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Abstract. We survey properties of the handlebody group – the map-
ping class group of a 3–dimensional handlebody. The text is aimed at
readers who are familiar with the modern theory of surface mapping
class groups, and focuses on similarities and differences of handlebody
groups to surface mapping class groups and Out(Fn). We also briefly
discuss topological applications and open questions.

Contents

1. Introduction 2
1.1. A User’s Guide to the Handlebody Group 3
1.2. Limitations of this survey 5
2. Basic Handlebody Notions 5
3. Two Perspectives: Intrinsic and Surface 9
4. A Topological Interlude 11
5. Examples and the Membership Problem 13
6. A Third Perspective: Free Groups 20
7. Symplectic Representation 23
8. Algebraic Properties 25
8.1. Generation 25
8.2. Subgroups 26
8.3. Homological Properties 26
8.4. Homomorphisms 27
9. Actions on measured laminations 28
10. Geometric Properties 29
10.1. Geometry of the disk graph 29
10.2. Geometry of Hg 30
References 32

Date: July 24, 2018.

1



2 SEBASTIAN HENSEL

1. Introduction

A handlebody Vg of genus g is the three-manifold with boundary obtained
from the 3–ball by attaching g one-handles (in any way). The handlebody
group Hg is the mapping class group of the three-manifold Vg, i.e. the
group of orientation preserving self-homeomorphisms of Vg up to isotopy.
Alternatively, Hg can be identified with a subgroup of the mapping class
group of the boundary surface of Vg.

This survey is concerned with the group theory, dynamics and geometry
of Hg. The group Hg has important applications in topology and therefore
has been studied in some depth in the latter half of the twentieth century,
in particular in the context of Heegaard splittings (see e.g. [31, 47] for good
sources of the classical theory).

On the other hand, the theory of mapping class groups Mcg(Σg) of sur-
faces has recently become a widely known topic in low-dimensional topology
and geometric group theory – to no small extent due to the excellent book
[10]. In addition, many new and powerful tools to study surface mapping
class groups have been developed over the last years which allow to answer
geometric and algebraic questions on surface mapping class groups Mcg(Σg).

This leads to a specific audience which this survey is aimed at: readers
who are familiar with the modern theory of surface mapping class groups,
but not its three-dimensional cousin. We will discuss similarities and differ-
ences both in results and methods – and aim to advertise the study of Hg
as a natural “next step” in the study of mapping class groups.

Three themes will recur throughout the text. The first is the membership
problem, i.e. how to detect if a mapping class of a surface Σg is an element
of, or conjugate into, the handlebody group. This question is particularly
relevant for topological applications of Hg.

The second theme is (intrinsic) similarity : many group-theoretic prop-
erties are shared between surface mapping class groups and handlebody
groups, even though the underlying reasons may be different.

The third and possibly most intriguing theme is (extrinsic) incompatibil-
ity : in almost any sense the structure of handlebody subgroup is not com-
patible with its ambient mapping class group. It is a “very small” subgroup
which behaves differently both from a geometric or dynamic perspective.

During this survey we will develop tools and results from the ground
up. We cannot make the text completely self-contained, but we will give
detail and (sketches of) proofs whenever possible. We only assume basic
low-dimensional topology and familiarity with surface mapping class groups
as discussed in [10]. In fact, we will roughly follow the sequence of top-
ics covered in [10] (with some handlebody-specific interludes), and arrange
topics as in a textbook, discovering and proving results as methods become
available. This is done for the benefit of a reader who wants to discover
and learn about the structure of the handlebody group leisurely and with
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motivating examples. For readers who want to quickly get an overview of
the most important results first, we summarise them in the next section.

1.1. A User’s Guide to the Handlebody Group. We can define the
handlebody group Hg in two equivalent ways: as the group of isotopy classes
of orientation preserving self-homeomorphisms of a 3–dimensional handle-
body Vg of genus g, or as the subgroup of the mapping class group of a
surface Σg of genus g formed by those elements which extend to a (fixed)
handlebody with boundary Σg (compare Lemma 3.1 and the discussion fol-
lowing it). In other words, restriction to the boundary induces an inclusion

Mcg(Vg)→ Mcg(Σg)

whose image is exactly Hg (see Section 3 for details). This “surface point of
view” is the main tool to study Hg. From this perspective, the handlebody
group Hg is an infinite index subgroup of Mcg(Σg), which is not normal
(Corollary 5.4).

There are a few immediate ways to characterise when an element φ ∈
Mcg(Σg) extends to the chosen handlebody Vg (and therefore defines an el-
ement in Hg). All of these criteria eventually rely on the basic idea that
homeomorphisms of Vg preserve the set of those essential curves on ∂Vg
which bound disks in Vg (the meridians). Namely, the following are equiv-
alent (Corollary 5.11):

i) φ ∈ Hg.
ii) For every meridian δ, the image φ(δ) is also a meridian.

iii) For some nonseparating system α1, . . . , αg of meridians, the image
φ(α1), . . . , φ(αg) also consists of meridians.

iv) The induced map φ∗ : π1(Σg)→ π1(Σg) preserves the kernel

ker(π1(Σg)→ π1(Vg))

For topological applications it is more natural to ask if φ is conjugate intoHg
– or, equivalently, if φ extends to some handlebody, rather than the specific
one we chose. While testing membership in Hg is fairly straightforward
using i)-iv), the conjugacy problem is much more intricate. Intuitively, the
problem is that for this question we do not know in advance which curves
are the meridians.

Nevertheless, testing if φ is conjugate into Hg can be decided algorithmi-
cally (see the end of Section 5) and there are obstructions and criteria for
specific types of elements.

Concerning membership and conjugacy, we will cover the following results:

– A Dehn twist Tα is contained in Hg if and only if α is a meridian
(Theorem 5.6).

– A multitwist is contained in Hg exactly if it is (in the obvious way) a
product of Dehn twists about meridians and embedded annuli (The-
orem 5.6, compare also Example 5.1 for the definition of annulus
twist).
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– On the other hand, any multitwist is conjugate intoHg (Lemma 5.7).
– A torsion element (or finite subgroup) is contained in Hg exactly

if it preserves a collection of disjoint disks cutting Vg into balls. It
is conjugate into Hg if and only if it preserves a multicurve with
complementary regions which are genus 0 (Lemma 8.4).

– If a pseudo-Anosov is contained in Hg, then its stable and unstable
laminations are limits of meridians (in PML). The converse is not
true (but partial results are possible, see Theorem 9.3).

We warn the reader that, in general, reducible elements which are con-
tained in Hg can have reducing systems which do not consist of meridians,
and therefore the irreducible components may not even be conjugate into
a smaller handlebody group (compare Example 5.8). Hence, an intrinsic
theory of irreducible handlebody mapping classes will in general be very
different from the Nielsen-Thurston classification of the ambient mapping
class group (see e.g. [51] for such an approach). In this survey, reducible
will always mean that the surface mapping class group preserves a multic-
urve.

Criterion iv) above immediately implies that under the standard action of
Mcg(Σg) on H1(Σg;Z) the handlebody group Hg preserves the Lagrangian
subspace

L = ker(H1(Σg;Z)→ H1(Vg;Z)).

In fact, any such matrix in Sp(2g,Z) is actually induced by an element of
Hg (Theorem 7.1).

On the other hand, in the Torelli group (and in fact any term of the John-
son filtration) there are elements which do not extend to any handlebody –
so homology alone is unable to characterise Hg (compare Theorem 7.2).

In addition to the surface mapping class group, the handlebody group is
also intimately connected to another favourite of geometric group theorists:
the outer automorphism group of free groups. Namely, the fundamental
group of Vg is free, and we thus obtain a surjection (compare Theorem 6.3)

Hg → Out(Fg).

The kernel of this map is generated by Dehn twists about meridians (The-
orem 6.4) and is not finitely generated (Theorem 6.5). In general it is hard
(but not impossible; see e.g. Lemma 6.7) to relate properties of handle-
body mapping classes and outer automorphisms. Understanding this rela-
tion more fully might be interesting in the study of Out(Fg) as well.

The intrinsic algebraic structure of handlebody groups is similar to that
of surface mapping class groups. A few important results are:

– Hg is finitely presented (Theorem 8.1).
– There is a generating set consisting of mapping classes supported in

annuli and pairs of annuli (Corollary 6.6).
– Free Abelian subgroups have ranks up to at most 3g− 3 (just as for

the surface mapping class group).
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– It is virtually torsion free (being a subgroup of the mapping class
group), and its virtual cohomological dimension is 4g − 5 (Theo-
rem 8.6), just as for the full mapping class group.

– The first Betti number of Hg is zero, but there is always 2–torsion
in the first homology (Theorem 8.5).

– Hg enjoys homological stability properties akin to those of mapping
class groups [19].

From a geometric perspective however, the handlebody group is much less
understood. The surjection to Out(Fg) has infinitely generated kernel (The-
orem 6.5) and therefore does not seem to be amenable to methods from
geometric group theory. The inclusion into surface mapping class groups is
exponentially distorted (Theorem 10.5) – so the ambient geometry also does
not directly imply anything about the geometry of Hg. Initial results in-
dicate that Hg resembles Out(Fg) geometrically much more than Mcg(Σg),
making the word geometry of Hg seem a fruitful, if ambitious, target for
geometric group theory. We will discuss some questions and results in Sec-
tion 10.

1.2. Limitations of this survey. As with any survey, the choice of topics
and perspective are influenced by the author’s point of view, and there are
always some important developments which cannot be touched upon. In the
case of this article, we chose only to very briefly touch upon applications of
handlebody groups (maybe most importantly their connections to Heegaard
splittings), partly since there exist already many good resources covering
these topics, but more so because we want to advertise the study of handle-
body groups on their own, as a variant of mapping class groups and outer
automorphisms of free groups.

Two further important topics which did not fit into the main flow of the
discussion are an intrinsic Nielsen-Thurston theory for handlebody mapping
classes (see e.g. [51, 39]) and Hain’s algebraic perspective [14].

Most likely there are more accidental omissions – but we hope that our
choice of topics is a useful introduction anyway.

Acknowledgements I would like to thank Federica Fanoni, Benson Farb,
Dan Margalit, Thomas Ng, Bram Petri, José Pedro Quintanilha and Katie
Vokes for interest and many, very helpful comments on drafts of this survey.
I would also like to thank Susumu Hirose for pointing out a mistake in a
previous version and helpful references.

2. Basic Handlebody Notions

This section develops some basic notions on handlebodies and their bound-
aries which will feature throughout. We will not review the theory of simple
closed curves on surfaces (see e.g. [10] for that), but only discuss the connec-
tion to handlebodies. We make the convention that all curves on surfaces are
assumed to be simple, closed and essential unless explicitly stated otherwise.
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We will usually consider curves and their isotopy classes interchangeably,
and indicate when it is important to choose a specific representative. We
do not develop the tools of three-dimensional (differential) topology from
the ground up here, compare e.g. [30] for background. We will however
highlight differences to the two-dimensional situation in this section.

By a handlebody Vg of genus g we will always mean the oriented 3–
manifold with boundary obtained from a 3–ball by attaching g one-handles1.
The boundary ∂Vg of a handlebody is homeomorphic to a surface genus g. A
spotted handlebody is a handlebody Vg together with a disjoint collection of
embedded disks Di ⊂ ∂Vg. Slightly abusing notation, we define the bound-
ary surface of a spotted handlebody to be the complement of the interior of
the spots on ∂Vg (so that the boundary of a spotted handlebody is a surface
Σn
g with some number n of boundary components). The importance of this

notion comes from the fact that cutting a handlebody Vg at a system of
disjoint disks naturally yields a spotted handlebody Y , and the boundary
surface of Y (with the above definition) then corresponds to a subsurface of
∂Vg.

A curve α on ∂Vg is a meridian, if it bounds an embedded disk in Vg. By
Dehn’s lemma, this is equivalent to asserting that α is a simple closed curve
which defines an element of the kernel

K = ker(π1(∂Vg, p)→ π1(Vg, p))

of the map induced by inclusion of the boundary.

The intersection pattern between meridians is much more constrained
than the one between simple closed curves in general. To begin with, we note
the following observation, which follows from naturality of the intersection
form.

Lemma 2.1. The algebraic intersection number between any two meridians
is zero. In particular, meridians always intersect in an even number of
points.

If α and α′ are two meridians (or, in fact, systems of disjoint meridians),
then we can find disks D,D′ bounded by α, α′ which intersect minimally in
the following sense.

Lemma 2.2 (compare e.g. [45, Lemma 5.1]). If D,D′ are two properly
embedded disks in Vg, then they can be isotoped to intersect in 1

2 i(∂D, ∂D
′)

arcs. In particular, the boundary meridians intersect minimally.

Using the fact that handlebodies are aspherical and a standard surgery
argument, we also have the following uniqueness statement.

Lemma 2.3. Any two embedded disks bounded by a meridian are isotopic.

1In particular, all of our handlebodies are oriented.
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Figure 1. The problem with normal forms.

Sketch of proof. Suppose that D1, D2 are two disks bounded by α. Up to
a small isotopy we may assume that D1, D2 intersect transversely. Thus,
D1∩D2 is a finite disjoint union of embedded circles. Consider an innermost
such circle in the interior of D1. That is, we assume that there is a subdisk
D′ ⊂ D1 which intersects D2 exactly in ∂D′. Then D′ and a suitable subdisk
D′′ ⊂ D2 form an embedded S2 in the handlebody. Since handlebodies are
aspherical, and by the sphere theorem, D′∪D′′ bounds an embedded 3–ball
B. Hence, we can modify D2 by an isotopy (“pushing D′′ through B”) to
reduce the number of intersection circles in D1 ∩ D2. Inductively, we may
therefore assume that D1 and D2 intersect only in their boundaries. But
then they bound an embedded ball, and are isotopic as claimed. �

A word of warning is pertinent here. Suppose α, α′ are two simple closed
curves which intersect minimally, and consider the arcs α′ ∩ (Σ−α) defined
by α′ in the surface obtained by cutting2 at α. These are determined up
to isotopy by the isotopy classes of α, α′. If we now assume that the curves
in question are meridians, we can choose disks D,D′ as in Lemma 2.2, and
these disks are unique up to isotopy by Lemma 2.3. One might now hope
that the intersections D′∩(Vg−D) are also determined by the isotopy classes
of α, α′. As the following example shows, this is not the case. In particular,
which intersection points of α ∩ α′ are joined by an arc in D ∩D′ depends
on the choice of disks D,D′ and not just the isotopy classes of α, α′.

Example 2.4. Consider a 3–ball B with four spots on the boundary. Let δ
be a meridian separating ∂B into two pairs of pants. This is the “horizontal”
meridian in Figure 1. We choose once and for all a disk D bounded by δ
(horizontal in the Figure), cutting B into a “lower” and “upper” half-ball.

A second meridian α will intersect δ in four points x1, x2, x3, x4 (shown on
the left of the Figure). The middle and right pictures in Figure 1 show two

2For an oriented manifold M and a oriented codimension-1 submanifold X, we denote
by M − X the result of cutting M at X; i.e. for each component x of X, the manifold
M −X has two boundary components, corresponding to the two sides of x
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disks D1, D2 bounded by α. Both are glued from one rectangular region, and
two caps (bigons). For one of them, say D1 (middle picture) the rectangular
band is contained in the lower half-ball, whereas for the other (right picture)
the rectangular band is contained in the upper half-ball.

Note that in the intersection D ∩D1 there are intersection arcs between
x1, x2 and between x3, x4. In the intersection D∩D2 on the other hand there
are intersection arcs between x1, x4 and x2, x3.

Even without uniqueness, the intersection pattern between disks bounded
by meridians guaranteed by Lemma 2.2 can be very useful. For example,
we have the following standard tool. In its formulation, a multimeridian is
a collection of pairwise disjoint, nonhomotopic meridians.

Proposition 2.5. Suppose that α, β are two multimeridians. Then either
α, β are disjoint, or there is a wave, i.e. an arc a ⊂ α so that

i) a intersects β exactly in its endpoints.
ii) a approaches β from the same side at both of its endpoints.

iii) For any embedded arc b ⊂ β with the same endpoints as a, the curve
a ∪ b is a meridian.

Proof. Choose disksDα, Dβ bounded by α, β and intersecting as in Lemma 2.2.
Consider the union of arcs Dα ∩Dβ ⊂ Dα. Choose an outermost arc c. By
definition there is then an arc a ⊂ α = ∂Dα which, together with c, bounds
a subdisk of Dα which intersects Dβ exactly in c. In particular, a satisfies
i) and ii). Any arc b as in iii) is homotopic relative to its endpoints in V
to the arc c (they are both subarcs of Dβ with the same endpoints), and so
a ∪ b is indeed nullhomotopic in V . �

In particular, we can define the meridian surgery β′ obtained by replacing
the component of β containing b by a ∪ b. The meridian β′ is disjoint from
β, and has at least two fewer intersection points with α. Such meridian
surgery is a very common tool in the study of handlebody groups (see e.g.
[41, 15, 45]).

At this point we also want to introduce the disk complex, the analogue of
the curve complex in the setting of handlebodies. For a brief introduction
to curve complexes, compare [10, Section 4.1]. We define D(Vg) to be the
(flag) simplicial complex whose k–cells correspond to k+ 1 disjoint, distinct
meridians up to isotopy. Using meridian surgery one can show

Lemma 2.6. D(Vg) is connected. In fact, the distance between any two
meridians α, β is bounded by 1

2 i(α, β).

Just as the corresponding distance estimate for the curve graph C(Σg),
intersection numbers are a very crude upper bound. In fact, meridians of
distance two may have arbitrarily large intersection numbers.

A cut system is a collection α1, . . . , αg of g disjoint, non-isotopic meridi-
ans, so that the complement ∂Vg−(α1∪· · ·∪αg) is connected. Equivalently,
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there are disjointly embedded disks D1, . . . , Dg so that ∂Di = αi for all i,
and so that Vg − (D1 ∪ · · · ∪ Dg) is a 3–ball. Using meridian surgery, one
can show:

Lemma 2.7 (e.g. [20, Lemma 1.2], [15, Lemma 5.4]). Suppose A,A′ are
two cut systems. Then there is a sequence Ai of cut systems

A = A1, A2, . . . , An = A′

so that the multimeridians Ai and Ai+1 are disjoint for all i (possibly having
meridians in common).

3. Two Perspectives: Intrinsic and Surface

In this section we will develop two equivalent definitions of the handle-
body group. The first definition is intrinsic, as the mapping class group
Mcg(Vg) of the handlebody Vg. Here, the mapping class group Mcg(M) of
a closed manifold is the group of isotopy classes of orientation-preserving
self-homeomorphisms of M .

Identify the boundary ∂Vg of a genus g handlebody Vg with a surface of
genus g. Since homeomorphisms and isotopies of Vg preserve the boundary,
we then have a restriction homomorphism

ι : Mcg(Vg)→ Mcg(Σg).

Our second definition will rest on the following standard lemma.

Lemma 3.1. Two homeomorphisms F, F ′ of a handlebody Vg are isotopic
if and only if their restrictions ∂F, ∂F ′ to the boundary are isotopic.

Sketch of proof. One direction is clear. We thus need to show that if F
is an orientation-preserving homeomorphism of Vg whose restriction to the
boundary is isotopic to the identity then F is isotopic to the identity as
well. We produce the desired isotopy in several steps. Choose a cut system
α1, . . . , αg for Vg. Since ∂F is isotopic to the identity, we may modify F by
an isotopy so that F (αi) = αi for all i (apply the isotopy from ∂F to id in
a collar neighbourhood of the boundary).

Choose disks Di bounded by αi. Then F (Di) are also disks bounded by
αi. By Lemma 2.3, we can modify F by an isotopy so that F (Di) = Di for all
i. In fact, we may assume that F restricts to the identity on Di because any
homeomorphism of a disk which is the identity on the boundary is isotopic
to the identity (Alexander’s trick).

At this point F is the identity on ∂Vg, and induces a homeomorphism of
the 3–ball Vg− (D1 ∪ · · · ∪Dg), whose boundary map is the identity. Hence,
we can isotopy F to be the identity by Alexander’s trick again. �

A immediate consequence of the lemma is that the restriction homomor-
phism ι is injective. We are thus led to our second definition, that of the
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handlebody subgroup. To this end, choose an identification of Σg with ∂Vg,
and define

Hg = {φ ∈ Mcg(Σg) | ∃F : Vg → Vg homeomorphism, φ = [∂F ]}.
Lemma 3.1 implies thatHg is isomorphic to the mapping class group Mcg(Vg)
of the handlebody via the restriction homomorphism ι.

A word should be said here about choices. The identification of Σg with
the boundary ∂Vg depends on the choice of an homeomorphism. Two dif-
ferent choices will yield subgroups of Mcg(Σg) which are conjugate, but not
necessarily equal (as we will see below).

Strictly speaking, “the” handlebody group is therefore only defined up
to conjugacy. For intrinsic (algebraic or geometric) properties, this indeter-
minacy is not relevant, but in many topological applications it is crucial to
distinguish the different conjugates of Hg (compare Section 4).

Convention 3.2. To ease notation, we will from now on call Hg (or, equiv-
alently, Mcg(Vg)) the handlebody group. We reserve the term mapping class
group for Mcg(Σg).

Sometimes it is useful to consider handlebody groups of spotted handle-
bodies and handlebodies with marked points. From the intrinsic point of
view it is clear how to define these: consider homeomorphisms which restrict
to the identity on each spot and fix the marked points, up to isotopy doing
the same. The analogue of Lemma 3.1 remains true in this setting, and we
can therefore identify the handlebody groups again with subgroups of the
corresponding surface mapping class groups. In fact, we can say a little bit
more. For simplicity we will consider the case of one marked point or spot.

We begin by recalling the Birman exact sequence for the mapping class
group of a surface Σg,1 of genus g with one marked point. Namely, there is
a short exact sequence

1→ π1(Σg)→ Mcg(Σg,1)→ Mcg(Σg)→ 1.

where the map Mcg(Σg,1)→ Mcg(Σg) is the forgetful map, and the image of
π1(Σg) consists of “point pushing maps” (compare [10, Chapter 4.2]). The
core observation for us is the following.

Lemma 3.3. If Σg is identified with the boundary of Vg, then any element
in the image of π1(Σg) extends to Vg.

Proof. Let Ft : Σg → Σg be an isotopy from F0 = id to a representative F1

of the kernel. Consider U a closed regular neighbourhood of ∂Vg = Σg in
Vg, and choose an identification U = Σg × [0, 1], where Σg ×{1} = ∂Vg. We
define a map F on U as

F (x, t) = Ft(x).

By definition, F restricts to F1 on ∂Vg and to the identity on the other
boundary component of U . Thus, we can extend F by the identity to a
homeomorphism of Vg restricting to F1 on the boundary. �
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As a consequence, if f ∈ Hg is any mapping class in the handlebody
group, then any element of Mcg(Σg,1) in the preimage of f lies in Hg,1. As a
consequence, Hg,1 is simply the preimage of Hg in Mcg(Σg,1), and we have
a sequence

1→ π1(Σg)→ Hg,1 → Hg → 1.

For the mapping class group of a surface with one boundary component
Σ1
g and the surface with one marked point Σg,1 there is the following well-

known sequence

1→ Z→ Mcg(Σ1
g)→ Mcg(Σg,1)→ 1

where the map Mcg(Σ1
g)→ Mcg(Σg,1) is defined by gluing a punctured disk

to the boundary component of Σ1
g, and the kernel is generated by the Dehn

twist about the boundary component [10, Chapter 3.6.2]. Note here that in
Mcg(Σ1

g) we consider homeomorphisms which restrict to the identity on the

boundary component of Σ1
g up to isotopies with the same property. Again,

it is easy to see that the Dehn twist about the boundary of a spot extends to
the handlebody, and thereforeH1

g is simply the preimage ofHg,1 in Mcg(Σ1
g).

We thus have the sequence

1→ Z→ H1
g → Hg,1 → 1.

4. A Topological Interlude

Before continuing to discuss properties of handlebody groups in earnest,
this section is concerned with two applications which highlight the role of
handlebody groups in topology.

We begin with recalling the standard way of constructing three-manifolds
using handlebodies: Heegaard splittings. Let Vg be a handlebody of genus g.
The boundary of Vg is then a surface Σg of genus g. If F is a representative of
a mapping class ϕ ∈ Mcg(Σg), then one can obtain a closed three-manifold
Mϕ by gluing two copies of Vg along their boundary according to F (to be
precise, we need to glue a copy of Vg to one with the opposite orientation).
It is not hard to see that, up to homeomorphism, the resulting manifold
Mϕ = Vg ∪ϕ Vg depends only on the mapping class ϕ and not F . From the
fact that every closed oriented three–manifold admits a triangulation one
can quickly conclude that this construction in fact yields all closed oriented
three-manifolds.

The description of M as Mϕ is called a Heegaard splitting of M . All
information about M is then encoded in ϕ, and so this point of view allows
us, in principle, to study topological and geometric properties of three–
manifolds by studying the mapping class group of the surface Σg.

However, in a description M = Mϕ, neither the genus g nor the gluing
mapping class ϕ are determined by the three-manifold M . To describe this
ambiguity, we can use the handlebody group. We begin with the gluing
map. Intuitively, if we modify ϕ by an element which extends to one of
the handlebodies, then this extension (together with the identity on the
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other handlebody) will define a homeomorphism between the resulting three-
manifolds. Formally, there is an element fg ∈ Mcg(Σg) so that if ψ = aϕb
for a ∈ Hg, b ∈ fgHgf−1g , then Mψ is homeomorphic to Mϕ. For a quick
and readable discussion of this, compare [53, Section 2.2] or any textbook
on 3-manifold topology. This defines an equivalence relation ∼ on Mcg(Σg):
two elements are equivalent exactly if they are in the same double coset of
the handlebody subgroup Hg and the conjugate fgHgf−1g . We then get a
map

Mcg(Σg)/ ∼→M(3)

where M(3) denotes the set of homeomorphism classes of closed oriented
three-manifolds.

To describe the ambiguity in genus, we need to use surfaces with bound-
ary. Namely, consider a surface Σ1

g of genus g with one boundary compo-

nent. Gluing a disc to the boundary component defines a map Mcg(Σ1
g)→

Mcg(Σg), and for a ϕ ∈ Mcg(Σ1
g) we let Mϕ to be the manifold defined by

the image of ϕ in Mcg(Σg).
The surface of genus g+1 with one boundary component can be obtained

from Σ1
g by gluing a torus with two boundary components to the boundary

component of Σ1
g. Extending mapping classes by the identity then defines a

stabilisation map
sg : Mcg(Σ1

g)→ Mcg(Σ1
g+1),

equipping the set of groups {Mcg(Σ1
g), g ≥ 0} with the structure of a directed

system. The stabilisation map is compatible with the handlebody subgroups
H1
g in the sense that sg(H1

g) ⊂ H1
g+1.

For any g and any ϕ ∈ Mcg(Σ1
g), the manifolds Msg(ϕ) and Mϕ are dif-

feomorphic, and we thus have a map

lim
g→∞

Mcg(Σ1
g)→M(3)

where M(3) denotes the set of diffeomorphism classes of closed oriented
three-manifolds.

In fact, the stabilisation maps sg are also compatible with the stabilisation
equivalence relation ∼ described above. The central result on Heegaard
splittings can now be phrased as follows

Theorem (Reidemeister-Singer). The map

lim
g→∞

(
(H1

g\Mcg(Σ1
g)/fgH1

gf
−1
g

)
→M(3)

is a bijection.

By this theorem, topological invariants of three-manifolds can be seen as
invariants of mapping classes which are constant on double cosets of the
handlebody group and do not change under stabilisation.

We want to give one example of this point of view. Namely, consider
a Heegaard splitting of the three-sphere S3 = Mf . As above, changing
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the splitting by an element of the handlebody group does not change the
resulting manifold. On the other hand, if we modify the splitting by an
element in the Torelli group, the resulting manifold need not be S3 – but
it is easy to see that it will still be an integral homology sphere (and in
fact all of them arise in this way). Using the action of Hg on the homology
of the surface (compare Section 7), Morita [49] showed that one can in
fact obtain any homology sphere already using an element of the Johnson
kernel, an infinite index subgroup of the Torelli group. Pitsch [53] improved
this further, showing that maps in the next term of the Johnson filtration
also suffice. This has consequences for the study of the Casson invariant of
homology spheres. For details, we refer the interested reader to [49, 53].

There is one other important topological application of handlebody groups
which we want to highlight. Namely, let k be a knot in S3. We call k fibered
if the complement in S3 of a regular neighbourhood K of k is homeomorphic
to a mapping torus

Σ1
g × [0, 1]/(x, 0) ∼ (ϕ(x), 1)

where Σ1
g is a genus g surface with one boundary component. The mapping

class ϕ ∈ Mcg(Σ1
g) is then called the monodromy of the knot k. In this

setting, we have the following theorem.

Theorem ([8]). A fibered knot k is homotopically ribbon if and only if its
monodromy ϕ is conjugate into the handlebody group H1

g.

The precise definition of homotopically ribbon is not important here; it
may suffice to remark that it is stronger than being slice and weaker than
being ribbon – and the exact relation between these properties is a major
open question in knot theory. The point we want to make is that the alge-
braic condition of being conjugate into the handlebody group has a purely
topological characterisation in terms of k.

As a quick application, note that this theorem has been used [5] to show
that certain knots are not ribbon, by showing that their monodromies cannot
be conjugate into the handlebody group.

5. Examples and the Membership Problem

The purpose of this section is twofold: first we will construct three im-
portant types of elements in the handlebody group (which will allow us to
learn the about first algebraic properties of Hg), and then we will develop
methods to detect when a surface mapping class is contained in Hg.

We begin with examples. For a simple closed curve δ on Σg denote by Tδ
the left handed Dehn twist about δ (compare [10]).

Example 5.1 (Meridional Dehn Twists). Let δ be a meridian. Then the
Dehn twist Tδ is contained in Hg. We call these meridional Dehn twists.
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Figure 2. A half-twist and its effect on a curve.

Figure 3. A twist not in the handlebody group

Intuitively, we can cut Vg at a disk bounded by δ and twist the handle by
a full turn. Formally, let D be a disk bounded by δ, and let U ⊂ V be a
closed regular neighbourhood of D. Choose an identification U = D2 × [0, 1]
so that ∂D2× [0, 1] is a closed regular neighbourhood of δ. Define a map on
U by

F (x, t) = (rt2π(x), t)

where rθ denotes the counterclockwise rotation by an angle of θ. F restricts
to the identity on D2×{0}, D2×{1} and therefore extends to a homeomor-
phism of Vg, and clearly restricts to a Dehn twist about δ on the boundary.

Example 5.2. If δ is a separating meridian, then the (left) Dehn twist about
δ has a square root in the handlebody group, called a (left) half-twist about δ.
To construct it, we can cut the handle at δ and twist by a half-turn (compare
Figure 2). Formally, suppose that δ cuts ∂V into Y1, Y2. The half-twist will
be the identity on Y1, a mapping class of order 2 on Y2 (a rotation by π),
and half of the twist as described in Example 5.1.

In fact, Dehn twists can also be used to give examples of elements not
contained in the handlebody group.

Example 5.3. Consider a handlebody Vg, a meridian δ, and a curve α
which intersects δ in a single point. Then Tα /∈ Hg.

Namely, consider Tα(δ). This curve intersects δ in a single point, and
therefore cannot be a meridian (compare Figure 3 and Lemma 2.2). How-
ever, handlebody elements clearly preserve the property of being a meridian,
and therefore Tα /∈ Hg.

As a conclusion we get the first indication that the handlebody group is
a “complicated” subgroup of the mapping class group.
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Figure 4. An annulus twist. In the top figure, there are two
curves in the handlebody, which bound an annulus. Cutting
at the annulus yields a manifold with two preferred annuli
on the boundary (middle figure). The annulus twist is the
homeomorphism obtained by twisting one of them by a full
turn and then regluing. The effect on a meridian is shown on
the bottom. Note that with the orientation of the surface,
the twists on the boundary have opposide handedness.

Corollary 5.4. The handlebody group Hg is an infinite, infinite-index sub-
group of Mcg(Σg), which is not normal.

Proof. Hg is clearly infinite, since it contains a Dehn twist Tδ about some
non-separating meridian δ. Let α be as in the previous example. Then no
power of Tα is contained in Hg. Namely, the algebraic intersection number
of Tnα (δ) with δ is n, and therefore Tnα (δ) is not a meridian. This shows
that Hg has infinite index. Finally, since α and δ are non-separating, and
all non-separating Dehn twists are conjugate in the surface mapping class
group we conclude that Hg is not normal. �

Next, we turn to products of several disjoint Dehn twists. The most
important construction is given by the following example.

Example 5.5 (Annulus Twists). Suppose that α1, α2 are two disjoint curves,
so that there is a properly embedded annulus A ⊂ Vg with ∂A = α1 ∪ α2.
Then the annulus twist Tα1T

−1
α2

is an element of Hg.
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Intuitively, we cut Vg at the annulus A and twist one side by a full turn
(compare Figure 5). Looking from above, at both curves the annulus turns
the same way, so in the orientation of boundary we see a product of a left
and a right twist. Formally, consider a neighbourhood U of A which is
homeomorphic to S1 × [0, 1] × [0, 1], where S1 × [0, 1] × {0, 1} = U ∩ ∂Vg.
Define a map on U by

F (x, t, s) = (rt2π(x), t, s)

F restricts to the identity on S1×{0}× [0, 1], S1×{1}× [0, 1] and therefore
extends to a homeomorphism of Vg. It restricts to the boundary as a prod-
uct of a left and a right Dehn twist about α1, α2, since one of the induced
inclusions S1 × [0, 1]× {0, 1} is orientation preserving, and one orientation
reversing.

In fact, as the following theorem shows, these examples already yield all
multitwists which are contained in the handlebody group.

Theorem 5.6 ([51, Theorem 1.11], [46, Theorem 1]). Suppose that α1, . . . , αk
are disjoint simple closed curves on Σg. Then

Tn1
α1
. . . Tnk

αk
∈ Hg

if and only if, up to reordering,

i) α1, . . . , αr are meridians, and
ii) For all i = r + 2, r + 4, . . . , r + 2l = k, αi−1, αi bound an embedded

annulus, and ni−1 = −ni.

In particular, this theorem implies that the only (single) Dehn twists
which are contained in the handlebody group are the meridional Dehn twists.

The theorem also severely constrains which multitwists are contained in
the handlebody group. In constrast, the following easy lemma shows that
the conjugacy problem is trivial for multitwists.

Lemma 5.7. Every multitwist is conjugate into Hg.

Proof. Let ∆ ⊂ Σg be any multicurve. We begin by observing that since
any surface with boundary is the boundary of a handlebody with spots,
there is an identification of Σg with the boundary of a handlebody so that ∆
consists of meridians (namely, glue handlebodies with spots according to the
complementary components of ∆). But this implies that there is a mapping
class group element φ so that φ(∆) consists of meridians for our preferred
identification of Σg with the boundary of a handlebody. Thus, conjugating
any multitwist about ∆ by φ is a product of twists about meridians, and
thus contained in Hg. �

There is a third class of examples which is crucial to understanding han-
dlebody groups. To describe them, we need a slightly different construction
of handlebodies. To this end, let S be a surface of genus g ≥ 0 with n ≥ 1
boundary components. The product V = S × [0, 1] is a handlebody (see
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Figure 5. The interval bundle over a bordered torus is a
genus 2 handlebody.

Figure 5 for an example). Namely, consider disjoint arcs a1, . . . , ak ⊂ S so
that S − (a1 ∪ · · · ∪ ak) is a single polygon. Then Di = ai × [0, 1] ⊂ V
are disjoint disks, and V − (D1 ∪ · · · ∪ Dk) is a single 3–ball. Hence, V
is a 3–manifold obtained from a 3–ball by identifying disjoint disks on the
boundary in pairs, and thus is a handlebody.

Example 5.8 (I-bundle maps). Let S be a surface with boundary and
V = S × [0, 1] the trivial interval bundle. If f is any homeomorphism of
S, we obtain a homeomorphism f× Id of V . The isotopy class of this home-
omorphism defines an element of Mcg(V ). We call the elements obtained in
this fashion interval bundle maps or I-bundle maps for short.

We can make this construction a bit more formal.

Corollary 5.9. Suppose S is a surface of genus g ≥ 0 with n ≥ 1 boundary
components, and let k be such that π1(S) is a free group of rank k. Let S′

be the surface obtained from S by gluing a punctured disk to each bound-
ary component of S. Then the construction from Example 5.9 induces a
homomorphism

I : Mcg(S′)→ Hk
We will later see that this map is in fact injective (compare Corollary 6.2).

Proof. The construction from Example 5.8 yields a homomorphism

i : Mcg(S)→ Mcg(Vk).

We have the well-known sequence (compare e.g. [10, Proposition 3.19])

1→ Zn → Mcg(S)→ Mcg(S′)→ 1

where the kernel Zn is generated by Dehn twists about the boundary com-
ponents of S. To prove the corollary, we therefore only have to show that
these Dehn twists map to the identity under i. However, this follows since
the twist about the boundary component β maps to a homeomorphism which
restricts on the boundary to a product of a left and a right Dehn twist about
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curves parallel to β (compare the discussion in Example 5.5 to see why the
handedness is opposite). �

Suppose now that φ ∈ Mcg(Σg) is given to us – how can we detect if φ is
in fact an element of the handlebody group?

Maybe the most straightforward and useful criterion is the following.

Lemma 5.10. φ ∈ Mcg(Σg) is an element of Hg if and only if for some cut
system α1, . . . , αg the image φ(α1), . . . , φ(αg) is also a cut system.

Proof. Choose disjointly embedded disks Di bounded by the αi. If φ is in the
handlebody group, then clearly the images φ(αi) are also meridians, and the
claim holds. The converse is the Alexander trick again: if φ(α1), . . . , φ(αg) is
a cut system, then choose disks D′i bounded by φ(αi). The homeomorphism
Σg−(α1∪· · ·∪αg)→ Σg−(φ(α1)∪· · ·∪φ(αg)) extends to a homeomorphism
Vg− (D1∪ · · ·∪Dg)→ Vg− (D′1∪ · · ·∪D′g) since every homeomorphism of a
sphere extends to the ball. This implies that φ extends to Vg, and therefore
φ ∈ Hg. �

As a corollary we have the following.

Corollary 5.11. Let φ ∈ Mcg(Σg) be given. The following are equivalent

i) φ ∈ Hg.
ii) The outer automorphism of π1(Σg) induced by φ preserves the kernel

K = ker(π1(Σg, p)→ π1(Vg, p))

induced by the inclusion of the boundary into Vg.
iii) For any meridian α, the curve φ(α) is a meridian.
iv) For some cut system α1, . . . , αg the image φ(α1), . . . , φ(αg) is also a cut

system.

At this point we want to mention that the question if an element φ is
conjugate into Hg is much more challenging but, in a sense, more natural:
being conjugate into Hg exactly means that φ can be extended to a han-
dlebody, whereas being contained in Hg means that φ can be extended to
a handlebody using the chosen, non-canonical identification Vg ∼= Σg. We
will see later (Lemma 7.2) that there are elements in Mcg(Σg) which are not
conjugate into Hg.

We can also try to characterise when an element is conjugate intoHg using
variants of the conditions of Corollary 5.11. Conditions ii) is particularly
amenable for this:

Corollary 5.12. An element φ ∈ Mcg(Σg) is conjugate into Hg if and only
if there is a surjection p : π1(Σg)→ Fg so that φ∗ preserves ker(p).

Proof. In light of Corollary 5.11 it suffices to show that any surjection p as in
the assumption can be realised by an identification of Σg with the boundary
of a handlebody. This is proved e.g. in [36, Lemma 2.2]. �
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However, applying this corollary is not very straightforward, since it is
not clear how to predict which p can work in advance. Similarly, to apply
Corollary 5.11 iii) or iv) one needs to know in advance which simple closed
curves are the meridians.

Nevertheless, the conjugation problem has an algorithmic answer. Namely,

Theorem 5.13 ([9]). There is an algorithm which detects, given a pseudo-
Anosov map φ, if it is conjugate into Hg. In case φ is not conjugate into
Hg, the algorithm can describe the maximal compression body to which φ
extends.

A compression body a 3–manifold obtained from a trivial surface bundle
Σ × [0, 1] in two steps. First, one attaches 2-handles (think of them as
thickened disks) along disjoint simple closed curves on Σ× {0} to obtain a
manifold M . In a second step, one glues a ball to each boundary component
of M which is homeomorphic to a sphere. The resulting C has one boundary
component which was the original surface Σ × {1}, and possibly several
other boundary components. A handlebody is a compression body where
the system of curves chosen in the first step has complements which are
spheres with boundary. Compare e.g. [6] for details on compression bodies
and their relation to extending surface homeomorphisms.

The basic idea behind the algorithm is the following: fix a hyperbolic
metric on the surface. The main step is to show that there is a constant
L = L(φ) so that if φ extends to some handlebody, then there is a meridian
α of length at most L. Once this is established, the fact that there are only
finitely many simple closed curves on Σg up to any given length can be used
to test if φ extends. To prove the main step, suppose that φ extends, and
consider any meridian α. The images φn(α) are then meridians, and so for
large n have waves as in Section 2. In fact, one can show that any long
enough segment a ⊂ α (depending on the dilatation of φ) already has an
image φ(a) which forms a wave with a. Using meridian surgery produces
then the short meridian.

We close this section with a brief discussion of how the different conjugates
of the handlebody group interact. On the one hand, that there are many
conjugates of Hg which intersect in infinite, nontrivial subgroups. Namely,
we can use a mapping class φ fixing a separating meridian δ, so that on one
complementary component, φ restricts to the identity, and on the other φ
restricts to an element that cannot be conjugate into a handlebody group
(compare Section 7). Now, the conjugate of Hg by φ will intersect Hg in the
desired way.

The next theorem shows that in some sense this is the only way that two
conjugates can intersect in a complicated way.

Theorem 5.14 ([1, 3, 9]). Let φ be any pseudo-Anosov map. Then φ extends
to at most finitely many handlebodies. In other words, φ can be contained
in at most finitely many conjugates of Hg.
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Figure 6. A Nielsen twist realised by a annulus twist

6. A Third Perspective: Free Groups

If we consider Hg as the mapping class group of a handlebody, then we
also obtain a natural map

A : Hg → Out(Fg)

induced by the action of handlebody homeomorphisms on the fundamental
group of Vg, which is simply a free group. One way to understand the action
on π1(Vg) is the following. Consider δ1, . . . , δg a cut system. Consider an
embedded graph Γ ⊂ ∂Vg with one vertex and g edges, so that each edge of
Γ intersects one of the δi in exactly one point. We call such a graph a dual
graph to the cut system. The map π1(Γ)→ π1(Vg) induced by the inclusion
is then an isomorphism.

For a class φ ∈ Hg, we can now consider the image graph φ(Γ), and read
off the elements defined by its edges according to the intersection pattern
with the meridians δi, in order to determine the action of φ on π1(V ).

To get a feeling for this action, let us consider again the example elements
we built in Section 5.

Example 6.1. i) If δ is a meridian, then A(Tδ) = 1. This can for ex-
ample easily be seen from the explicit description given in Example 5.1:
the extension F of Tδ to Vg is the identity outside an embedded ball in
Vg (the regular neighbourhood of the disk). For any loop α the image
F (α) is therefore homotopic to α, showing the result.

ii) Suppose that δ is a meridian such that ∂Vg−δ consists of one torus and
one genus g − 1 subsurface. We will then say that δ cuts off a handle.
We can choose a free basis x1, . . . , xg for π1(Vg) so that the image of
the torus is 〈x1〉 and the image of the other subsurface is 〈x2, . . . , xg〉.
The image of the half-twist Hδ under A then maps x1 to x−11 , fixing all
other xi.

iii) Annulus twists can act nontrivially on π1(Vg). Intuitively, every time
a loop crosses the annulus A, it is modified by inserting a copy of the
element defined by the annulus.

We make this precise in a concrete example, which we will use later.

Consider a cut system δ1, . . . , δg and a dual graph Γ as above. Take α
a curve disjoint from Γ intersecting δ1 once, and α′ a curve bounding an
annulus with α (in Vg) which intersects Γ in a single point, on the edge



A PRIMER ON HANDLEBODY GROUPS 21

dual to δ2 (compare Figure 6). We consider the annulus twist TαT
−1
α′ .

Every edge except for the one dual to δ2 is fixed (since the twist curves
are disjoint), whereas the edge dual to δ2 is mapped (up to homotopy)
to a concatenation of itself and the edge dual to δ1. Hence we have

A(TαT
−1
α′ )(xi) =

{
xi if i 6= 2
x1x2 if i = 2

iv) Let S be a surface of genus g ≥ 0 with n ≥ 1 boundary components, and
φ ∈ Mcg(S) any element. Recall the construction of the I–bundle map
I(φ) from Corollary 5.9. We then have

A(φ) = φ∗

where φ∗ denotes the induced map on π1(S) = π1(S × [0, 1]).

Part iv) also shows:

Corollary 6.2. Suppose S is a surface of genus g ≥ 0 with n ≥ 1 boundary
components, and let k be such that π1(S) is a free group of rank k. Then
the map

I : Mcg(S′)→ Hk
from Corollary 5.9 is injective.

Proof. The concatenation A◦I agrees with the action of Mcg(S′) on π1(S
′),

and it is known that this is injective, e.g. [10, Theorem 8.8]. �

We can also use these examples for the following.

Theorem 6.3 ([12, 56, 48]). The map A : Hg → Out(Fg) is surjective.

Sketch of proof. Let x1, . . . , xg be a free basis of Fg. It is well-known that
Out(Fg) is generated by automorphisms of the following form

σij(xk) = xk if k 6= i, σij(xi) = xixj

and

εi(xk) = xk if k 6= i, εi(xi) = x−1i .

Thus, we only need to realise them as handlebody homeomorphisms. For
the first class, this is possible using annulus twists as in the example iii)
above. The second class is realised by half-twists about meridians cutting
off the handle corresponding to xi as in the example ii). �

As we have seen, Dehn twists about meridians are contained in the kernel
of A – showing in particular that the handlebody group Hg is not generated
by the Dehn twists contained in it.

In fact, the meridional Dehn twists exactly generate the kernel.

Theorem 6.4 ([37]). The kernel of A : Hg → Out(Fg) is the twist group,
i.e. the group generated by Dehn twists about meridians.
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Sketch of proof. We have a short exact sequence

1→ ker(A)→ Hg → Out(Fg)→ 1.

It is known that Out(Fg) is a finitely presented group, and Hg is finitely
generated (compare Section 8). In fact, Luft considers a generating set G
of Hg a part of which lies in the kernel of A, and the rest of which maps
bijectively under A to a specific generating set G′ of Out(Fg). Using an
explicit presentation 〈G′|R〉 of Out(Fg) with respect to G′, one can now
easily give a normal generating set of ker(A): those words in G defined by
the relators R, and the elements ker(A) ∩ G. To prove the theorem, one
now only has to check that these finitely many elements of Hg are indeed
products of meridional twists. �

The twist group is a somewhat unpleasant group, as shown by the follow-
ing

Theorem 6.5 ([44]). The twist group is not finitely generated. In fact, its
Abelianisation contains Z∞.

On the other hand, the proof of Theorem 6.3 together with Luft’s theorem
also yields the following natural (infinite) generating set for the handlebody
group.

Corollary 6.6. The handlebody group Hg is generated by meridional Dehn
twists, meridional half-twists and annulus twists.

The connection to Out(Fn) can sometimes be used to say something about
handlebody mapping classes. For example, we note the following result,
which is a source of interesting pseudo-Anosov mapping classes in Hg. For
its formulation, recall that an outer automorphism Θ of the free group is
geometric if there is an identification Fg = π1(Σ) of the free group with the
fundamental group of a surface, so that Θ is induced by a homeomorphism
of Σ. It is fully irreducible if no power Θk preserves a free factor (up to
conjugacy). For background on these terms, compare e.g. [2].

Lemma 6.7. Suppose that Θ is a non-geometric, fully irreducible outer
automorphism of Fg. Then any element of A−1(Θ), i.e. any handlebody
group element φ acting as Θ on π1(Vg), is pseudo-Anosov.

Proof. Suppose that some power φn fixes a curve α. If α is a meridian,
let D be a disk bounded by α. By the van-Kampen theorem, D defines
a nontrivial free splitting of π1(Vg) as a free product π1(Vg) = B1 ∗ B2 or
a HNN extension π1(Vg) = B1∗. Since φn preserves α, and thus D up to
homotopy, we would then get that Θ2n preserves the free factor B1 up to
conjugacy. This is impossible by full irreducibility.

If α however is not a meridian, then it defines a nontrivial conjugacy class
z in π1(Vg) = Fg which is then preserved by Θ. By [2, Theorem 4.1] this
is only possible if Θ is geometric (and z corresponds to the boundary of a
surface realising it) which contradicts our assumption. �
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Question 6.8. Can one relate geometric properties of Θ to geometric prop-
erties of a (suitable) element in A−1(Θ)?

A concrete variant of this would be: consider the action of Θ on Culler-
Vogtmann Outer Space. How does the translation length with respect to the
Lipschitz metric relate to possible translation lengths of ϕ ∈ A−1(Θ) acting
on Teichmüller space with the Thurston metric?

Let us also remark that geometric, fully irreducible elements can in fact be
realised by handlebody group elements which are reducible (surface) map-
ping classes: they are in the image of the interval bundle map I from Corol-
lary 5.9, all elements of which preserve the boundary of the surface S. Also
note that since the twist group contains pseudo-Anosov maps, the fibre
A−1(Θ) for any nontrivial Θ will contain pseudo-Anosov maps.

A somewhat more careful analysis of possible stabilisers of elements in
the preimage of Θ can also be used to study group-theoretic properties of
Θ. Namely, we can show

Proposition 6.9 ([22]). For g ≥ 4 and any finite index subgroup Γ <
Out(Fg) there is no homomorphism s : Γ→ Hg so that A ◦ s is the identity.

7. Symplectic Representation

For the surface mapping class group, we have the following well-known
short exact sequence induced by the action of mapping classes on H1(Σg;Z):

1→ Ig → Mcg(Σg)→ Sp(2g,Z)→ 1.

Here, Ig is the Torelli group (compare [10, Theorem 6.4 and Chapter 6.5]).
In this section we discuss the interaction of Hg with the quotient and the
kernel of this sequence. We begin with the image in the symplectic group.
There is one obvious constraint for the handlebody group acting on homol-
ogy. Namely, let

L = ker(H1(Σg;Z)→ H1(Vg;Z))

be the kernel of the map induced by inclusion of the boundary. L is a
Lagrangian subspace, i.e. half-dimensional and totally isotropic with respect
to the algebraic intersection pairing. Isotropy follows from Lemma 2.1, and
a cut system spans a g–dimensional subspace of homology. In fact, any cut
system therefore defines a basis of L. We can choose a standard symplectic
basis a1, . . . , ag, b1, . . . , bg of H1(Σg;Z) so that L is generated by a1, . . . , ag
and we will do so throughout this section.

Elements of the handlebody group clearly preserve L. By constructing
enough explicit homeomorphisms of Vg one can show that this obstruction
is the only one.

Theorem 7.1 ([4, Lemma 2.2], [26]). The image of Hg → Sp(2g,Z) consists
exactly of those symplectic matrices which preserve L. Explicitly, a matrix
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in Sp(2g,Z) is realised by a handlebody group element if it has the following
block form with respect to the basis a1, . . . , ag, b1, . . . , bg of H1(Σg;Z):(

A B
0 D

)
with g × g matrices A,B,C satisfying

At = D−1, BtD = DtB

If a matrix M preserves a subspace, then its characteristic polynomial is
reducible – and it is easy to construct symplectic matrices with irreducible
characteristic polynomial. As a consequence, there are elements of the sym-
plectic group which do not leave any Lagrangian invariant and we conclude:

Lemma 7.2. There are elements φ ∈ Mcg(Σg) which are not conjugate into
Hg.

Next, we turn to the interactions between the handlebody group and the
Torelli group Ig. The first important result is that homology alone is unable
to detect membership in the handlebody group.

Theorem 7.3. i) [36] There are elements of Ig no power of which is
conjugate into the handlebody group.

ii) [32] There are elements of any term in the Johnson filtration which
are not conjugate into the handlebody group.

The proofs of both of these results use the connection of the handlebody
group to topological questions, and we can only very briefly touch upon the
methods.

For i), one uses Heegaard splittings as in Section 4. The idea is to show
that if φ extends to some handlebody, then there is an embedding of the
surface into S3 so that modifying the standard Heegaard splitting of S3 by
φ still yields S3. On the other hand, if φ ∈ Ig, modifying by φ will yield a
homology sphere. To prove i), one now exploits the connection of Birman-
Craggs homomorphisms to Rokhlin invariants to construct a φ so that the
resulting homology spheres are never actual spheres. For details, we refer to
[36, Section 6].

The proof of ii) uses mapping tori and Johnson homomorphisms. The
latter can be defined in terms of pushing forward fundamental classes of
mapping tori. If the monodromy of the mapping torus M is conjugate into
the handlebody group, M is the boundary of a 4–manifold fibering over the
circle. In this case, the Johnson homomorphism applied to the monodromy
satisfies an additional vanishing result. A dimension argument is then used
to show the existence of Torelli group elements which do not satisfy this
obstruction.

The intersection of the Torelli group with the handlebody group can in
fact be described a bit more explicitly. Namely, we have
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Theorem 7.4 ([52]). The intersection Ig,1 ∩ Hg,1 is generated by annular
twists that cut off a genus 1 subsurface of Σg.

This should be compared to the classical theorem of Johnson that the
usual Torelli group is generated by genus 1 boundary pair maps, i.e. twist
products TαT

−1
β where α, β cut off a genus 1 subsurface. In other words, the

intersection Ig,1∩Hg,1 is generated by the subset of the canonical generating
set of Ig,1 which is contained in Hg,1.

Question 7.5. Can one develop a Johnson theory for the handlebody group?

The first stage of this question – an (infinite) generating set for the John-
son kernel – is ongoing work in progress of the author and Andy Putman.

8. Algebraic Properties

In this section, we collect some algebraic properties of the handlebody
group. As a first step, note that simply being a subgroup of a surface
mapping class group automatically implies many interesting properties for
Hg. For example

– Hg satisfies the Tits alternative.
– Hg is virtually torsion free.
– Hg is residually finite.
– Non-elementary subgroups of Hg cannot be lattices in higher rank

semi-simple Lie groups.

However, even many algebraic properties which are not automatically inher-
ited by subgroups are shared between Hg and Mcg(Σg).

8.1. Generation. We begin with the following classical result.

Theorem 8.1 ([54, 55]). For any genus g ≥ 2, the handlebody group is
finitely generated and finitely presented.

Suzuki and Wajnryb produce explicit generating sets and presentations,
using actions on connected and simply connected complexes respectively. A
fairly simple proof of finite generation can be given inductively, following
the same strategy as for the mapping class groups. To this end, one uses the
disk graph defined in Section 2. The quotient of D(V ) by Hg is finite, and so
finite generation of Hg is implied by finite generation of stabilisers of vertices
in D(V ) – in other words, stabilisers of meridians. If δ is a meridian, let V ′

be the (spotted, possibly disconnected) handlebody obtained by cutting V
at a disk bounded by δ. There is a surjective map

Mcg(V ′)→ StabMcg(V )(δ)

of the handlebody group of V ′ to the stabiliser of δ. V ′ is a handlebody, each
component of which has genus strictly smaller than g, but more spots. As
we discussed in Section 3, the kernel of the spot-forgetting map is the same
as the kernel of the boundary-forgetting map in the case of surface mapping
class groups, and therefore finitely generated. Hence we may, by induction
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on the genus, assume that Mcg(V ′) is finitely generated, and conclude that
the same is true for StabMcg(V )(δ).

8.2. Subgroups. In the study of mapping class groups, one frequently uses
free Abelian and finite subgroups. We understand the structure of both
classes in the handlebody group.

We begin with Abelian subgroups. Using meridional Dehn twists about
a pants decomposition, we find that Hg contains subgroups isomorphic to
Z3g−3. Since this is the maximal rank even for the surface mapping class
group, we have

Theorem 8.2. The maximal rank of a free Abelian subgroup in Hg is 3g−3.

Torsion on the other hand is more restrictive in the handlebody group.
Maybe the most important difference is that torsion in the handlebody group
has much smaller order.

Theorem 8.3 ([57, 58]). Every finite subgroup of Hg has order at most
12(g − 1).

In fact, the finite groups of maximal size can also be determined more
explicitly (compare [57]). A geometric reason for the smaller size of torsion
can be seen in the following characterisation.

Lemma 8.4 (e.g. [24, Corollary 6.2]). If G < Hg is finite, then there is
a multicurve consisting of meridians which is preserved by G, and whose
complements are spheres with boundary components (in other words, planar
subsurfaces).

Conversely, any finite G < Mcg(Σg) of this form is conjugate into the
handlebody group.

We note that in surface mapping class groups that are finite order elements
which are non-reducible, and thus there are finite cyclic subgroups of surface
mapping class groups which are not conjugate into the handlebody group.

8.3. Homological Properties. We begin with the first homology of han-
dlebody groups, where already a further difference to the mapping class
group appears. Namely, the first homology of handlebody groups is always
non-vanishing.

Theorem 8.5 ([55, 28, 27]3). We have

H1(Hg,Z) =

 Z⊕ Z/2Z for g = 1
Z⊕ Z/2Z⊕ Z/2Z for g = 2
Z/2Z for g > 2

3The computation of the first homology in [55] contains a mistake, compare [28, Re-
mark 3.5]
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Recall that the virtual cohomological dimension is the cohomological di-
mension of a finite index torsion free subgroup. It is known that the virtual
cohomological dimension of the mapping class group is 4g − 5 – in fact, the
same is true for the handlebody group:

Theorem 8.6 ([25]). The virtual cohomological dimension of the handlebody
group is 4g − 5.

The homology groups of Hg also stabilise, similar to the ones for surface
mapping class groups, as shown by Hatcher and Wahl [19]. In fact, Hatcher
announced a variant of the Madsen-Weiss theorem, computing the stable
homology of Hg completely (as generated by the even Morita-Mumford-
Miller classes).

From Theorem 8.5, it is immediate that the first Betti number of han-
dlebody groups of genus ≥ 2 is zero. Just as for mapping class groups and
outer automorphisms of free groups, it is a very interesting question to ask
if this property remains true virtually, i.e. for finite index subgroups. It is
known that Out(F3) has a finite index subgroup which surjects to Z [13],
and therefore H3 also has virtual positive first Betti number. However, we
have the following, likely very hard question.

Question 8.7. Does Hg, g ≥ 4 admit a finite index subgroup which surjects
to Z?

8.4. Homomorphisms. Surface mapping class groups are known, by the
work of Ivanov [29] and many others, to be rigid in the following sense: if
Γ1,Γ2 < Mcg(Σg) are any finite index subgroups, and ψ : Γ1 → Γ2 is any
isomorphism of groups, then ψ is simply a conjugation.

A way to phrase this succinctly uses the notion of the (abstract) commen-
surator of a group G: Comm(G) consists of isomorphisms between arbitrary
finite index subgroups G1, G2 < G, where two isomorphisms φ, φ′ : G1 → G2

are deemed equivalent if they coincide on a subgroup G3 < G1 ∩ G2 which
is finite index in G1, G2

4.
In spite of Hg being an infinite index subgroup of Mcg(Σg), we still have

rigidity for the handlebody groups as well.

Theorem 8.8 ([21]). The abstract commensurator of Hg, g ≥ 3 is the
handlebody group Hg (via its conjugation action on itself).

In particular, Out(Hg) = 1. This consequence was known before, by a
result of Korkmaz-Schleimer [35].

It might be interesting to study maps from handlebody groups to other
groups, in particular mapping class groups. For example, there is the fol-
lowing “superrigidity type” question

4Note that since the intersection of finite index subgroups is finite index, the com-
position of two isomorphisms between finite index subgroups is well-defined up to the
equivalence relation
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Question 8.9. Is there a finite index subgroup Γ < Hg and an inclusion
f : Γ→ Mcg(Σ′) which does not (virtually) extend to Mcg(Σg)?

9. Actions on measured laminations

In this section we summarise briefly some results on the action of the han-
dlebody group on the sphere of projective measured laminations PML. In
a similar spirit as before, we will mainly focus on the differences between the
actions of the full mapping class group and the handlebody group – showing
that the handlebody group is a very “small” subgroup from a dynamical
point of view.

We refer the reader to [11] for background on measured laminations. For
our purposes it suffices to recall that PML(Σg) is homeomorphic to a sphere
of dimension 6g− 7. The mapping class group acts on PML(Σg) by home-
omorphisms. The action is minimal, i.e. every orbit is dense. Every simple
closed curve on Σg also defines a point in PML(Σg), and the resulting set
is dense. Also, geometric intersection number extends to a continuous func-
tion i : ML×ML → R. For projective laminations λ, λ′ the intersection
number is not defined, but having i(λ, λ′) = 0 is a well-defined property.

Define Λ(Σ) ⊂ PML to be the closure of the set of meridians, and

Z(Λ) = {µ ∈ PML | ∃λ ∈ Λ : i(µ, λ) = 0}.
We then have

Theorem 9.1 ([41]). i) Λ is the limit set of the action of the handle-
body group on PML(Σg), i.e. the smallest nonempty closed subset of
PML(Σg) invariant under Hg.

ii) The handlebody group acts properly discontinuously on PML−Z(Λ).

The set PML−Z(Λ) is sometimes called the Masur domain, and is of
importance in the study of degenerations of Kleinian groups. Giving details
on this connection would lead us too far afield; we refer the interested reader
to e.g. [34] and the references therein for details.

The sphere of projective measured laminations carries a natural (Lebesgue)
measure class which is preserved by the action of the mapping class group.
With respect to this class, we have the following.

Theorem 9.2 ([41, 33] [38, Appendix]5). The set Λ has measure zero.

The lamination point of view also lets us give yet another perspective on
the membership problem. Namely, if φ ∈ Hg is a pseudo-Anosov element,
then the stable and unstable laminations of φ are contained in Λ: take any
meridian δ, and consider φn(δ) as n→ ±∞. These converge, by north-south-
dynamics of pseudo-Anosov maps, to the stable and unstable laminations of
φ, and are clearly sequences of meridians.

5Masur showed this result in genus g = 2, and Kerckhoff extended it to any genus –
but his proof contained a gap which Gadre closed.
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It is natural to ask if the converse is true as well. This turns out to be
not quite true.

Theorem 9.3 ([3, 1]). A pseudo-Anosov φ has the stable or unstable lam-
ination in Λ if and only if it admits a power which partially extends to Vg.
This means there is a compression body C ⊂ V sharing a boundary with Vg,
so that φn extends to C.

In [3], Biringer, Johnson and Minsky show that the theorem is in fact
optimal – there are elements whose powers extend, but they themselves do
not, and there are elements whose (un)stable laminations lie in Λ, but no
power extends to all of V . Also, we note that the theorem works in higher
generality than handlebodies.

10. Geometric Properties

By Theorem 8.1, the handlebody group is finitely generated, and therefore
it carries a metric which is unique up to quasi-isometry (any word metric
defined by a finite generating set will do). In this section we discuss what
is known about this coarse geometry for handlebody groups.

10.1. Geometry of the disk graph. In the case of the surface mapping
class group, the corresponding coarse geometry of Mcg(Σg) is by now very
well understood. A core tool is here the foundational work of Masur-Minsky,
which uses the curve graphs of Σg and its subsurfaces to construct explicit
quasi-geodesics in Mcg(Σg) and derive a distance formula in terms of sub-
surface projections.

To study handlebody groups, one is therefore first led to trying to un-
derstand the geometry of disk graphs which we have already encountered
in Section 2. Their geometry is understood to a certain degree. The most
naive approach to study D(V ) is to consider it as a sub-graph of the curve
graph C(∂V ). We have the following

Theorem 10.1 ([43]). As a subset of C(∂V ), the disk graph D(V ) is quasi-
convex.

However, recall that the curve (and disk) graphs are locally infinite, and
therefore not proper metric spaces. Hence, quasi-convexity does not suf-
fice to show that the inclusion is a quasi-isometric embedding, and tells us
very little about the intrinsic geometry of D(V ). In fact, the disk graph is
arbitrarily badly distorted in the curve graph.

To describe this issue, will use the notion of subsurface projection devel-
oped in [40]. We refer the reader to the article by Masur and Minsky for
details, and only briefly recall the necessary concepts here.

Let Y be a subsurface of a surface S, and let α be a simple closed curve in S
which intersects Y nontrivially. Then there is a procedure called subsurface
projection which associates to α an arc or simple closed curve in Y . The
result of this projection is well-defined up to distance 2 in the arc or curve
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graph of Y . For the arc version, πY (α) is simply one of the arcs in Y ∩ α.
To obtain the curve projection, one considers any intersection arc of α with
Y , and completes this arc to a simple closed curve with a segment in ∂Y .
We refer to Section 2 of [40] for details.

Example 10.2. Consider a description of the handlebody of genus 2g as a
trivial interval bundle V = Σ1

g × [0, 1]. The boundary of Σ1
g defines a simple

closed curve δ on ∂V which is disk-busting, i.e. every meridian intersects
δ (since, as we have seen before, the inclusion of Σ1

g into V is π1–injective).
We therefore have a subsurface projection map

π : D(V )→ A(Σ1
g)

from the disk complex of V to the arc complex of Σ1
g which associates to a

meridian α the intersection of α with Σ1
g×{1} (which can be identified with

one of the complementary components of δ). This map is clearly Lipschitz,
as disjoint meridians map to disjoint arc systems. Since pseudo-Anosov
mapping classes ψ of Σ1

g act with infinite diameter orbits on A(Σ1
g), the

corresponding handlebody group elements defined by such ψ act with infinite
order orbits on D(V ).

However, as mapping classes of ∂V , they are reducible (they fix δ!) and
therefore have finite diameter orbits.

In spite of the problems of the embedding, the intrinsic geometry of the
disk graph shows similarities to that of the curve graph.

Theorem 10.3 ([42]). For any g ≥ 2, the disk graph D(V ) is Gromov
hyperbolic.

In fact, we can describe distances in D(V ) using a Masur-Minsky type
distance formula:

Theorem 10.4 ([42]). We have, for large enough K,

dD(V )(α, α
′) =K

∑
Y witness

[dAC(Y )(πY (α), πY (α′))]K .

Here, “=K” denotes equality up to uniform additive and multiplicative
constants. πY denotes subsurface projection, dAC(Y ) is the distance in the
curve-and-arc-graph of Y , and [·]K is the function which is x if the argument
is at least K, and zero otherwise. For the definition of “witness”, we refer
to [42] (where they are called “holes”, but the terminology “witness” is
becoming more common). Briefly, a witness is subsurface for which the
subsurface projection of meridians is always nonempty, and the diameter of
the projection is large enough.

10.2. Geometry of Hg. Even though the geometry of the “ambient” map-
ping class group is well-understood, the following theorem shows that this
does not suffice to understand the geometry of Hg. For the formal version,
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note that the distortion function of a finitely generated subgroup H of a
finitely generated G is the function

D(n) = max{‖h‖H | ‖h‖G ≤ n}.
The distortion function depends on the choice of word norms, but its growth
type does not. We say that a subgroup is undistorted if the distortion
function is linear, and distorted otherwise. In that case, the growth type of
the distortion function gives an indication of how different the word norms
are.

Theorem 10.5 ([15]). For any g ≥ 2, the handlebody group Hg is exponen-
tially distorted in the mapping class group Mcg(Σg).

One reason why the geometry of handlebody groups is very different to
that of its ambient mapping class group is the following phenomenon, which
shows that subsurface projections of meridians are (usually) not meridians.

Example 10.6. Consider a handlebody V = V3 of genus 3, and a separating
meridian δ. Denote by Y the complementary component of δ which has genus
2, and by T the other component. The torus T contains a unique meridian,
and let δ1, δ2 be two parallel, disjoint copies of this meridian in T . We
choose two disjoint arcs a1, a2 so that one endpoint of ai lies on δi, and the
other on δ. Now, let a ⊂ Y be any arc whose endpoints are also endpoints
of a1, a2. Then

Γ = δ1 ∪ a1 ∪ a ∪ a2 ∪ δ2
is connected, and intersects Y exactly in a. The boundary of a regular neigh-
bourhood of Γ consists of three simple closed curves, two of which are parallel
to δ1, and the third of which we call γa.

The important observations are that γa is a meridian for any choice of
a, and πY (γa) = a. In particular, the subsurface projection of a meridian to
Y can be any arc whatsoever.

As a consequence of Theorem 10.5, there is no reason to expect that the
word geometry of Hg should be comparable to that of the surface mapping
class group. Direct applications of geometric methods from the mapping
class group will usually yield, if they can be used, rather coarse results.
In fact, it seems as if the word geometry of Hg is more similar to that of
Out(Fg). For example we have,

Theorem 10.7 ([16, 17]). For g ≥ 3, the Dehn function of Hg is exponen-
tial.

Surface mapping class group have quadratic Dehn functions since it they
are automatic [50], while it is known that Out(Fn) has an exponential Dehn
function for n ≥ 3 [18, 7].

More intricate geometric questions about Hg are currently completely
open. To mention one basic question, note that it is an immediate conse-
quence of Masur-Minsky’s distance formula [40] that the stabiliser of any
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simple closed curve is undistorted in the mapping class group. Correspond-
ingly, let us ask

Question 10.8. Which stabilisers of curves on ∂Vg are undistorted?

It is very likely that stabilisers of meridians are undistorted – while sta-
bilisers of a curve α mapping in π1(Vg) to a generator of a rank 1 free factor
are exponentially distorted [23].

The reason these questions about stabilisers are interesting is due to work
of Handel and Mosher [18]: they show that the stabiliser of a rank 1 free
factor is exponentially distorted in Out(Fg) for g ≥ 3, while stabilisers of free
splittings are undistorted – which again suggests that Hg is geometrically
more akin to outer automorphism groups of free groups rather than surface
mapping class groups.
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[57] Bruno Zimmermann. über Homöomorphismen n-dimensionaler Henkelkörper und
endliche Erweiterungen von Schottky-Gruppen. Comment. Math. Helv., 56(3):474–
486, 1981.

[58] Bruno Zimmermann. Finite group actions on handlebodies and equivariant Heegaard
genus for 3-manifolds. Topology Appl., 43(3):263–274, 1992.


