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1. Introduction

Homomorphisms, and in particular injections, between mapping class
groups have received considerable attention over the last years. See [AS3]
for a survey, and e.g. [ALS, AS1, HK, Iva1, IM, Kor2, McC1] for examples of
results. A guiding theme in this subject is to try and imitate (super)rigidity
results from the theory of lattices in Lie groups. For example, under suitable
complexity bounds, the only injections between mapping class groups arise
from “obvious” topological operations on surfaces.

In this article we investigate rigidity phenomena from a slightly different
point of view. Namely, we let the mapping class group play the role of the
“ambient Lie group”, and show rigidity of subgroups. To be precise, by
rigidity we here mean the following.

Definition 1.1. Let Γ be a subgroup of Mcg(Σg). We say that Γ is rigid
in Mcg(Σg) if every injective map f : Γ → Mcg(Σg) is (the restriction of)
an inner automorphism of Mcg(Σg).

The mapping class group itself, and its finite index subgroups are rigid
in all but a few exceptional low-complexity cases. These results have a
long history, starting with Ivanov’s study of the automorphism group and
commensurator of the mapping class group [Iva2, Kor1], whose methods
were later greatly extended (see [Sha, IM, BM2, BM1] and the references
therein). Rigidity is also known for the group generated by powers of Dehn
twists [AS2]. In [BM3, Kid] it is shown that the Johnson kernel is rigid
inside the Torelli subgroup of the mapping class group.

We focus on an important, topologically motivated subgroup of Mcg(Σ),
namely the the handlebody group Hg < Mcg(Σ). It consists of all those
mapping classes which extend to a given handlebody V with boundary Σg.
We show.

Theorem 1.2 (Rigidity). Suppose that Γ < Hg is a finite index subgroup.
Then Γ is rigid in Mcg(Σg).

As a consequence we also obtain the following, which improves the main
theorem of [KS].

Corollary 1.3. The abstract commensurator of Hg is equal to Hg.
1
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We next study injections of Hg into higher genus mapping class groups.
Here, the situation is drastically different.

Theorem 1.4 (Flexibility). There is a finite index subgroup Γ < Hg and
an injection f : Γ → Mcg(Σh), h > g, so that the image is not conjugate
into Hh.

The example from Theorem 1.4 comes from a covering construction, and
we can completely characterize rigidity and flexibility for such injections.

Theorem 1.5 (Covers). Suppose that Σ′ → Σ is a finite normal cover of a
surface of genus g ≥ 3. Let Γ < Hg be a finite index subgroup of mapping
classes which lift to Σ′. Denote by Γ′ a finite index subgroup of the lifts of
elements in Γ.

Then Γ′ is conjugate into a handlebody group of Σ′ if and only if Σ′ → Σ
can be extended to a cover of handlebodies.

The genus restriction in this theorem is likely not required, and an artifact
of our proof.

In the course of the proof of Theorem 1.2 we show rigidity for a differ-
ent group. The twist group Tg < Hg is the subgroup generated by Dehn
twists about meridians of a handlebody. It is known to be of infinite in-
dex, not finitely generatable, and with infinite rank first homology [McC3].
Nevertheless, rigidity holds:

Theorem 1.6. Suppose that Γ < Tg is a finite index subgroup. Then Γ is
rigid in Mcg(Σg). The commensurator of Tg is the handlebody group Hg.

The flexibility exhibited in Theorem 1.4, and restrictions for covering
constructions as in Theorem 1.5 is also already true for Tg.

Methods of Proof. The argument which is used to show rigidity results on
injections f between subgroups of mapping class groups goes back to Ivanov.
It has by now become somewhat standard, and consists of three main steps.
First, one shows that powers of Dehn twists map under f to (roots of)
multitwists. In this way one obtains a map between curve graphs (or related
objects). Then, one uses rigidity results for maps between curve graphs to
find a candidate conjugation map which f will be equal to. Checking this
equality in a third step is then usually straightforward.

For finite index subgroups of Mcg(Σ), the first step is well-known and
due to Ivanov (see [BM2, Irm] for well-written modern treatments of this
argument). A key ingredient in his proof is that one can characterize (powers
of) Dehn twists in the mapping class group via ranks of maximal Abelian
subgroups of centralizers and centralizers of centralizers.

In Section 3, we develop a variant of Ivanov’s argument, which may be
of interest in studying the rigidity of other subgroups of the mapping class
group (see Section 7 for open questions on rigidity). It bypasses an explicit
identification of Dehn twists via their centralizers and also tries to avoid
using maximal Abelian subgroups as much as possible. A reader experienced
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with arguments of this type who is only interested in the handlebody group
may skip directly to Section 4.

We want to emphasize that there is an alternative approach to this first
step due to Aramayona–Souto [AS3] which would work (with minor modi-
fications) also for the handlebody group (but, to the knowledge of the au-
thor, not the twist group, since it has infinitely generated first cohomology
[McC3]).

The second and third steps of the proof require new arguments in the
case of the handlebody group. In Section 4, we show that the disk graph
of a handlebody is rigid inside the curve graph of the surface (compare also
[AS2] for rigidity of subgraphs of the curve graph). This is then used to find
the candidate conjugation, relying on the main result of [KS].

In Section 6, we prove the Flexibility and Covering theorems 1.4 and 1.5.
The proofs rely on two main ingredients: on the one hand, a theorem of Oer-
tel [Oer] characterizes which multitwists on the boundary of a handlebody
extend to homeomorphisms of that handlebody. This allows to translate
the condition of lifts being conjugate into Hg into a condition on lifts of
meridians. Careful analysis of how intersection patterns between meridians
behave under lifting is then used to show the results.

Acknowledgments. The author would like Juan Souto and Dan Margalit
for enlightening discussions on rigidity of subgroups of mapping class group.
Furthermore, we would like to thank Harry Baik for interest (and patience)
during numerous discussions.

2. Preliminaries

In this section we collect some well-known facts that we will use through-
out. A few conventions: all curves will be simple, closed and essential.
When not explicitly stated otherwise, we will identify curves with their iso-
topy classes. By disjointness of two curves we always mean disjointness up
to homotopy. Multicurves are collections of disjoint curves, no two of which
are freely homotopic.

2.1. Canonical Reduction Systems and Centralizers. Let Σ be a sur-
face of finite type, possibly with boundary and/or marked points. Given a
mapping class φ ∈ Mcg(Σ) we say that φ is reducible if there is some multi-
curve on Σ which is (set-wise) preserved by φ. The mapping class φ is pure
if there is a multicurve C so that φ preserves every component of C, and
induces on each component of S−C either the identity, or a pseudo-Anosov
map. If φ is pure, then the canonical reduction system C(φ) is the (unique)
smallest such multicurve. If φ is pseudo-Anosov, we set C(φ) = ∅.

The following is due to Ivanov [Iva1, Theorem 1.2]

Proposition 2.1. Every reducible element in the kernel of the natural map

Mcg(Σ)→ Aut(H1(Σ;Z/3Z))
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is pure.

Hence, we may define the canonical reduction system for any element φ
to be the canonical reduction system of a suitably big, pure power of φ.

We need a version for subgroups as well. If Γ < Mcg(Σ) is a pure sub-
group, i.e every reducible element in Γ is pure, then we define the canonical
reduction system

C(Γ) =
⋂
φ∈Γ

C(φ)

to be the intersection of all canonical reduction systems C(φ) of every el-
ement φ ∈ Γ. If Γ is not pure, we define C(Γ) as the canonical reduction
system of a finite index pure subgroup.
C(Γ) has the property that for each complementary component Y of C(Γ),

either every pure element φ ∈ Γ restricts to the identity in Y , or there is an
element in Γ which restricts to a pseudo-Anosov map in Y .

We need the following results on (non-)commuting elements in the map-
ping class groups.

Proposition 2.2 ([McC2]). Let ψ be a pseudo-Anosov. Then the cyclic
group generated by ψ is finite index in the centralizer of ψ.

In particular, if ψ is a pseudo-Anosov, then no Dehn twist commutes with
ψ, and neither does an independent pseudo-Anosov (i.e. one which does not
admit a common root, or alternatively, has different stable and unstable
foliations).

The following facts on Dehn twists are well-known and standard, see e.g.
[FM, Section 3.3]

Lemma 2.3. All powers of two Dehn twists Tα and Tβ commute if and only
if α and β are disjoint.

Lemma 2.4. Two powers Tnα and Tmβ of Dehn twists are equal if and only
if n = m,α = β.

2.2. Handlebody groups. Let V be a handlebody of genus g. Identify
the boundary ∂V of V with a surface Σ of genus g. A meridian for V is
a curve α on Σ which bounds a disk in V . We will often use the following
restriction on the intersections between meridians (see e.g. [HH, Hem] and
references therein).

Lemma 2.5. Suppose that A,B are two multicurves consisting of meridians
(for some handlebody). Then, A has a wave with respect to B: there is a
sub-arc a ⊂ α ∈ A which intersects B exactly in its endpoints, and at both
ends approaches the component of B which it intersects from the same side.

Furthermore, there is a sub-arc b ⊂ β ∈ B so that a ∪ b is a meridian.

The restriction map induces a homomorphism

Mcg(V )→ Mcg(Σ)
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whose image Hg we call the handlebody group of V . Up to conjugation, Hg
is independent of the identification of ∂V with Σ. Usually, we will not need
to distinguish between different conjugates, and fix some handlebody group
Hg. In any case, the statement that some group is conjugate into Hg is
well-defined without choices.

A reduced disk system for V is a multicurve α1, . . . , αg consisting of merid-
ians so that Σ− (α1 ∪ · · · ∪ αg) is connected. Note that every simple closed
curve which is disjoint from a reduced disk system is a meridian. The
following is standard, and an immediate consequence of the fact that any
homeomorphism of a sphere extends to the ball it bounds.

Lemma 2.6. Suppose that φ ∈ Mcg(Σ) is such that φ(C) is a reduced disk
system for V for some reduced disk system C for V . Then φ ∈ Hg.

We also require a standard method to transform one reduced disk system
into another. See e.g. [HH, Hem] (and references therein) for proofs.

Lemma 2.7. Let C,C ′ be reduced disk systems for V . Then there is a
sequence

C = C1, C2, . . . , Cn = C ′

of reduced disk systems for V so that Ci, Ci+1 are disjoint for all i.

We need the following criterion for a multitwist to be an element of Hg,
which relies on [Oer, Theorem 1.11].

Theorem 2.8. Let φ = Tα1 · · ·Tαn be a product of Dehn twists about disjoint
curves αi and suppose that φ is an element of Hg.

Then, up to relabeling, there is a l > 0 and a bijection k : {l+1, . . . , n} →
{l + 1, . . . , n} so that

i) αi is a meridian for all i ≤ l.
ii) αi and αk(i) are joined in V by a properly embedded annulus for all

i > l.
iii) If i > l, then Tαi and Tαk(i)

are not both left or both right Dehn twists.

Proof. First, note that Dehn twists about meridians are elements of Hg.
Thus, we may assume that no αi is a meridian. [Oer, Theorem 1.11] implies
that φ is the restriction to ∂V of a homeomorphism F : V → V , which is
a product of twists about disjoint disks and annuli in the handlebody. A
twist about a disk in V restricts to a twist about a meridian on ∂V . A twist
about an annulus A with boundary ∂A = αi ∪ αk(i) restricts to the product
of a left and a right Dehn twist about αi and αk(i) (or vice versa). This
shows the theorem. �

Corollary 2.9. Suppose that α1, . . . , αk are disjoint simple closed curves.
Then the product of left Dehn twists Tα1 · · ·Tαk

is an element of Hg if and
only if all αi are meridians.
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3. Abundant subsurfaces

In this section we discuss the first step of the proof outline given in the
introduction.

Throughout, Σ will be a finite type surface, possibly with boundary or
cusps. A subsurface S ⊂ Σ is essential if every component of ∂S is an
essential simple closed curve on Σ. If Γ < Mcg(Σ) is any subgroup, we denote
by StabΓ(S) the subgroup of Γ consisting of all elements which preserve S
(up to isotopy).

If S is a surface with a specified collection of boundary components B,
we denote by Ŝ the surface obtained from S by gluing punctured disks to
each boundary component of S in B. We say that Ŝ is obtained from S by
cusping off the boundaries B. There is a homomorphism

rS : Mcg(S)→ Mcg(Ŝ)

To ease notation, we will often say that φ ∈ Γ has a property when viewed
as a mapping class of Ŝ if rs(φ) has this property. Also note that the kernel
of rS consists of Dehn twists about the boundary components B. See [FM,
Section 4.2] for this, and related background on mapping class groups.

If S ⊂ Σ is an essential subsurface, then we will always denote by Ŝ
the surface obtained by cusping off all boundary components which are not
contained in the boundary of Σ.

Definition 3.1. Let S ⊂ Σ be an essential subsurface. A subgroup Γ <
Mcg(Σ) is

full in S: if there are elements φ1, φ2 which are independent pseudo-
Anosov elements when viewed as mapping classes of Ŝ.

abundant in S: if additionally there is a pants decomposition {α1, . . . , αk}
of Ŝ and T1, . . . , Tk ∈ StabΓ(S) so that Ti is a power of Dehn twist

about αi (viewed as a mapping class of Ŝ).

Remark 3.2. If Γ′ < Γ is finite index, and Γ is full or abundant in S, then
so is Γ′.

Lemma 3.3. Suppose that S ⊂ Σ is an essential subsurface and that Γ <
Mcg(Σ) is full in S. Then every element in the center of StabΓ(S) has a
power which is a multitwist about ∂S.

Proof. Consider the induced map

rS : StabΓ(S)→ Mcg(Ŝ)

If the center of StabΓ(S) contains an element none of whose powers are
multitwists about ∂S, then its image is an infinite order element in the
center of rS(StabΓ(S)). However, since we assume that Γ is full in S, the
group rS(StabΓ(S)) contains two independent pseudo-Anosov elements. By
Proposition 2.2 this is impossible. �
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Proposition 3.4. Suppose that S ⊂ Σ is an essential subsurface and that
Γ < Mcg(Σ) is full in S. Suppose f : Γ→ G is a homomorphism.

If ker(f)∩StabΓ(S) contains an element none of whose powers are multi-
twists about ∂S, then ker(f)∩StabΓ(S) contains an element which is pseudo-

Anosov when viewed as a mapping class of Ŝ.

Proof. Since Γ is full in S, there is an element ψ ∈ StabΓ(S) which is pseudo-

Anosov as a mapping class on Ŝ. Furthermore, by assumption, there is an
element φ ∈ ker(f)∩ StabΓ(S), none of whose powers are multitwists about

∂S. Thus, φ defines an infinite order mapping class on Ŝ. If φ or any power
of it is pseudo-Anosov, we are already done.

Otherwise, consider φψnφ−1. As a mapping class of Ŝ this is pseudo-
Anosov. In fact, it is an independent pseudo-Anosov to ψ: by Lemma 2.2,
any infinite order element in the centralizer of a pseudo-Anosov has a power
which is a pseudo-Anosov itself.

Thus, for any n > 0, the element φψnφ−1ψ−n is contained in ker(f) since
the latter is normal. Once n is large enough, it will also be pseudo-Anosov,
since large powers of independent pseudo-Anosovs on Ŝ generate a purely
pseudo-Anosov group (compare [Fuj]). �

The following is the core technical result of this section.

Theorem 3.5. Let S ⊂ Σ be an essential subsurface and suppose that Γ <
Mcg(Σ) is full in S. Let f : Γ → Mcg(Σ′) be an injection into another
mapping class group.

Then there is a complementary component Y of the canonical reduction
system C(f(StabΓ(S))) and a finite index subgroup Γ′, so that the induced
map

f : StabΓ′(S)→ Mcg(Y )

is an injection.

Proof. We may assume that f(Γ) is pure (otherwise, pass to a suitable fi-
nite index subgroup Γ′). Put C = C(f(StabΓ(S))). If there is only one
complementary component of C, there is nothing to prove.

Hence, suppose that there is more than one complementary component of
C; let Σ1,Σ2 be two disjoint nonempty unions of complementary components

of C whose union is all of Σ′. Denote by Σ̂i the surface obtained from Σi by
cusping off the boundary components corresponding to curves in C.

The injection f induces maps

fi : StabΓ(S)→ Mcg(Σi), i = 1, 2

and
f̂i : StabΓ(S)→ Mcg(Σ̂i), i = 1, 2.

By induction, it suffices to show that one of the fi is injective.
We define the product map

f̂ = f̂1 × f̂2 : StabΓ(S)→ Mcg(Σ̂1)×Mcg(Σ̂2).
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Suppose that φ is such that f̂(φ) = 1. Then f(φ) is a multitwist about C,
and thus commutes with every element in f(StabΓ(S)). As f is injective,
this implies that φ commutes with every element of StabΓ(S), and thus φ
has a power which is a multitwist about the boundary of S by Lemma 3.3.

Suppose now that ker(f̂i) contains elements which do not have powers
which are multitwists about ∂S for both i = 1, 2. We let φ1, φ2 be mapping
classes so that

(1) φi ∈ ker(f̂i).
(2) φi is pseudo-Anosov on S.

whose existence is guaranteed by Proposition 3.4.
Then, f2(φ1) is a multitwist about ∂Σ2 and f1(φ2) is a multitwist about

∂Σ1 and therefore

1 = [f(φ1), f(φ2)] = f([φ1, φ2]).

Since f is injective this implies that φ1 and φ2 commute. Thus, φ1, φ2, seen
as mapping classes of Ŝ, are commuting pseudo-Anosovs and thus powers
of a common pseudo-Anosov of Ŝ. By passing to powers we may therefore
assume that φ1 = ψT1, φ2 = ψT2 for some ψ pseudo-Anosov on Ŝ and T1, T2

multitwists about ∂S. In other words, φ2 = φ1m for some m in the center
of StabΓ(S).

If φ1 = φ2, then f̂(φ1) = 1 and hence f(φ1) is central. By injectivity of f
this would imply that φ1 is central, which is impossible by Lemma 3.3.

Otherwise, φ−1
1 φ2 = m 6= 1 is a nontrivial central element. Since Γ is full

in S, there is an element ρ so that

[φ1, ρ] 6= 1

(there are independent pseudo-Anosovs, hence not every element can com-
mute with φ1). By injectivity of f , we therefore have that

[f(φ1), f(ρ)] 6= 1

Since the kernel of f̂ is central, this implies that

[f̂(φ1), f̂(ρ)] 6= 1

As f̂1(φ1) = 1 this means that

[f̂2(φ1), f̂2(ρ)] 6= 1

But since f̂2(φ1) = f̂2(m−1), this would imply that f̂2(m) and f̂2(ρ) do not
commute, contradicting the fact that m is central.

This contradiction shows that we may assume (up to relabeling) that

ker(f̂1) contains only contains elements which do have a power which is a
multitwist about ∂S.

Suppose now that m is an element of ker(f1). By the above, it has a
power mk which is a multitwist about ∂S, and therefore central in StabΓ(S).
Hence, either m is finite order, or f(mk) is nontrivial multitwist about
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C(f(StabΓ(S))). In the latter case f1(m) 6= 1. Taking Γ′ so that StabΓ(S)
is torsion-free therefore shows the theorem. �

Using this result we can show that, under suitable assumptions, images
of Dehn twists are roots of Dehn twists. In the proof we require the notion
of the complexity ξ(F ) of a finite type surface. Namely, ξ(F ) = 3g(F ) +
2b(F )−3 is the number of curves in a pants decomposition for F , where g(F )
is the genus and b(F ) is the number of boundary components and cusps.

Corollary 3.6. Let γ be a non-separating simple closed curve on Σ, and
let S be the complement of γ. Suppose that Γ is abundant in S, and that
f : Γ→ Mcg(Σ) is any injection. Then f(Tγ) has a power which is a Dehn
twist about some non-separating curve δ.

Proof. Using that Γ is full in S, we can replace Γ with the finite index sub-
group Γ′ from Theorem 3.5 and there is then a complementary component
Y ⊂ Σ and an injective map

StabΓ(S)→ Mcg(Y )

Using that Γ is abundant in S, there is a free Abelian group of rank ξ(Σ)−1
in StabΓ(S), and therefore in Mcg(Y ). Thus, Y has at least complexity
ξ(Σ)−1, but is a subsurface of Σ. This is only possible if Y is the complement
of a single non-separating curve δ, and thus the canonical reduction system
of f(StabΓ(S)) is a single curve. This implies that some power of Tγ – which
maps to a central element in f(StabΓ(S)) – is a Dehn twist about δ. �

Remark 3.7. As alluded to in the introduction, we required the existence of
a full rank free Abelian subgroup only in the very last step, where we had to
exclude the existence of an injective map from StabΓ(S) into the mapping
class group of a lower complexity surface. The fullness condition is a very
weak condition, and so the approach developed here might be applicable to
other subgroups, where injections can be controlled, but the rank of a maximal
Abelian subgroup is smaller than in the full mapping class group.

Even if this is not possible, Theorem 3.5 gives some structural information
on how possible injections can look.

In fact, by induction, we also obtain the following result. For its state-
ment, recall that a cut system is a multicurve α1, . . . , αg on a surface so that
the complement Σ− (α1 ∪ · · · ∪ αg) is connected and has genus 0.

Corollary 3.8. Suppose that α1, . . . , αg is a cut system for Σ. Assume that
Γ is abundant in Σ− (α1 ∪ · · · ∪ αk) for all 1 ≤ k ≤ g.

Let f : Γ→ Mcg(Σ) be injective for some Γ < Mcg(Σ). Then f(Tαi) have
powers which are Dehn twists about a cut system in Σ.

Proof. By the previous Corollary 3.6, f(Tα1) has a power which is a Dehn
twist about some non-separating δ1, and furthermore f induces an injection
of StabΓ(Σ − α1) into Mcg(Σ − δ1). By the assumption on abundance, we
can continue the argument inductively. �
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4. Rigidity of the disk graph

Recall that V is a handlebody of genus g, and we have identified the
boundary ∂V of V with a surface Σ of genus g.

The curve graph of Σ is the simplicial complex C(Σ) whose k–simplices
correspond to multicurves with k + 1 components. The disk graph D(V ) of
V is the full sub-complex of the curve graph C(Σ) spanned by the meridi-
ans for V . Explicitly, k–simplices of D(V ) correspond to multicurves with
k + 1 components, each of which is a meridian. We will usually identify a
multicurve with the simplex of C(Σ) or D(Σ) that it defines. The following
is obvious from the definitions.

Lemma 4.1. Let α1, . . . , αk be a multicurve on Σ, and let Y1, . . . , Yl be
its complementary components. Then the link of the simplex ∆ defined by
α1, . . . , αk

lk(∆) = C(Y1) ∗ · · · ∗ C(Yk)
is the join of the curve graphs of the Yi.

In this section we show a combinatorial rigidity (compare [AS2] for a
stronger version) for the disk graph inside the curve graph. Recall from
[Irm] that a superinjective map between (subgraphs) of curve graphs is a
simplicial map ι with the property that ι(α) and ι(β) are joined by an edge
if and only if α and β are joined by an edge.

Theorem 4.2. Let ι : D(V ) → C(Σ) be a superinjective simplicial map.
Then ι is induced by a mapping class of Σ: there is a mapping class φ ∈
Mcg(Σ) so that ι(α) = φ(α) for all simple closed curves α.

We expect that the result is also true for injective simplicial maps ι, but
have not explored this (since it is not used in the sequel).

Proof. The proof has various stages. In each stage, we might modify ι by a
mapping class to ensure additional properties.

Reduced disk systems map to cut systems: Fix a reduced disk
system α1, . . . , αg for V . This defines a (g − 1)–dimensional sim-
plex ∆ of D(V ) ⊂ C(Σ) whose link in C(Σ) is completely contained
in D(V ), and is isomorphic to the curve graph C(Σ0,2g) of a 2g–holed
sphere.

Consider the image ι(α1), . . . , ι(αg). This is a (g−1)–dimensional
simplex ι(∆) in C(Σ). We first claim that ι(α1), . . . , ι(αg) is non-
separating, hence a cut system. Namely, suppose that the comple-
ment had components Y1, . . . , Yk. Choose some curve δ disjoint from
α1, . . . , αg, and assume that ι(δ) is a curve contained in Y1. Then,
any δ′ with δ ∩ δ′ 6= ∅ satisfies ι(δ) ⊂ Y1 as well (as otherwise, δ, δ′

would be disjoint, violating superinjectivity). This shows that the
sub-complex of lk(∆) spanned by every vertex not contained in the
star st(δ) is mapped into C(Y1) (under the identification given by
Lemma 4.1).
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Next, choose some δ′ to be distance at least 3 from δ in C(Σ0,2g),
and repeat the argument with δ′ in place of δ, to see that st(δ)∩lk(∆)
is also mapped into C(Y1).

Therefore, ι induces a superinjective simplicial map C(Σ0,2g) ∼=
lk(∆) → C(Y1). Since the dimension of the curve graph is one less
than the complexity of the surface, and Y1 ⊂ Σ, this is only possible
if Y1 is the only complementary component of ι(α1), . . . , ι(αg).

Since the mapping class group of Σ acts transitively on the set of
cut systems, up to modifying ι by a mapping class, we may assume
that ι(α1) = α1, . . . , ι(αg) = αg and therefore ι(α1), . . . , ι(αg) is a
reduced disk system for V .

Reduced disk systems map to reduced disk systems: Let β1, . . . , βg
be a reduced disk system for V , which is disjoint from α1, . . . , αg.
Then, ι(β1), . . . , ι(βg) is a cut system, which is disjoint from the
reduced disk system ι(α1), . . . , ι(αg).

Next, note that any curve disjoint from a reduced disk system for
V is also a meridian for V . This is simply a consequence of the fact
that any simple closed curve on the sphere bounds a disk in the ball.
Hence, ι(β1), . . . , ι(βg) is a reduced disk system as well.

By Lemma 2.7, this inductively implies that ι(β1), . . . , ι(βg) is in
fact a reduced disk system for any reduced disk system β1, . . . , βg
for V .

Meridians map to meridians: Note that any meridian δ is disjoint
from some reduced disk system β1, . . . , βg, and hence ι(δ) is curve
disjoint from the reduced disk system ι(β1), . . . , ι(βg) – and hence a
meridian (by the same argument as above). This implies that ι is
now a superinjective self-map of the disk graph D(V ).

Surjectivity of ι: As a first step, we prove that ι is locally surjective
in the following sense. Suppose that α1, . . . , αg is a reduced disk
system for V . By the previous steps, ι(α1), . . . , ι(αg) is also a reduced
disk system for V . Arguing as above, ι induces a superinjective map
between links, which can be interpreted as a superinjective map

C(Σ0,2g)→ C(Σ0,2g).

By Theorem 2 of [BM2] such a map is induced by a mapping class,
and thus in particular surjective. This implies that every curve which
is disjoint from ι(α1), . . . , ι(αg) lies in the image of ι. By Lemma 2.7
and induction, this first implies that every reduced disk system for V
is the image of a reduced disk system under ι. Since every meridian
is disjoint from some reduced disk system, ι is in fact surjective.

Rigidity: At this point, ι is a superinjective, surjective self-map of the
disk graph, and therefore in particular a simplicial automorphism.
By the main result of [KS], it is therefore induced by a handlebody
group element, finishing the proof.

�
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5. Rigidity for the Twist and Handlebody Groups

Recall that Tg < Hg is defined to be the subgroup of Hg generated by
Dehn twist about meridians. By Luft’s theorem [Luf], Tg agrees with the
kernel of the canonical map Hg → Out(π1(V )) induced by the action of
homeomorphisms of V on the fundamental group of V .

We begin with some generalities on the handlebody and twist groups.

Lemma 5.1. Let Γ < Tg be finite index. Suppose that S is a subsurface of
Σ whose boundary consists of meridians, and so that ξ(S) > 0. Then Γ is
abundant on S.

Proof. We begin by noting that a Dehn twist about a meridian is an ele-
ment of Hg. If ξ(S) > 0, and S is bounded by meridians, then there are
two meridians α1, α2 in S which fill S. Since the product Tα1Tα2 ∈ Tg of
Dehn twists about such curves is pseudo-Anosov, and supported in S, there
is an element φ in StabΓ(S) which defines a pseudo-Anosov in Ŝ. Since
some power of Tα1 also lies in StabΓ(S), and does not commute with φ, by
Proposition 2.2, Γ is full for S.

Also, if S is bounded by meridians, there is a pants decomposition of S
consisting of meridians. This shows abundance. �

Lemma 5.2. Suppose that φ ∈ Hg is such that φ(δ) = δ for every meridian
δ. Then φ = id.

Proof. Consider a reduced disk system δ1, . . . , δg for the handlebody V . De-
note by S the subsurface obtained as the complement of the δi. By as-
sumption, φ preserves all δi, and thus S. Every simple closed curve in S is
a meridian, and thus φ induces the identity seen as a mapping class of Ŝ.
This implies that φ is a multitwist about the δi. Since for each i there is a
meridian crossing δi, it is in fact the trivial multitwist. �

Now fix a finite index subgroup Γ < Tg or Γ < Hg. The only property
we use is that for any twist Tα about some meridian, a suitable power Tnα
is contained in Γ. Furthermore, assume that f : Γ → Mod(Σg) is a given
injection. We now follow the strategy outlined in the introduction to show
that f is in fact a suitable conjugation.

In this setting, Corollary 3.6 implies that f(Tnα ) is the power of a non-
separating twist for any non-separating meridian α and n big enough. First,
we note that this conclusion also holds for separating meridians.

Lemma 5.3. In the setting as above, if δ is any meridian, there is some
n > 0 so that f(Tnδ ) is the power of some Dehn twist.

Proof. Let δ be arbitrary. Choose a reduced disk system α1, . . . , αg dis-
joint from δ. Then, by Corollary 3.8, the twists about αi map to twists
about a non-separating multicurve β1, . . . , βg. Thus, f induces an injective
homomorphism

f̂ : Γ′ → Mod(S0,2g)
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whose domain Γ′ has the property that some power of any Dehn twist is
contained in Γ′. By Corollary 2 of [AS2] such a map is induced by a surface
diffeomorphism, and in particular maps Dehn twists to Dehn twists. �

Theorem 5.4. Suppose that Γ < Tg or Γ < Hg is any finite index sub-
group, and let f : Γ → Mcg(Σg) be injective. Then f is the restriction of a
conjugation by an element in the mapping class group Mod(Σ).

Proof. By the lemma above, for any meridian δ and n > 0 big enough, f(Tnδ )
is the power of a Dehn twist about some curve ι(δ). Furthermore, if δ, δ′ are
disjoint, then Tnδ , T

n
δ′ commute, thus so do the twist powers about ι(δ), ι(δ′)

– hence they are disjoint (Lemma 2.3). In other words, ι defines a simplicial
map

ι : D(V )→ C(Σ).

Since f is injective, this map ι is superinjective: if δ, δ′ are not disjoint, then
Tnδ , T

n
δ′ and hence f(Tnδ ), f(Tnδ′) do not commute; hence ι(δ), ι(δ′) are not

disjoint.
By Theorem 4.2, ι is therefore induced by some mapping class of Σ.

Changing f by a conjugation we may therefore assume that f(T
n(δ)
δ ) = T

m(δ)
δ

for every δ.
Now, let φ ∈ Γ be arbitrary. Note that for any meridian δ

T
m(φδ)
φ(δ) = f(T

n(φδ)
φ(δ) ) = f(φT

n(φδ)
δ φ−1) = f(φ)f(T

n(φδ)
δ )f(φ)−1

and therefore

T
m(φδ)n(δ)
φ(δ) = f(φ)T

m(δ)n(φδ)
δ f(φ)−1 = T

m(δ)n(φδ)
f(φ)(δ)

and therefore f(φ)(δ) = φ(δ) for all meridians δ (by Lemma 2.4). This
implies f(φ) = φ by Lemma 5.2. �

Corollary 5.5. The abstract commensurator of Hg is Hg. The abstract
commensurator of Tg is Hg.

Proof. In light of Theorem 5.4 the only claim to prove is the following:
suppose that Γ < Hg or Tg is finite index, and φ is a mapping class such
that φΓφ−1 < Hg, then φ ∈ Hg. To show this, let δ be any meridian, and
n > 0 be such that Tnδ ∈ Γ. Then by assumption Tnφ(δ) = φTnδ φ

−1 ∈ Hg, and

therefore φ(δ) is a meridian. Hence, φ is a mapping class which preserves
the set of meridians for V , and therefore contained in Hg. �

6. Flexibility for the handlebody group

The first goal of this section is to prove the following.

Theorem 6.1. There is an inclusion Hg > Γ → Mcg(Σh) whose image is
not conjugate into Hh.
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Figure 1. A 3-fold cover inducing odd intersections of
meridians. The handlebody for the bottom surface is the
“outside” handlebody of the standard Heegaard splitting of
S3: curves are meridians if they can be contracted in the
non-compact region of the page bounded by the surface.

The construction is very explicit and uses finite covers. The strategy is to
consider a cover in which meridians lift to curves whose intersection pattern
is incompatible with being disks (or annuli). For an example in genus 2,
consider Figure 1.

Proof. Let δ0 be a meridian, and α a curve intersecting δ once. The map
π1(Σ) → Z/3Z defined by algebraic intersection number (mod 3) with α
defines a cover Σ′ → Σ of degree 3.

Let δ1 be a meridian disjoint from δ, α, and let δ2 be a meridian which
intersects δ1 in two points and α in two points, with algebraic intersection
number 0.

Hence, the Dehn twists Tδ1 , Tδ2 are in Hg and lift to Σ′. The lift of Tδi is

the product of (left) Dehn twists about the three lifts δ
(j)
i , j = 1, 2, 3 of δi

to Σ′.
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By construction, each δ
(j)
1 intersects exactly two δ

(k)
2 ; each in one point.

Suppose that both the lifts T̃δ1 and T̃δ2 would be conjugate into the same
handlebody group. By Theorem 2.8, the multitwists T

δ
(1)
i

T
δ
(2)
i

T
δ
(3)
i

are then

products of twists about meridians and twists about annuli.
Since 3 is odd and twist curves for annulus twists come in pairs, at least

one of each of the curves involved is a meridian. On the other hand, as every

δ
(j)
1 intersects some δ

(k)
2 in one point, it is impossible that all three curves

are meridians.
Hence, we may assume that we have the following situation:

• δ(1)
1 is a meridian.

• δ(1)
1 intersects δ

(1)
2 δ

(2)
2 , and the latter two are connected by an an-

nulus in the handlebody.

• δ(3)
2 is a meridian.

However, in such a situation the product of left Dehn twists about δ
(1)
2 δ

(2)
2

is not in the handlebody group, leading to a contradiction.

Thus, it is impossible that T̃δ1 and T̃δ2 are conjugate into the same han-
dlebody subgroup of Mcg(Σh). Taking Γ to be a subgroup which lifts to Σ′

yields the desired inclusion. �

Denote by C∗h the multicurve graph, i.e. the graph whose vertices corre-
spond to (isotopy classes of) multicurves, and edges correspond to disjoint-
ness. This graph is different from other multicurve graphs considered in the
literature. Namely, we allow the number of elements in the multicurves to
vary, and more importantly, adjacency does not correspond to basic moves
(e.g. exchange one curve). The graph C∗h is however the natural object when
considering covering constructions. While there are strong restrictions for
simplicial injections between n–multicurve graphs (see e.g. [EF]), any cov-
ering induces interesting simplicial injections between multicurve graphs in
our sense. The construction employed in the proof of the previous result im-
mediately implies the following result on flexible inclusions of disk graphs.

Corollary 6.2. There is a map Dg → C∗h such that the images is not con-
jugate into any sub-graph where all vertices correspond to multi-meridians.
The same remains true even if we allow that vertices map to multicurves
which are boundaries of annuli in the handlebody.

For covering constructions one can analyze the situation completely. The
goal is the following theorem, whose proof will occupy the rest of this section.

Theorem 6.3. Suppose that Σ′ → Σ is a finite normal cover, where Σ is
closed of genus g ≥ 3. Let Γ < Hg be a finite index subgroup of mapping
classes which lift to Σ′. Denote by Γ′ a finite index subgroup of the lifts of
elements in Γ.

Then Γ′ is conjugate into a handlebody group of Σ′ if and only if Σ′ → Σ
can be extended to a cover of handlebodies.
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One direction is easy: suppose V ′ → V is a cover of handlebodies, and
∂V ′ = Σ′ → Σ = ∂V its boundary cover. If F : V → V is a homeomorphism
whose restriction φ to the boundary lifts to Σ′, then F lifts to a homeomor-
phism of V ′. Hence, any group Γ′ as in the statement is conjugate into a
handlebody group.

The other direction is more involved. We begin with the following, which
is a restatement of the argument employed in proof of Theorem 6.1.

Proposition 6.4. Suppose that Σ′ → Σ is a finite cover. Let Γ < Hg be
a finite index subgroup of mapping classes which lift to Σ′. Denote by Γ′ a
finite index subgroup of the lifts of elements in Γ.

If Γ′ is conjugate into a handlebody group of Σ′ then Σ′ can be identified
with the boundary of a handlebody V ′ so that for every meridian δ, each
component of the preimage of δ in Σ′ is a meridian for V ′.

Proof. Consider the left Dehn twist Tδ about any meridian, and consider a
lift of Tnδ , where n is big enough to ensure that δn lifts to a closed curve. The
lift of Tnδ is then product of left Dehn twists about the preimages δ1, . . . , δk
of δn. By Corollary 2.9 this element is conjugate into a handlebody group
of Σ′ if and only if all δi are meridians for that handlebody. Using induction
and Lemma 2.7, this handlebody is the same for all meridians δ. �

To use this, we note the following standard lemma.

Lemma 6.5. Let Σ′ → Σ be a finite cover, and suppose that Σ = ∂V . Then
Σ′ → Σ extends to a cover of handlebodies (with base V ) if and only if every
meridian for V lifts to Σ′ with degree 1.

Thus, Theorem 6.3 will follow, once we can prove the following. In its
formulation, an elevation of a simple closed curve α on Σ (with respect to
a cover p : Σ′ → Σ) is any connected component of p−1(α).

Proposition 6.6. Suppose that Σ′ → Σ is a regular finite cover, and Σ =
∂V , Σ′ = ∂V ′. Assume that any elevation of a meridian for V is a meridian
for V ′. Then every meridian of V lifts with degree 1.

For the rest of the section, we fix the cover Σ′ → Σ and assume that it is
given by a surjection

π : π1(Σ, p)→ G

to some finite group G. The core tool we use is the existence of waves
(compare Lemma 2.5).

The first part of the proof involves trying to construct a pair of meridians
whose elevations intersect in a manner incompatible with being meridians.
Namely, we have the following.

Lemma 6.7. Suppose that there is a pair of meridians α, β intersecting only
in the basepoint p such that π(β) is not equal to a power of π(α) in G. Then
there is a meridian δ so that elevations of α and δ cannot be simultaneously
be meridians (for any handlebody).
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Figure 2. The construction in the proof of Lemma 6.7. The
left figure shows the setup; the right one the curve con-
structed in the proof

Proof. First note that we may assume that β is non-separating in Σ−α, since
non-separating simple meridians generate the kernel ker(π1(∂W )→ π1(W ))
for any handlebody W . Note that β′ = βα (or αβ) also has the property
that π(β′) is not equal to a power of π(α) in G. This means that (non-closed)
lifts of β and β′ connect different elevations of α in Σ′.

Next, choose a curve ρ intersecting α, β, β′ in a single point, and trans-
versely intersecting a meridian α′ disjoint from α, β in a single point (this is
where we use genus g ≥ 3 to ensure the existence of the desired α′).

The desired curve is

δ = β ∗ ρ ∗ β′−1 ∗ ρ−1

which is a simple meridian (compare Figure 2). Consider an elevation δ̃. of

δ. By our choices, consecutive intersection points of δ̃ with components of
the preimage of α ∪ α′ are never on the same component of α ∪ α′.

However, if δ̃ and all elevations of α, α′ are meridians, this is a contradic-

tion, since by Lemma 2.5 δ̃ should have a wave with respect to the preimage
of α ∪ α′. �

Corollary 6.8. Assume that all meridians for V elevate to meridians for
V ′. Suppose that some meridian for V lifts to Σ′ with degree 1. Then all
meridians for V lift to Σ′ with degree 1.

Proof. Let δ be a meridian which lifts with degree 1. Suppose that δ is non-
separating. Then there are two cases: either every meridian disjoint from
δ lifts with degree 1, or not. In the latter case, by Lemma 6.7, there is a
contradiction. In the former case, we argue using connectivity of the disk
graph: either all non-separating meridians lift with degree 1 (in which case
we are done), or we eventually end up in the first case.

Finally, suppose that δ is separating. If on either side of δ there is a
non-separating meridian which lifts with degree 1, we are done. Otherwise,
argue as in the proof of Lemma 6.7 to find a meridian β whose elevation
intersects the preimage of δ without waves. To do this, we simply take the
concatenation of non-lifting meridians on either side of δ. �

Hence, for the rest of the section, we can make the following assumption
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AR: For any non-separating meridian α through p , and any loop ρ
which recurs to the same side of α, and is a meridian for V , π(ρ) is
a power of π(α) in G.

Note that this first implies that any conjugate of α also maps to a power
of p(α) (conjugations by all of the standard generators of π1(Σ) lie in the
complement of some meridian ρ as in AR). Since any two meridians can
be joined by a sequence of pairwise disjoint meridians, this implies that the
image of the kernel

K = ker(π1(Σ)→ π1(V ))

inG is cyclic, generated by some elementm. AsK is normal, and π1(Σ)→ G
surjective, the subgroup 〈m〉 is therefore normal in G. We thus have a tower
of regular coverings

Σ′ → Σ′/〈m〉 → Σ.

By construction, and the fact that every cyclic cover of a surface is defined
by algebraic intersection with some curve, we therefore know:

i) Every meridian for V lifts with degree 1 to Σ′/〈m〉.
ii) There is n > 0 and a simple closed curve α ⊂ Σ′/〈m〉 so that a curve

β ⊂ Σ′/〈m〉 lifts to Σ′ with degree 1 if and only if i(β, α) = 0 mod n.

Lemma 6.9. Let H = G/〈m〉 denote the deck group of Σ′/〈m〉 → Σ, and
let α be as in ii). Then, for any h ∈ H, we have

h[α] = ±[α] ∈ H1(Σ′/〈m〉)

Proof. Since the cover Σ′ → Σ is normal, we have that a loop β ⊂ Σ′/〈m〉
lifts to Σ′ with degree 1 if and only if this is true for h−1β, for every h ∈ H.
In other words,

i(β, α) = 0 ⇔ i(hβ, α) = i(β, hα) = 0

Thus, hα has algebraic intersection number 0 with exactly the same loops
as α. This implies that h[α] is a multiple of [α], and the multiple is ±1 as
H is finite. �

Lemma 6.10. Either some meridian for V lifts to Σ′ with degree 1, or
the following is true: Let δ1, . . . , δg be any reduced disk system for V , and
let Y be the complementary subsurface. Choose orientations on δi. Let
Y ′ ⊂ Σ′/〈m〉 be a (homeomorphic) lift of Y , and let δ+

i , δ
−
i be lifts of δi on

the boundary of Y ′, oriented compatibly with the orientation of δi. Then

i(δ+
i , α) = −i(δ−i , α)

Proof. Since δ+
i , δ

−
i are (compatibly oriented) lifts of the same meridian,

there is some element h ∈ H so that δ−i = hδ+
i . This already implies

i(δ+
i , α) = ±i(δ−i , α)

by the above. We have to exclude the positive sign. However, note that
there is a simple closed meridian µ in Y ′ which is homologous to [δ+

i ]− [δ−i ]
(compare Figure 3). If in the previous equation the sign is positive, this
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Figure 3. The construction in the proof of Lemma 6.10.

meridian has algebraic intersection number 0 with α, therefore lifts with
degree 1 to Σ′. Being a meridian in Y ′ it is also a degree 1 lift of a simple
closed meridian for V . This shows the lemma. �

Lemma 6.11. There is a meridian for V which lifts with degree 1 to Σ′.

Proof. Let δ1, . . . , δg be a reduced disk system for V , and let Y be the
complementary subsurface. Choose orientations on δi. Let Y ′ ⊂ Σ′/〈m〉 be
a (homeomorphic) lift of Y , and let δ+

i , δ
−
i be lifts of δi on the boundary of

Y ′, oriented compatibly with the orientation of δi. If any i(δ±i , α) = 0, we

are done. Otherwise, assume that i(δ+
1 , α) > 0 and minimal among all δ±i .

Now, note that (up to possibly swapping orientation of δ2) there is a curve
µ′ in Y ′ which is homologous to [δ+

2 ] + [δ+
1 ]. This curve µ′ is a degree 1 lift

of a meridian µ for V , and we have

i(µ, α) = i(δ+
2 , α) + i(δ+

1 , α).

Perform an disk system exchange move, replacing δ2 by µ. Similarly, we
modify Y ′ by removing the pair of pants bounded by δ+

1 , δ
+
2 , µ

′ and adding
a pair of pants at δ−2 , whose boundary components are other lifts h1δ

+
1 , h2µ

′

of δ1, µ. Applying Lemma 6.10 twice, both for Y ′ and its modification, we
have

i(δ+
1 , α) = −i(δ−1 , α) = i(h1δ

+
1 , α)

Thus, repeating the argument, with µ in place of δ2, we can find a meridian
ν, with lift ν ′ so that

i(ν, α) = i(δ+
2 , α) + 2(δ+

1 , α).

By induction, and since δ1 was chosen to minimize intersection with α, after
finitely many steps we will have found a meridian with i(ν, α) = 0, which is
the desired one. �

With Corollary 6.8, this is enough to finish the proof of Theorem 6.3.
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Figure 4. The construction in the proof of Lemma 6.11.

7. Further Questions

Rigidity and flexibility questions as investigated in this article admit many
open questions. We highlight only some of them here.

A group which seems to elude all avenues of attack so far is the Torelli
group. The following question is due to Benson Farb:

Question 7.1. Is the Torelli group of genus g ≥ 3 rigid in the mapping
class group? Are finite index subgroups of the Torelli group rigid?

We remark that in genus 2, the Torelli group is an infinitely generated
free group [Mes], and therefore has no hope of being rigid.

The main complication when dealing with the Torelli group is that the
rank of maximal Abelian subgroups in the Torelli group is smaller than in
the mapping class group. In the framework presented in Section 3, maximal
Abelian subgroups do not play a central role – the core issue is the existence
or nonexistence of injections into smaller genus mapping class groups. In
particular, complements of curves are full in (finite index subgroups) of the
Torelli group. Thus, we propose the following

Question 7.2. Is there an injection f : I1
g → Mcg(Σ) for g > 2 and

ξ(Σ) < ξ(Σ1
g)? Is there such an injection for a finite index subgroup in I1

g?

A negative answer to this question would show that (virtual) injections
of Ig into Mcg(Σg) give rise to superinjective embeddings of the separating
curve graph into the curve graph – and from there, combinatorial rigidity
methods could take over.

In a completely different vein, the “flexible” injections f constructed in
Theorem 1.4 extend to finite index subgroups of Mcg(Σg), and exhibit there-
fore yet another form of rigidity. It seems very optimistic to expect such
behavior to be generic (but it is also not clear how one can obtain a coun-
terexample). As such, we propose the following
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Question 7.3. Suppose f : Γ → Mcg(Σh) is a virtual injection of the
handlebody group into a mapping class group. Does f extend (virtually) to
an injection of the mapping class group Mcg(Σg)? What about the same
question, with Ig in place of Hg?
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