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Abstract. We construct examples of fibered three-manifolds with fibered
faces all of whose monodromies extend to a handlebody.

1. Introduction

Suppose that M is an orientable three-manifold which fibers over the
circle with fiber a closed connected surface; let ω : π1(M) → Z denote the
induced homomorphism (we will say that ω is a fibered class). Thurston
[Thu86] developed a theory which describes all possible ways in which M
can fiber. Namely, he constructed a convex polytope PM in H1(M ;R) such
that the fibered classes of M are exactly those integral classes in cones over
certain “fibered” faces of PM .

In particular, all the integral classes ω′ in the cone CF containing the
class ω are also fibered. For each such ω′, there is an associated monodromy
in some mapping class group. It is an interesting, albeit extremely hard,
problem to investigate common properties of these monodromies.

In this article we present a construction of three-manifolds in which all of
these monodromies extend to handlebodies. Namely, we show:

Theorem 1.1. There exists infinitely many pairwise non-diffeomorphic,
closed three-manifolds M with the following property: the Thurston poly-
tope PM of M contains a fibered face F such that every integral class in the
cone CF over F is fibered, and its associated monodromy extends from the
closed surface on which it is defined to a handlebody.

The proof of this theorem relies on a connection of handlebody bundles
to free-by-cyclic groups; the latter have recently been studied in analogy
to fibered three-manifolds, see e.g. [DKL15, DKL17a, DKL17b, FK18, Kie].
Formally, Theorem 1.1 follows from Theorems 1.2 and 1.3 below.

To elucidate the connection, we need the following definition. We say that
a class ω is compatible with a handlebody bundle if ω is induced by M fibering
over the circle with monodromy a mapping class ϕ of some closed surface
Sg, such that ϕ extends to a mapping class of a handlebody Vg. We say that
ω is fully compatible with a handlebody bundle if in addition the inclusion
map M ↪→ W induces an isomorphism H1(M ;Z) ∼= H1(W ;Z), where W
denotes the fibered four-manifold whose monodromy is the extension of ϕ
to Vg.
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The fundamental group of W is a free-by-cyclic group Γ = π1(W ) fitting
into the following commutative diagram:

1 π1(Sg) π1(M) Z 1

1 π1(Vg) Γ Z 1

ι

ω

ι̂ =

ωΓ

where ωΓ is induced by ω, and where ι and ι̂ are epimorphisms induced by
the embeddings Sg ↪→ Vg and M ↪→W .

In recent work, the second author [Kie] constructed a convex polytope
PΓ which serves as an analogue of the Thurston polytope PM , classifying
fiberings of Γ, i.e. maps Γ→ Z with finitely generated kernel.

With this terminology, our main result is:

Theorem 1.2. Let M be a closed three-manifold, and let ω ∈ H1(M ;Z) be
fully compatible with a handlebody bundle. If F denotes the fibered face whose
cone CF contains ω, then every integral class ω′ ∈ CF is fully compatible
with some handlebody bundle.

The condition that the inclusion M ↪→W should induce an isomorphism
on H1 (required by the definition of full compatibility) is easy to check, and
allows us the flexibility to prove the following application.

Theorem 1.3. Suppose that Γ is a free-by-cyclic group. Then there are
infinitely many pairwise non-diffeomorphic, hyperbolic three-manifolds ad-
mitting fibered classes fully compatible with handlebody bundles with funda-
mental group Γ.

The above theorem gives a new way of associating mapping classes of
surfaces to (outer) automorphisms of free groups; it works for every auto-
morphism, but there are infinitely many different mapping classes associated
to a single automorphism.

Acknowledgements. The authors would like to thank the organizers of
the “Moduli Spaces” conference on Ventotene in 2017, where most of this
work was conducted.

The second author was supported by the grant KI 1853/3-1 within the Pri-
ority Programme 2026 ‘Geometry at infinity’ of the German Science Foun-
dation (DFG).

2. The Thurston polytope for three-manifolds and
free-by-cyclic groups

Throughout, we will use the notation established in the introduction: M
is a closed, connected and oriented three-manifold which fibres over the circle
with fiber Sg, associated class ω ∈ H1(M ;Z) and monodromy ϕ.
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A group will be called free-by-cyclic if it is an extension of a finitely
generated free group by Z. This is the case for the fundamental group of
every handlebody bundle W with which ω is compatible.

Thurston [Thu86, Theorem 5] proved that all the different ways in which
a given three-manifold can fiber over the circle are encoded by a polytope,
in a way which we will make precise in a moment. The second author gave a
new proof of Thurston’s theorem in [Kie, Theorem 5.34], and then extended
the result to cover also free-by-cyclic groups [Kie, Theorem 5.29] – in this
latter setting, ‘fibering over the circle’ is interpreted to mean the existence
of an epimorphism to Z with a finitely generated kernel.

Note that, thanks to a result of Stallings [Sta62], an integral cohomology
1-class ω : π1(M) → Z of an irreducible three-manifold M is fibered if and
only if kerω is finitely generated. Moreover, one can remove the assumption
of M being irreducible thanks to Perelman’s solution of the Poincaré con-
jecture. Hence, the group-theoretic notion of fibering used above coincides
with the topological one for three-manifold groups.

It is important to note that if the kernel of ω : G→ Z is finitely generated
(that is, if ω is fibered), then kerω is in fact a surface group or a free group
if G is a three-manifold group, and a free group if G is a free-by-cyclic group
(the latter by [GMSW01]). In either case, the kernel has a well-defined Euler
characteristic, denoted by χ(kerω).

Before proceeding, let us state some definitions: a polytope in a finite-
dimensional R-vector space V denotes the intersection of finitely many half-
spaces, and therefore a polytope P must be convex, but need not be compact.
We will also require polytopes to be symmetric, that is preserved by the map
v 7→ −v. Given a face F 6= {0} of a polytope, we define CF to be the cone
over that face; explicitly, we set

CF = {λv | v ∈ F, λ ∈ (0,∞)}.

When P = F = {0} we define CF = V .

Theorem 2.1 ([Thu86,Kie]). Suppose that G is a three-manifold group or
a free-by-cyclic group. There exists a polytope P in H1(G;R) such that for
every epimorphism ω : G→ Z with a finitely generated kernel there exists a
face F (the associated fibered face) of P with ω ∈ CF such that

(1) CF is open, and
(2) every primitive integral class ω′ ∈ H1(G;Z) lying in CF has a finitely

generated kernel, and
(3) the map ω′ 7→ χ(kerω′) defined on the primitive integral classes in

CF extends to a linear functional defined on the whole of CF .

Proof. Let us start from the more classical case, in which G is a three-
manifold group. The polytope P above is what is denoted by Bx in [Thu86],
and is the unit ball of the Thurston norm x : H1(G;R) → [0,∞). The
Thurston norm x(ω′) of a primitive cohomology class ω′ ∈ H1(G;Z) with
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finitely generated kernel is equal to −χ(kerω′) by definition. For conve-
nience, we define N = 1

2x : H1(G;R)→ [0,∞).
It is immediate that x, and hence N , are linear on CF .
The facts that CF is open and that every primitive integral class therein

is fibered follow from [Thu86, Theorems 3 and 5].

Now suppose that G is a free-by-cyclic group. The starting point is the
L2-torsion polytope PL2 ⊆ H1(G;R) appearing in [Kie, Theorem 5.29], and
introduced first by Friedl–Lück [FL17]. The polytope PL2 induces a thick-
ness function T : H1(G;R)→ [0,∞) by setting

T (ω′) = max
p,q∈PL2

∣∣ω′(p)− ω′(q)∣∣
In fact, T is a semi-norm by [FK18, Corollary 3.5], and if kerω′ is finitely
generated and ω′ is primitive, then

T (ω′) = −χ(kerω′)

by the proof of [FK18, Theorem 4.4] (see also [HK, Theorem 6.2 and Remark
6.5]).

The polytope P is defined to be the unit ball of the semi-norm T . This
immediately implies that T is linear on the cones of the faces of P .

Since kerω is finitely generated, we have ω and −ω lying in the (first)
Bieri–Neumann–Strebel invariant Σ1(G) by [BNS87, Theorem B1], and there-
fore [Kie, Theorem 5.29] tells us that there are unique points p and q ∈ PL2

such that ω restricted to PL2 attains its minimum at p and maximum at q.
But this is an open condition, and therefore T is linear on a neighbourhood
of ω. This implies that the cone CF containing ω is open.

The cone CF consists of precisely these cohomology classes which, when
restricted to PL2 , attain their minimum precisely at p and their maximum
precisely at q. Therefore, every integral class in CF is fibered by [Kie,
Theorem 5.29]. �

3. All Fiberings are Handlebody

In this section we assume in addition to the assumptions of the last section
that ω is fully compatible with a handlebody bundle W which fibers with
fiber a handlebody Vg. We also let F denote the fibered face of PM whose
cone CF contains ω. We set Γ = π1(W ) as before.

As indicated in the introduction, we have the following diagram with
exact rows:

1 π1(Sg) π1(M) Z 1

1 π1(Vg) π1(W ) Z 1

ι

ω

ι̂ =

ωΓ
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Here ι, ι̂ are the maps induced by the inclusions of the boundary. Note that
since ι is surjective, so is ι̂.

Recall that we are also assuming that the epimorphism ι̂ induces an iso-
morphism

ι̂∗ : H1(M ;Z)→ H1(W ;Z).

Let Fk denote the free group of rank k. We need the following ingredient:

Proposition 3.1 (Co-rank theorem for surface groups). If f : π1(Sg)→ Fk
is a surjective map, then k 6 g. In the case of equality, the map f is induced
by the identification of Sg with the boundary of a genus g handlebody Vg.
Furthermore, if in that case ψ is any mapping class of Sg which preserves
ker(f), then ψ has an extension to Vg.

Proof. The fact that k 6 g is [LR02, Lemma 2.1], while the fact on the
identification with a handlebody is [LR02, Lemma 2.2]. The fact that any
mapping class of ∂Vg which preserves ker(π1(∂Vg)→ π1(Vg)) extends to the
handlebody V is standard, see e.g. [Hen17, Corollary 5.11]. �

We are now ready to prove the main theorem.

Proof of Theorem 1.2. Let ω′ : π1(M) → Z be an epimorphism lying in the
cone CF . Since we are assuming that H1(M ;Z) ∼= H1(W ;Z), there is an
epimorphism ω′Γ which makes the right square in the following diagram
commute:

1 π1(Sh) π1(M) Z 1

1 ker(ω′Γ) Γ Z 1

f

ω′

ι̂ =

ω′
Γ

By a simple diagram chase, a homomorphism f which makes the left square
commute exists, and is surjective. Therefore, H = ker(ω′W ) is finitely gener-
ated. But Γ = π1(W ) is a free-by-cyclic group, and hence H is a free group
by [GMSW01].

We now claim that the rank of H is at least h. Suppose first that we have
shown the claim. Now the co-rank theorem for surface groups (Proposi-
tion 3.1) tell us that the rank is exactly h. Let x ∈ ker f , and let z ∈ π1(M)
denote some preimage under ω′ of a generator of Z. We have

f(z−1xz) = ι̂(z−1xz) = ι̂(z−1)ι̂(x)ι̂(z) = ι̂(z−1)f(x)ι̂(z) = 1

and so ker f is preserved by the monodromy induced by ω′ (whose action
coincides with conjugation by z). The second part of the co-rank theorem
now gives us a homeomorphism of the corresponding handlebody Vh with
boundary Sh extending the monodromy induced by ω′.

We are left with proving the claim. For a contradiction, suppose that
the rank of H is strictly smaller than h. Write v = ωΓ − ω′Γ; we then have
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ι̂∗v = ω − ω′. Observe that by Theorem 2.1, there are nondegenerate linear
functionals N (half of the Thurston norm) and T (the thickness function),
such that

g − h =
1

2
(χ(Sh)− χ(Sg)) = N(ι̂∗(v))

and

rk
(

ker(ωΓ)
)
− rk

(
ker(ω′Γ)

)
= χ

(
ker(ω′Γ)

)
− χ

(
ker(ωΓ)

)
= T (v)

Since g = rk(ker(ωΓ)), and rk(ker(ω′Γ)) < h, this implies

N(ι̂∗(v)) < T (v).

Consider ω′′Γ = ωΓ + qv and ω′′ = ω + qι̂∗v for a small rational number q.
Since q is rational, the cohomology class ω′′ is also rational, in the sense
that ω′′ ∈ H1(M ;Q). There exists a unique positive integer k such that kω′′

is integral and primitive. Also, since q is small, kω′′ lies in the cone of the
same fibered face as ω, and hence is a fibered character. Arguing as before
using Proposition 3.1 and [GMSW01], we thus have

T (ω′′Γ) =
−1

k
χ(ker(kω′′Γ)) 6

−1

2k
χ(ker(kω′′)) = N(ω′′)

We also have

N(ω′′) = N(ω) + qN(ι̂∗v) < T (ωΓ) + qT (v) = T (ω′′Γ)

and so

T (ω′′Γ) 6 N(ω′′) < T (ω′′Γ),

which is a contradiction. We have therefore proven the claim. �

4. Existence of fully compatible fibered classes

In this section we show how to construct bundles with the assumption
that ι̂∗ : H1(M ;Z) ∼= H1(W ;Z) compatible with any given free-by-cyclic
group. More precisely, we will show the following, which is a rephrasing of
Theorem 1.3.

Theorem 4.1. Given any free group automorphism f : Fg → Fg, there are
mapping classes ϕi of the handlebody Vg such that

i) ϕi induces the automorphism f on π1(Vg) = Fg for all i.
ii) The (four-manifolds) Wi obtained as the mapping tori of the mapping

classes ϕi satisfy ι̂∗ : H1(∂Wi;Z) ∼= H1(Wi;Z) for all i.
iii) The (three-manifolds) Mi = ∂Wi are hyperbolic for all i and are pairwise

non-diffeomorphic.

Before we can give the proof, we need some basic notation. Recall that if
Sg is a closed surface of genus g, the algebraic intersection number defines
a symplectic pairing

σ : H1(Sg;Z)×H1(Sg;Z)→ Z
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on the first homology group. Suppose now that Sg has been identified with
the boundary ∂Vg of a handlebody. Then, the inclusion of the boundary
defines a map

ι∗ : H1(Sg;Z)→ H1(Vg;Z)

whose kernel we denote by L. Explicitly, let α1, . . . , αg be disjoint curves
bounding disks which cut the handlebody Vg into a ball. Choose curves βi
with the property that σ(αi, βj) is 0 if i 6= j and 1 otherwise. Then the
homology classes ai, bj defined by the curves αi, βj , respectively, are a basis
for H1(Sg;Z). We then have that

L = ker(ι∗) = 〈a1, . . . , ag〉.

Furthermore, if we define

D = 〈b1, . . . , bg〉,

then the restriction ι∗ : D → H1(Vg;Z) is an isomorphism. Furthermore, σ
vanishes identically on L and D. In other words, we have

H1(Sg;Z) = L⊕D,

and both L,D are Lagrangian subspaces. With respect to this decomposi-
tion, σ corresponds to the matrix

J =

(
0 Id
− Id 0

)
.

Denote by Hg < Mcg(Sg) the handlebody group, i.e. the subgroup of those
mapping classes of Sg which extend to Vg. If φ is an element of the handle-
body group, then φ∗(L) = L. This gives the following obstruction for how
the handlebody group acts on homology.

Lemma 4.2 (e.g. [Bir75, Lemma 2.2]). For a symplectic basis as above,
every handlebody group element φ acts on H1(Sg;Z) as a matrix of the form

φ∗ =

(
A B
0 (At)−1

)
,

where A is invertible and B satisfies Bt(At)−1 = A−1B. Conversely, any
such matrix is realised as the action of a suitable handlebody group element
φ.

We also need the following variant, which is likely well-known to experts.

Lemma 4.3. For a basis of H1(Sg;Z) as above, every symplectic matrix of
the form (

Id B
0 Id

)
can be realised as the homology action of a handlebody mapping class which
acts trivially on the fundamental group of the handlebody.
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Proof. The condition that the matrix is symplectic implies that B has to be
symmetric. First, let i be given. The twist about αi acts as the matrix(

Id Ei
0 Id

)
where Ei is the matrix which is zero, except a single diagonal entry 1 in
column i.

Next, let i 6= j be given. Let δ be a diskbounding curve which intersects
each of βi, βj in a single point, and defines the homology class ai + aj . The
twist about δ acts as (

Id Ei + Ej + Eij + Eji
0 Id

)
where Eij is the elementary matrix with entry 1 in row i, column j. Since
Dehn twists about diskbounding curves extend to the handlebody, and their
extensions act trivially on the fundamental group of the handlebody, the
lemma is proved for matrices of the form B = Ei and B = Eij +Eji. Since
these (additively) generate the group of symmetric matrices, the lemma
follows. �

To certify that ι̂∗ : H1(Mi;Z) ∼= H1(Wi;Z) in the proof of Theorem 4.1,
we will use the following criterion.

Lemma 4.4. Suppose that φ is a handlebody group element, and let A,B
be as in Lemma 4.2. If

im(A− Id) +B(ker((At)−1 − Id)) = L

then the handlebody bundle W obtained as the mapping torus of φ satisfies
ι̂∗ : H1(M ;Z) ∼= H1(W ;Z) where M = ∂W .

Proof. We have

H1(M ;Z) = Z⊕ (H1(Sg;Z)) /(Id−φ∗) = Z⊕ (L⊕D)/(Id−φ∗).

The assumption of the lemma implies that the natural map

Z⊕D/(Id−(At)−1)→ Z⊕ (L⊕D)/(Id−φ∗)

is surjective, and it is clearly injective. On the other hand, we have

H1(W ;Z) = Z⊕
(
H1(Vg;Z)/(Id−φ∗)

) ∼= Z⊕D/(IdD −(At)−1),

which completes the proof. �

We are now ready to begin the proof of Theorem 4.1 in earnest.

Proof of Theorem 4.1. Let f : Fg → Fg be given. Up to replacing f by a
conjugate, we may assume that f acts on homology as

f∗ =

(
Id U
0 V

)
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where V does not have any eigenvalue 1. This follows since Out(Fn) →
GLn(Z) is surjective, and integral matrices can be (integrally) conjugated
to have this form.

Since the map Hg → Out(Fg) is also surjective (e.g. [Gri63]) and the
claims in Theorem 4.1 are invariant under replacing (ϕi) by (ψϕiψ

−1), it
suffices to show the theorem under this assumption on f∗.

Now, take a handlebody group element φ which acts as f on π1(V ). Let
A be the matrix satisfying (At)−1 = f∗.

Lemma 4.5. Under the assumptions above, there is a matrix B such that

im(A− Id) +B(ker((At)−1 − Id)) = L

and Bt(At)−1 = A−1B.

Proof. Under the assumptions, we have

At =

(
Id Y
0 Z

)
where Z is a k×k matrix such that Z− Id is injective, and Y is a (g−k)×k
matrix. We then have

A =

(
Id 0
Y t Zt

)
.

Put

B =

(
Id 0
Y t 0

)
.

Observe that ker((At)−1−Id) = ker(At−Id), and therefore it is the subspace
spanned by the first g − k basis vectors. Hence, B satisfies

im(A− Id) +B(ker((At)−1 − Id)) = L.

Furthermore, we have

ABt =

(
Id Y
Y t Y tY

)
= BAt. �

Now, let B be a matrix as given by Lemma 4.5. Since Hg → Out(Fg) is
surjective, we can find a handlebody group element φ mapping to f . It then
acts on H1(S;Z) as (

A B′

0 (At)−1

)
,

since the lower right block describes the action on the first homology of
the handlebody. Applying Lemma 4.3, we can therefore find a handlebody
group element ϕ0 which acts as(

A B
0 (At)−1

)
.
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By construction of B and Lemma 4.4, the mapping torus W0 defined by ϕ0

satisfies conditions i) and ii) of Theorem 4.1. Now let ψ be an element of
the kernel of the map

Hg → Out(Fg)

such that ψ|∂Vg is pseudo-Anosov and such that ψ acts as the identity on
H1(∂Vg;Z). Such a mapping class can for example be constructed as the
product of two Dehn twists about separating curves bounding disks.

Observe that for any n, the mapping tori defined by the elements ψnϕ0

then also satisfy i) and ii), since they act on H1(S;Z) in the same way as ϕ0.
On the other hand, for large n, the elements ψnϕ0|∂Vg are pseudo-Anosov
with diverging Weil-Petersson translation length. Thus the mapping tori
defined by the boundary maps of ψnϕ0 are hyperbolic manifolds, and by
the main theorem of [Bro03] their volumes diverge. By Mostow rigidity this
implies in particular that there are infinitely many distinct diffeomorphism
classes in the sequence.

This shows Theorem 4.1. �
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