – since in that case all $R_{w'}$ would have powers which agree, which is clearly false. Therefore both possibilities lead to a contradiction, proving Theorem 1.1.