
A PROJECTION FROM FILLING CURRENTS TO
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1. Introduction

Let S be a closed genus g surface and let T (S) denote its Teichmüller space.
A common theme in Teichmüller theory is to try to minimise the length of a
(sufficiently complicated) object on S over all of T (S), and to look for a metric
at which the length is minimized. This idea underlies Kerckhoff’s proof of the
Nielsen realisation problem [Ker83](where the orbit of a large enough collection of
curves is minimised), and his lines of minima [Ker92], which yield quasigeodesics
in T (S) with interesting properties [CRS06, CRS07](where the sum of the lengths
of two laminations that together fill the surface is minimised). Minimising the
length (and estimating this minimum) for non-simple closed curves on S has also
recently attracted some attention both in its own right [Bas13] and as a way to
count mapping class group orbits of such curves with fixed self-intersection number
[AGPS16, AS16].

The purpose of this paper is to define and begin to study a framework generalising
this minimisation idea in the realm of geodesic currents, which are in themselves a
powerful tool for studying T (S).

The space of geodesic currents C(S) on S (defined carefully below) can be viewed
as the space of geodesic flow invariant measures on the unit tangent bundle T1(S),
where we can choose any hyperbolic metric on S to make this precise. The space of
geodesic currents was first defined by Bonahon, and shown to contain T (S) as well
as the set of homotopy classes of closed curves on S [Bon88]. It was later shown
to contain many other geometric structures such as the space of all negatively
curved metrics [Ota90] and the space of flat structures on S [DLR10]. All of these
structures are unified by an intersection function i(·, ·) on pairs of currents. When
two currents µ and ν represent closed curves on S, then i(µ, ν) is just the geometric
intersection number. That is, it is just the minimal number of intersections between
elements in the free homotopy classes of the two curves. However, if µ is still a
closed curve and ν represents a metric, then i(µ, ν) becomes the geodesic length of
µ with respect to the metric represented by ν.

As a fairly immediate consequence of work of Wolpert [Wol06], we prove in
Proposition 2.2 that one can define a projection

π : Cfill(S)→ T (S)

from the subset of “filling” currents Cfill(S) (precisely defined below) to Teichmuller
space. The map π is uniquely determined by the property that if µ ∈ Cfill(S) and
π(µ) = Xµ, then for all Y ∈ T (S),

i(µ,Xµ) ≤ i(µ, Y ).
1
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In particular π generalises the length-minimisation problem (for µ the counting
current of a filling curve, or the sum of currents of a filling collection of curves),
and the definition underlying lines of minima (for µ the sum of two filling measured
laminations).

The space of currents has a natural action by R+, given by scaling each measure
by a positive constant. Taking the quotient of C(S) by this action gives the space
PC(S) of projective currents. The intersection form is bilinear, and so our projection
map also yields

π : PCfill(S)→ T (S)

where PCfill(S) is the set of projectivized filling currents. Our main result is the
following:

Theorem 1.1. The map π : PCfill(S)→ T (S) is continuous and proper.

By work of Diaz and Series, explained in more detail in Section 7, the projection
does not extend to the boundary. However, we extend a result of theirs to show that
the projection does extend at maximal, uniquely ergodic laminations in a surprising
way. In fact, T (S) is embedded in PC(S) in such a way that its boundary is exactly
the Thurston boundary. Moreover, PML(S) also lies in the boundary of PCfill(S).
We show that the projection extends to maximal, uniquely ergodic laminations,
and that, in fact, it extends as the identity map at those points:

Proposition 1.2. Suppose λ is a maximal, uniquely ergodic lamination. If µn ∈
Cfill(S) with µn → λ, then π(µn)→ [λ] ∈ PC(S). Conversely, if µn ∈ Cfill(S) with
µn → µ for some µ, and π(µn)→ λ, then, in fact, [µ] = [λ] ∈ PC(S).

1. Background. We now recall the definition of the space of geodesic currents
C(S) on S. Given X ∈ T (S), we can identify the universal cover of X with H2, and
write X = H2/Γ where Γ is the image of a representation of π1(S) into PSL(2,R).
The space of geodesic currents is the space of locally finite, Γ-invariant Borel mea-
sures on the set of geodesics in H2. We endow C(S) with the weak-* topology.
Note that, a priori, C(S) depends on the choice of metric X. However, for any two
metrics X and Y , there is a Holder continuous homeomorphism between the sets
of currents defined with respect to these metrics.

Note that C(S) is closed under multiplication by positive real scalars, and under
addition of currents. Quotienting C(S)\{0} by the R+ action gives us the set PC(S)
of projective geodesic currents. Bonahon shows that PC(S) is compact in [Bon88].

The set of closed geodesics on X embeds into C(S) in the following way: given
any geodesic γ on X, we can take its full preimage, γ̃, in H2. If γ is closed, then
γ̃ is a discrete set. Thus, the Dirac measure on γ is a geodesic current. One can
similarly embed the setML of measured laminations into C(S). Abusing notation,
if γ is a closed geodesic or measured lamination, we will also use γ to describe
the corresponding current. The set of weighted closed (not necessarily simple!)
geodesics is dense in C(S) [Bon85].

Teichmuller space also embeds into the space of geodesic currents. Given X,
the Liouville measure on H2 defines a Γ-invariant measure on the set of geodesics
in H2. This is the current corresponding to X. Any other Y ∈ T (S) defines a
homeomorphism φ : S1 → S1 on the boundary at infinity of H2 by lifting and
extending the homeomorphism from X to Y coming from the markings. Pulling
the Liouville current back along φ gives the geodesic current corresponding to Y .
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Bonahon showed that the resulting map from T (S) to C(S), and also the projection
to PC(S) are homeomorphisms onto their image. Again abusing notation, if X ∈
T (S), then we will also use X to denote the Liouville current corresponding to X.

Lastly, Bonahon showed that the geometric intersection number on geodesics
extends continuously to a symmetric, bilinear function on C(S)× C(S). Moreover,
if X ∈ T (S) and γ ∈ G, then

i(γ,X) = `X(γ)

where `X(γ) is the length of the geodesic representative of γ on X.
We define the systolic length function by

sys : C(S)→ R≥0,

sys(µ) = inf
α
i(µ, α)

where the infimum is taken over all simple closed curves α. Let µ ∈ C(S) be a
geodesic current. We say that a current is filling if sys(µ) > 0. Observe that a
current µ is filling if and only if cµ is filling for any c > 0.

In particular, it turns out that measured laminations are not filling:

Lemma 1.3. If i(µ, µ) = 0, then µ is a measured lamination, and therefore, it is
not filling.

Proof. The fact that µ is a measured lamination if and only if i(µ, µ) = 0 is due
to Bonahon [Bon86], and the fact that it is therefore not filling can be found in
[BIPP19]. �

We let Cfill(S) denote the set of filling currents, and PCfill(S) denote the image
of this set in PC(S). By the remark above, a current is filling if and only if its image
lies in PCfill(S).

2. Projection onto Teichmuller space

We will show that there is a well-defined projection from filling geodesic currents
to Teichmuller space. First, we need the following variant of the collar lemma:

Lemma 2.1. Suppose µ ∈ C(S) and X ∈ T (S). Let α be a simple closed curve.
Then,

i(X,µ) ≥ ColX(α)i(µ, α)

where ColX(α) = sinh−1(1/ sinh( 1
2`X(α)) is the width of an embedded collar neigh-

borhood around α.

Proof. First, take γ to be a closed geodesic. Then by the collar lemma,

`X(γ) ≥ ColX(α)i(γ, α)

Since `X(γ) = i(X, γ), and the intersection form is linear, the same equation is true
if we replace γ by cγ for any c > 0.

Now take any µ ∈ C(S). Since weighted closed geodesics are dense in C(S), there
is a sequence cnγn where cn > 0 and γn is a closed geodesic, so that lim cnγn = µ.
Then for all n we have

i(X, cnγn) ≥ ColX(α)i(cnγn, α)

Since the intersection function is continuous, we can take limits of both sides and
get the desired inequality. �
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The following proposition will be used to define the projection from filling cur-
rents to T (S).

Proposition 2.2. If µ is a filling current, there is a unique point X ∈ T (S) so
that for all Y 6= X ∈ T (S),

`X(µ) < `Y (µ)

Proof. For each µ ∈ Cfill(S), we define

`min(µ) = inf
Y ∈T (S)

`Y (µ)

We will show that there is a unique point X ∈ T (S) which realizes `min(µ).
Consider the geodesic length function

`µ : T (S)→ R+

that sends X ∈ T (S) to `X(µ). In [Wol06, page 5], Wolpert showed that, for
any µ ∈ C(S), this function is strictly convex with respect to the Weil Petersson
metric. For any finite dimensional, geodesic Riemannian manifold M , and any
convex function f : M → R+, the preimage of a bounded set is always bounded
(Lemma 8.1). Thus, for all L > 0, `−1µ [0, L] is bounded with respect to the Weil

Petersson distance. In particular, `−1µ [0, 2`min(µ)] is bounded and non-empty.

Moreover, by the collar lemma, for each L, `−1µ [0, L] lies in the ε-thick part of
T (S) for some ε > 0. In fact, by definition of the systole,

i(µ, α) ≥ sys(µ)

for all simple closed curves α. But then, by Lemma 2.1

`X(µ) ≥ sys(µ) · ColX(α).

When `X(µ) < L, this gives an upper bound on the length of the collar neighbor-
hood about all simple closed curves α in terms of L and µ. This in turn gives a
lower bound on their lengths.

Closed and bounded sets in the ε-thick part of T (S) are compact with respect to
the Weil-Petersson distance. Thus, `µ must attain a minimum on `−1µ [0, 2`min(µ)].
This minimum is exactly a point X for which `X(µ) = `min(µ). But since the
geodesic length function is strictly convex, this minimum is unique. �

For any current µ and points X,Y ∈ T (S), we have i(X,µ) < i(Y, µ) if and only
if i(X, tµ) < i(Y, tµ) for any t > 0. Thus, this projection is actually defined on
PCfill(S):

Definition 2.3. We define a map

π : PCfill(S)→ T (S)

where, for each [µ] ∈ PCfill(S), π[µ] = X if and only if i(X,µ) < i(Y, µ) for all
Y 6= X ∈ T (S). By the remark above, this definition is independent of the choice
of representative µ of [µ].

Note that the projection is also mapping class group equivariant, since the action
of the mapping class group on C(S) preserves intersection number.

Remark 2.4. Bonahon shows in [Bon88, in Theorem 19] that i(X,X) ≤ i(X,Y )
for all X,Y ∈ T (S). Since the length function is strictly convex, this shows that in
fact, i(X,X) < i(X,Y ) for all X 6= Y ∈ T (S). Hence, the map π is constant on
T (S), and therefore actually is a projection.
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3. Continuity of the projection map

In this section, we will show that the projection map is continuous. First, we
need the following lemma:

Lemma 3.1. Let µ be a filling current. Then we have

`π(µ)(µ) ≤ 4
√

2|χ(S)|
√
i(µ, µ)

For closed geodesics, this result was first proven by [AGPS16] for some constant,

and then [AS16] showed that we can take the constant to be 4
√

2|χ(S)|. We just
need to show that we can extend this result to all filling currents.

Proof. Let µ be a filling current. Since closed geodesics are dense in PC(S), there
is a sequence of closed geodesics γn and constants cn > 0 so that

cnγn → µ

Since µ is filling, sys(µ) > 0. Since the systole function is continuous, sys(cnγn) > 0
for all n big enough. In particular, up to passing to a subsequence, we can assume
that γn are all filling closed curves.

Let Xn = π(γn). This also means that Xn = π(cnγn). The compactification of
T (S) in PC(S) is just the Thurston compactification (by Bonahon [Bon88].) Thus,
either we can pass to a subsequence so that Xn → Y for some Y ∈ T (S), or there
are constants dn > 0 so that dnXn → λ for λ ∈ML(S).

Suppose first that dnXn → λ ∈ML(S). Then on the one hand,

lim
n→∞

i(cnγn, dnXn)→ i(µ, λ)

Since µ is filling, by Theorem 4.1 of [BIPP19], we must have i(µ, λ) > 0.
However, i(cnγn, cnγn) → i(µ, µ). Since i(µ, µ) > 0 and i(γn, γn) 6= 0, we can

replace each cn with cn =

√
i(µ,µ)√
i(γn,γn)

so that convergence still holds. So,

`Xn(cnγn) ≤ cn4
√

2|χ(S)|
√
i(γn, γn)

= 4
√

2|χ(S)|
√
i(µ, µ)

In particular, `Xn
(cnγn) is bounded. Moreover, we know that i(Xn, Xn) = 2π|χ(S)|

and i(λ, λ) = 0 by [Bon88]. Thus, we must have dn → 0. So,

lim
n→∞

i(cnγn, dnXn) = 0

This contradicts the above conclusion.
Therefore, up to passing to a subsequence, there is some Y ∈ T (S) so that

Xn → Y . Thus, since

i(Xn, cnγn) ≤ 4
√

2|χ(S)|
√
i(µ, µ)

we can take the limit of the left hand side as n goes to infinity to get that

i(Y, µ) ≤ 4
√

2|χ(S)|
√
i(µ, µ)

Since π(µ) is the length minimizer of µ, we have i(π(µ), µ) ≤ i(Y, µ), giving us the
needed result. (In fact, we prove below that Y = π(µ), but we don’t need that
here.) �
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We remark that in [AS16] it is shown that for every non-simple closed curve γ,

there is some metric X so that `X(γ) ≤ 4
√

2|χ(S)|
√
i(γ, γ). Although the proof

above crucially depends on the fact that µ is filling, this motivates the following:

Question 1. Does Lemma 3.1 hold for all currents with non-zero self-intersection?

We are now ready to prove the first part of the main theorem:

Lemma 3.2. The projection π : PCfill(S)→ T (S) is continuous.

Proof. Suppose {µn} is a sequence of filling currents that converges to a filling
current µ. Let Xn be the length minimizer of µn and let X be the length minimizer
of µ. First, we can run essentially the same argument as above to show that, up to
passing to a subsequence, Xn → Y for some Y ∈ T (S).

Indeed, suppose there are constants dn > 0 so that dnXn → λ ∈ML(S). Then

lim
n→∞

i(µn, dnXn) = i(µ, λ) > 0

since µ is a filling current.
However, `Xn

(µn) ≤ 4
√

2|χ(S)|
√
i(µn, µn) for each n. Since i(µn, µn)→ i(µ, µ),

the sequence i(µn, Xn) is bounded. Moreover, λ ∈ML(S) implies dn → 0. Thus,

lim
n→∞

i(µn, dnXn) = 0

which gives the same contradiction as above.
Thus, after passing to a subsequence, Xn → Y for some Y ∈ T (S). But

i(Xn, µn) < i(X,µn)

for each n, since Xn is the length minimizer of µn. Taking limits, we see that

i(Y, µ) ≤ i(X,µ)

Since X is the length minimizer of µ, this implies that Y = X. Thus, Xn → X. �

4. Non-filling currents

Before we continue, we will show that non-filling currents do not have a minimizer
in T (S), extending a result of Kerckhoff on non-filling sums of laminations [Ker92].
We highlight that as a consequence, the definition of the projection π does not
extend to a larger class of currents. For a full discussion, see Section 7 below.

Lemma 4.1. Let µ ∈ C(S) be non-filling. Then there is no X ∈ T (S) so that
`X(µ) ≤ `Y (µ) for all Y ∈ T (S).

Proof. Let µ be non-filling. By [BIPP19], either µ is a measured lamination, or
we can find a non-empty collection of simple closed curves δ1, . . . , δn so that µ =∑
ciδi +

∑
F νF , where ci > 0 and the second sum is over connected components

F of S \ ∪δi, and the support of νF is F .
If µ is a measured lamination, then by [Ker92, proof of Prop 2.1, part 2] the

function `µ : T (S) → R sending X ∈ T (S) to `X(µ) has no critical points. That
is, the length of µ is not minimized inside T (S).

So suppose

µ =
∑

ciδi +
∑
F

νF

where the set of simple closed curves {δ1, . . . , δn} is non-empty, and suppose µ is
minimized at a point X ∈ T (S). We will build a metric Y so that `Y (µ) ≤ `X(µ).
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Take δ = δ1, and let Z be the metric we get by cutting X along δ. Let δ+ and
δ− be the two boundary components of Z coming from δ.

In [PT09], they give a construction that, for all ε > 0 small enough, produces
a new metric Z ′ so that `Z(γ) ≤ `Z′(γ) for all simple closed curves γ, and the
length of δ decreases by ε. Since [PT09] only prove this result for simple closed
curves, we will summarize their construction here and show that their results give
us the statement we want. (Note that a similar result was first proven by Parlier
in [Par05], but the construction in [PT09] is better suited to our purposes.)

Let α be a simple arc from δ+ to itself that is orthogonal to δ+ at its endpoints.

Let Ẑ be the Nielsen completion of Z, formed by attaching infinite cuffs to all
boundary curves of Z. Extend α to an infinite geodesic arc. Papadopoulos and
Théret show how to choose two geodesic arcs hyperparallel to α that cut out a
neighborhood B about α. By cutting out this neighborhood and gluing the two
sides in a prescribed way, they obtain a new complete hyperbolic metric ẐB . They
show that the induced map

f : Ẑ → ẐB

is 1-Lipschitz. Thus, given any closed geodesic γ on Ẑ, its image f(γ) has length

bounded above by `Z(γ). Let ZB be the convex core of ẐB . Since the geodesic
representatives of all closed geodesics lie in the convex core, we have that `Z(γ) ≥
`ZB

(γ). By bringing the curves about α closer together, we see that for all ε > 0
small enough, we can get `ZB

(δ+) = `Z(δ+)−ε. Moreover, the length of δ− remains
unchanged.

We can repeat this procedure with δ−, taking care that it gets shrunk by the
same amount as δ+. This will give us a new metric where the lengths of all closed
curves do not increase, and the lengths of δ+ and δ− are equal and strictly smaller
than before.

Note that µ− c1δ can be viewed as a current on S \ δ. Moreover, since S \ δ is
a compact surface with boundary, work of Bonahon [Bon85] implies that weighted
closed curves are dense in the space of currents. Thus, the fact that the lengths of
all closed curves do not increase implies that the lengths of all currents supported
on S \ δ do not increase, as well.

We then glue δ+ to δ− to get a new metric Y ∈ T (S). Then Y satisfies

`Y (µ) ≤ `X(µ)

as `Y (µ− c1δ1) ≤ `X(µ− c1δ1), and `Y (δ1) < `X(δ1). Since the length function is
strictly convex, this means that X cannot be the length minimizer of µ. �

5. Minimal length bound

We wish to understand the length of a current at points near its length minimizer.
Given X,Y ∈ T (S), recall that the (asymmetric) Thurston distance is defined by

dTh(X,Y ) = log inf{L | f : X → Y is L-Lipschitz}

Then we have

Lemma 5.1. Let X,Y ∈ T (S) and let µ ∈ C(S). Then,

i(Y, µ) ≤ edTh(X,Y )i(X,µ)
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Proof. Let X,Y ∈ T (S). Thurston showed [Thu98] that the distance from X to Y
is realized by a Lipschitz map. So let f : X → Y be an L-Lipschitz map so that

dTh(X,Y ) = logL

If γ is a closed geodesic with respect to X, then f(γ) is a closed curve of length at
most L`X(γ). Therefore,

i(Y, γ) ≤ Li(X, γ)

where L = edTh(X,Y ).
Now let µ ∈ C(S). We can approximate µ by a sequence cnγn with cn > 0 and

γn closed curves. Then the desired result follows from linearity and continuity of
intersection number. �

6. Properness

We are now ready to show that the second part of the main theorem.

Theorem 6.1. The projection π : PCfill(S)→ T (S) is proper.

Proof. Since T (S) is locally compact and Hausdorff, to show that the continuous
map π is proper, it is enough to show that it is closed and that its fibers are compact.

Let C ⊂ PCfill(S) be a closed set. We need to show π(C) is closed. So suppose
Xn ∈ π(C) so that Xn → X ∈ T (S). We need to show that X ∈ π(C).

Let [µn] ∈ C so that π[µn] = Xn. Since C ⊂ PCfill(S), these are all fill-
ing currents. Without loss of generality, their representatives in Cfill(S) satisfy
i(µn, µn) = 1. Thus,

`Xn
(µn) ≤ 4

√
2|χ(S)|

by Lemma 3.1. Lemma 5.1 implies

i(X,µn) < edTh(Xn,X)i(Xn, µn)

Since Xn → X, dTh(Xn, X)→ 0. Thus, there is some L > 0 for which i(X,µn) < L
for all n.

The set {µ ∈ C(S) | i(X,µ) < L} is compact by [Bon88]. Thus, up to passing to
a subsequence, µn → µ for µ ∈ C(S).

Since we assumed that C is closed, we must have µ ∈ C. In particular, µ is
filling, so π(µ) is well defined. Moreover, for any Y ∈ T (S), we have

i(Xn, µn) ≤ i(Y, µn)

Taking limits of both sides gives us i(X,µ) ≤ i(Y, µ). Thus,

π(µ) = X

and so X ∈ π(C). Therefore, π(C) is closed.
Next, let X ∈ T (S). We must show that π−1(X) is compact in PCfill(S). Since

PC(S) is compact, it is enough to show that π−1(X) is closed in PC(S). So suppose
[µn] ∈ PCfill with π[µn] = X, and [µn]→ [µ] in PC(S).

By choosing appropriate representatives, we can assume that µn → µ as currents.
Then we note that X must be the length minimizer of µ. Indeed, for all Y 6= X ∈
T (S),

i(µn, X) < i(µn, Y )

and taking limits gives us the desired inequality. By Lemma 4.1, non-filling currents
do not have length minimizers. Thus, µ must also be filling. Therefore, [µ] ∈
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π−1(X), and so π−1(X) is closed inside PC(S). Thus, it is compact. Therefore, the
map π is proper. �

Finally, we want to connect the systolic length of a filling current to its self-
intersection number, and its length at its projection. We will need the following
remark.

Remark 6.2. By [BIPP19, Corollary 1.4], Mod(S) acts properly discontinuously
on Cfill(S). If we let Ω be the quotient of Cfill(S) by Mod(S), then π descends to
a projection

π : Ω→Mg

where Mg is the moduli space of our genus g surface.

Corollary 6.3. For every ε, for all µ with π(µ) ∈ Tε(S), we have√
i(µ, µ) � sys(µ) � `π(µ)(µ)

where we say A � B if there are constants c1, c2 so that c1A ≤ B ≤ c2B, and where
the constants depend only on S and ε but not on µ.

Proof. Note that the systole function descends to Ω = Cfill(S)/Mod(S), as does
self-intersection. Thus, the map f : Ω→ R defined by

f([µ]) =
sys(µ)√
i(µ, µ)

is well-defined and continuous. (Note that the self-intersection of a filling current
can never be 0.)

We can project the map π to a map

π : PCfill(S)/Mod(S)→Mg

whereMg is the moduli space. The projection is still proper. Thus, the pre-image
of the ε-thick part of Mg is compact. Since a continuous map on a compact set
achieves its maximum and minimum, there are constants c1 = c1(ε) and c2 = c2(ε)
for which

c1 ≤
sys(µ)√
i(µ, µ)

≤ c2

Moreover, c1 > 0 as the systolic length a filling current can never be 0.
Since the function µ 7→ `π(µ)(µ) is continuous and Mod(S)-invariant, the same

argument works for the function g : Ω → R with g(µ) = `π(µ)(µ)/
√
i(µ, µ), giving

us the second inequality. �

7. Extension of the projection

By Bonahon [Bon88], there is a natural embedding of T (S) into PC(S). The
set PC(S) is compact, and the closure of T (S) in this embedding is exactly the
Thurston compactification. Given that the map π : PCfill(S)→ T (S) is proper, it

is natural to ask if it can be continuously extended to a map PC(S)→ T (S), where

T (S) is the Thurston compactification. However, by a result of Diaz and Series,
this turns out to be impossible.

Kerckhoff showed that given µ, ν ∈ML(S) so that µ+ν is a filling current, then
µ+ν has a unique length minimizing metric in T (S) [Ker92]. Let A = {α1, . . . , αn}
and B = {β1, . . . , βm} be two simple closed multicurves whose union fills S. Diaz
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and Series then look at the simplex of minima, that is, the projection to T (S)
of {

∑
tiαi +

∑
siβi | ti, si > 0}. In [DS03, Corollary 1.3], they show that the

projection does not extend to the boundary of this set in PC(S). In fact, two
different sequences that converge to α1 + · · ·+ αn−1 can project to sequences that
converge to different elements of PML(S).

Lemma 7.1 (Diaz-Series, Corollary 1.3 [DS03]). The projection π : PCfill(S) →
T (S) does not extend continuously to a projection from PC(S) to the Thurston
compactification of T (S).

On the other hand, our techniques allow us to prove an extension of Theorem
1.2 in [DS03] and show that π extends continuously at maximal, uniquely ergodic
laminations. The original result is as follows. If µ and λ were two laminations
so that µ + λ is a filling current, then in fact, tµ + (1 − t)λ will be filling for all
t ∈ (0, 1). Kerckhoff introduced the map t → π(tµ + (1 − t)λ). He showed that it
is, in fact, a homeomorphism onto its image. This image in T (S) is called the line
of minima between µ and λ. As t→ 0, of course, tµ+(1− t)λ converges to λ. Diaz
and Series show that when λ is maximal and uniquely ergodic, then for any choice
of µ, the line of minima π(tµ+ (1− t)λ converges to [λ] ∈ PML(S) as t→ 0. We
extend this result to any sequence of filling currents that converges to a maximal,
uniquely ergodic lamination, and provide a converse.

Proposition 1.2. Suppose λ is a maximal, uniquely ergodic lamination. If µn ∈
Cfill(S) with µn → λ, then π(µn)→ [λ] ∈ PC(S).

Conversely, if µn ∈ Cfill(S) with µn → µ for some µ, and π(µn)→ [λ] ∈ PC(S),
then, in fact, [µ] = [λ] ∈ PC(S).

Proof. Suppose we have µn ∈ Cfill(S) with µn → µ ∈ C(S). Let Xn = π(µn) and
suppose, up to taking a subsequence, Xn → λ for λ ∈ PML(S). For now, we make
no other assumptions on µ and λ.

We can find constants cn so that cnXn → λ. Since i(λ, λ) = 0 and i(Xn, Xn) > 0,
we have that cn → 0. Then, by Lemma 3.1,

i(µn, cnXn) ≤ cn4
√

2|χ(S)|
√
i(µn, µn)

Taking limits, and using the fact that cn → 0 and i(µn, µn)→ i(µ, µ), we get

i(µ, λ) = 0

If µ is, in fact, a maximal, uniquely ergodic lamination, then the fact that λ is a
lamination implies that [λ] = [µ]. Since every subsequence of π(Xn) converges to
[µ], the entire sequence converges as well.

On the other hand, suppose µ is some (non-filling) geodesic current, and λ is
the maximal, uniquely ergodic lamination. We’ll show in this case that [µ] = [λ].
The fact that i(µ, λ) = 0 means that the supports of µ and λ do not have any
transverse intersection points. Thus, all the geodesics in the support of µ either lie
in the support of λ, or in a complementary region of its support. But since λ is
maximal, its complementary regions are all ideal polygons. For each polygon, there
are only finitely many complete geodesics contained in the interior. However, these
geodesics are all isolated from the rest of the support of λ. So the only way they
can be in the support of µ is if they project down to closed curves. However, since
λ is uniquely ergodic, none of its leaves are asympotic to a closed curve. Thus,
the support of µ must be contained in the support of λ. In particular, µ is also
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a measured lamination. Since λ is uniquely ergodic, this means that [µ] = [λ] in
PML(S). �

Although π does not extend to a larger set inside the space of currents, one can
still wonder if there is a way to extend it (to some compactification of Teichmüller
space). Given that π extends at uniquely ergodic points, and at these points the
Thurston boundary agrees with the Teichmüller boundary, this suggests this as a
natural candidate:

Question 2. Does the map π extend to the Teichmüller compactification? (or any
other compactification?)

8. Appendix

The following is a technical lemma about convex functions. This is likely well-
known, but for convenience of the reader we include a proof. We say a manifold M
is geodesic if every two points are joined by a distance-minimizing geodesic.

Lemma 8.1. For any finite dimensional, geodesic Riemannian manifold M , and
any convex function f : M → R+, the preimage of a bounded set is always bounded.

Note that we don’t require M to be geodesically complete.

Proof. Let B ⊂ R+ be a bounded set. Without loss of generality, take B = [0, L]
for some L > 0. Fix a point p ∈ f−1(B). Let T 1

pM denote the unit tangent bundle

at p. For each v ∈ T 1
pM , let γv be the geodesic parameterized by arclength coming

out of p in direction v. Then for each t > 0, let

Ut = {v ∈ T 1
vM | γv(t) 6∈ f−1(B)}

where we also say v ∈ Ut is γv(t) is not defined. Since f−1[0, L] is closed, Ut is
open. And since f is a convex function, f−1[0, L] is convex. Thus, if s > t then
Ut ⊂ Us.

There are two cases. First suppose the collection {Ut} covers T 1
pM . Since M

is finite dimensional, T 1
pM is compact. Thus, there is some t so that T 1

pM ⊂ Ut.

Since M is a geodesic space, this means f−1(B) ⊂ B(p, t). In other words, it is
bounded.

So suppose there is a v ∈ T 1
pM so that v 6∈ Ut for all t. Then, γv is defined

for all time, and we have the composition R+
γv−→ M

f−→ R+. Since f is complete
and γv is parameterized by arclength, the composition is a convex function from
R+ to R+. Moreover, γv(t) ∈ f−1[0, L] for all t. Thus, f ◦ γv is bounded. But
there does not exist a bounded, convex function defined on R+, so we arrive at a
contradiction. �
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