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Abstract. We show that the pure mapping class group of an infinite-type sur-
face of finite genus is not generated by the collection of multitwists (i.e. products
of powers of twists about disjoint non-accumulating curves).

1. Introduction

The mapping class group of a surface of finite type has been thoroughly studied
since decades. In particular, multiple simple sets of generators are known. The
Dehn–Lickorish theorem ([Deh38], [Lic64]), in combination with the Birman exact
sequence ([Bir69]), shows that the pure mapping class group of a finite-type surface
can be generated by finitely many Dehn twists about nonseparating curves, and
we need to add finitely many half-twists to generate the full mapping class group.
Humphries [Hum79] proved that, if the surface is closed and of genus g ≥ 2, 2g + 1
Dehn twists about nonseparating curves suffice to generate the mapping class group,
and moreover this number is optimal: fewer than 2g+1 Dehn twists cannot generate.
Other results show that mapping class groups can be generated by two elements
(see e.g. [Waj96]), by finitely many involutions or by finitely many torsion elements
(see e.g. [BF04]).

In the case of surfaces of infinite type, the (pure) mapping class group is un-
countable, so in particular it is not finitely (nor countably) generated. For a special
class of surfaces, Malestein and Tao [MT21] proved that mapping class groups are
generated by involutions, and normally generated by a single involution, but to the
best of our knowledge, no other generating set is known.

Note that the (pure) mapping class group of a surface of infinite type is endowed
with an interesting topology, induced by the compact-open topology on the group of
homeomorphisms of the surface. So topological generating sets (sets whose closure
of the group they generate is the (pure) mapping class group) have been investigated
as well. In particular, Patel and Vlamis [PV18] proved that the pure mapping class
group of a surface is topologically generated by Dehn twists if the surface has at most
one nonplanar end, and by Dehn twists and maps called handle shifts otherwise.

The goal of this note is to investigate a natural candidate for a set of generators of
the pure mapping class group of a surface: the collection of multitwists. A multitwist
is a (possibly infinite) product of powers of Dehn twists about a collection of simple
closed curves which do not accumulate anywhere in the surface1. Our main result
is a negative one:
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1The non-accumulation condition is necessary to have a well defined mapping class.
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Theorem A. Let S be an infinite-type surface of finite genus. Then the collection
of multitwists does not generate the pure mapping class group.

For proving this result, we explicitly construct a mapping class which is not a finite
product of multitwists. We use work of Bestvina, Bromberg and Fujiwara [BBF16]
to certify that the mapping class we construct is not in the subgroup generated by
multitwists. These techniques do not allow us to extend the result to the case of
surfaces of infinite genus, which raises the question of whether multitwists generate
the pure mapping class group of some infinite-type surface.

2. Preliminaries

In this note, a surface is a connected, orientable, Hausdorff, second countable
two-dimensional manifold, without boundary unless otherwise stated. One notable
exception are subsurfaces, which will always have compact boundary. Given a
surface S with boundary, S̃ will denote the surface obtained by gluing a once-
punctured disk to each boundary component of S.

Surfaces are of finite type if their fundamental group is finitely generated and
of infinite type otherwise. A surface S is exceptional if it has genus zero and
at most four punctures or genus one and at most one puncture, otherwise it is
nonexceptional.

The mapping class group of a surface S is the group MCG(S) of orientation
preserving homeomorphisms of S up to homotopy. The pure mapping class group
PMCG(S) is the subgroup of MCG(S) fixing all ends and boundary components.

A curve on a surface is the homotopy class of an essential (i.e. not homotopic to
a point, an end or a boundary component) simple closed curve. Given a curve α,
we denote by τα the Dehn twist about α.

An integral weighted multicurve µ is a formal sum
∑

i∈I niαi, where the αi are
pairwise disjoint curves not accumulating anywhere and the ni are integers. Given
an integral weighted multicurve µ, we define τµ to be the mapping class

τµ =
∏
i∈I

τni
αi
.

Such a mapping class is called a multitwist.

We say that an integral weighted multicurve is finite if I is finite (i.e. it contains
finitely many curves). An integral weighted multicurve ν is a submulticurve of an
integral weighted multicurve µ =

∑
i∈I niαi if ν =

∑
i∈J niαi, where J ⊂ I.

Given a group G, a quasimorphism ϕ : G→ R is a function such that

∆(ϕ) := sup{|ϕ(gh)− ϕ(g)− ϕ(h)| | g, h ∈ G} <∞.
∆(ϕ) is called defect of the quasimorphisms. A quasimorphism ϕ is homogeneous
if for every g ∈ G and n ∈ Z, ϕ(gn) = nϕ(g).

We have (see e.g. [Cal09, Chapter 2]):

Proposition 1. Let ϕ : G → R be a quasimorphism. Then there is a unique
homogeneous quasimorphism ϕ̂ (the homogenized quasimorphism), given by

ϕ̂(g) = lim
n→∞

ϕ(gn)

n
∀g ∈ G,
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such that ϕ differs from ϕ̂ by a bounded function.

A slight modification of the proof of [BBF16, Theorem 4.2] gives:

Proposition 2. Let Σ be a finite-type surface, possibly with boundary, and F a non-
exceptional subsurface of Σ. Let f ∈ MCG(Σ) with support on F and such that g|F
is pseudo-Anosov. Then there is a homogeneous quasimorphism ϕ : MCG(Σ)→ R
which is unbounded on powers of f and zero on all multitwists.

We add a sketch of proof for completeness. We refer to [BBF16] for the necessary
definitions.

Proof. By [BBF16, Theorem 4.2], there is a homogeneous quasimorphism ϕ which
is unbounded on powers of f , since f contains a single equivalence class, which is
chiral and essential. Moreover, this quasimorphism is obtained as follows: we first
look at the finite-index subgroup S of MCG(Σ) constructed in [BBF16, Proposition
2.5] and at its action on the projection complex C(Y), where Y is the S-orbit of F
(see [BBF16, Section 2.6]). This gives us a quasimorphism ψ1 : S → R. Then we
choose coset representatives 1 = g1, . . . , gs of MCG(Σ)/S and define ψ2 : S → R by

ψ2(h) =
n∑
i=1

ψ1(gihg
−1
i ).

The homogenized quasimorphism ψ̂2 extends to a homogeneous quasimorphism ϕ :
MCG(Σ)→ R given by

ϕ(f) =
1

n
ψ̂2(f

n),

where n is such that fn ∈ S.

Let τα be a twist. We claim that ϕ(τα) = 0. Let n > 0 be such that τnα ∈ S.
For i = 1, . . . , s, giτ

n
αg
−1
i is supported on the annulus with core curve gi(α). So

by [BBF16, Lemma 2.8], if it acts hyperbolically on C(Y), it has virtual quasiaxes
intersecting C(F ′) in a uniformly bounded segment for every F ′ ∈ Y. Thus the
projection of its virtual quasiaxes onto the translations of the virtual quasiaxes of
g are uniformly bounded. By [BBF16, Corollary 3.2(d)], this implies that ψ1 is

bounded on powers of giτ
n
αg
−1
i , so ψ2 is bounded on powers of τnα and thus ψ̂2(τ

n
α ) =

0. Hence ϕ(τα) = 0.

Now let τµ be a multitwist. Then it is the commuting product of powers of twists
τnk
αk
. . . τn1

α1
; since ϕ is homogeneous, and thus in particular additive on a product of

commuting elements,

ϕ(τµ) =
k∑
j=1

njϕ(ταj
) = 0.

�

Remark 3. In Proposition 2, F is allowed to be equal to Σ.

3. Proof of Theorem A

In this section we will prove our main theorem. We will need an observation and
two preliminary lemmas:
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Remark 4. Let S be a surface and X a surface obtained from S by filling in some
punctures. For any curve α on S, let π(α) be the homotopy class of α on X. Then
for every α, β curves on S,

τπ(α)(π(β)) = π(τα(β)).

Indeed, this can be seen by looking at a homeomorphism f of S realizing τα. Then
f extended to the identity on X rS realizes τπ(α). So for any b representative of β,
f(b) represents τα(β) on S and τπ(α)(π(β)) on X.

Lemma 5. Let S be a surface, f ∈ MCG(S) a product of k multitwists with powers
and X ⊂ S an f -invariant subsurface of finite type. Then the map induced by f to
X̃ is a product of at most k multitwists.

Proof. We can think of X̃ as obtained from S by filling in some punctures. Suppose
f = τµk ◦ · · · ◦ τµ1 is a product of k multitwists.

Note first that there are finite submulticurves ν1, . . . , νk of µ1, . . . , µk such that
f |X = (τνk ◦· · ·◦τν1)|X . Indeed, if τµ is a multitwist, for any curve α, τµ(α) = τν(α),
where ν is the submulticurve of µ given by curves intersecting α, and ν is finite since
α is compact. Moreover, since X is of finite type, there are finitely many curves
α1, . . . αN on X such that a mapping class of X is determined by the images of
these curves. Applying these two observations allows us to find the multicurves νj
as required.

By Remark 4
f |X̃ = τπ(νk) ◦ · · · ◦ τπ(ν1),

where for a curve α on S, π(α) denotes the homotopy class of α on X̃, and for an
integral weighted multicurve µ =

∑
i∈I niαi on S, π(µ) denotes the multicurve on

X̃ given by

π(µ) =
∑

i :π(αi)
essential

niπ(αi).

�

The second lemma we will need certifies the existence of a sequence of subsurfaces
with specific topological properties.

Lemma 6. Let S be an infinite-type surface of finite genus g ≥ 1. Then S contains
a sequence of subsurfaces Xn of genus g and 6 boundary components (some of which
might be homotopic to a puncture), which can be decomposed as Xn = X ∪Pn ∪ Yn,
where:

• X is a surface of genus g and one boundary component;
• each Yn is a 6-holed sphere (where some boundary components might be

homotopic to a puncture);
• Pn is a pair of pants with one boundary component in common with X and

one boundary component in common with Yn;
• the Yn are pairwise disjoint and leave every compact;
• Yn ∩ Pm is empty if m 6= n.

Proof. Choose a surface X of genus g and one boundary component. Since S has
finite genus and is of infinite type, there is an end e of S which is not isolated. Let
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` be a simple proper arc from a point p ∈ ∂X to e, such that ` ∩X = {p}. Then
we can find (see for instance [FGM21]) a nested sequence of surfaces Un ⊂ S rX
such that:

• ∂Un is a single separating boundary component,
• e is the only end contained in all Un,
• ∂Un ∩ ` is a single point, denoted pn, and
• Un r Un+1 contains at least 5 ends.

So for every n ≥ 1 we can find a 6-holed sphere Yn ⊂ UnrUn+1r`. By construction,
the Yn are pairwise disjoint and leave every compact. Let γn be the boundary
component of Yn such that Yn and X are contained in different components of
S r γn. In each Un r Un+1, choose a simple compact arc `n from γn to ` (so that
the interior of `n is in the interior of UnrUn+1rYnr `). Let pn be the intersection
point of `n with ` and denote by `|[p,pn] the subarc of ` between p and pn. Define
Pn to be the pair of pants with boundary components ∂X, γn and the boundary of
a regular neighborhood of

∂X ∪ `|[p,pn] ∪ `n ∪ γn.
Then by construction Xn = X ∪ Pn ∪ Yn satisfies all the required properties. �

X

Y1 Y2 Y3

P1

`2 `3

∂U1 ∂U2 ∂U3 ∂U4

`

Figure 1. Finding subsurfaces asi in Lemma 6

We are now ready to prove our main theorem.

Proof of Theorem A. Let g be the genus of S. If g = 0, let Xn = Yn ⊂ S be
a sequence of pairwise disjoint 6-holed spheres (where some boundary component
might be homotopic to a puncture) leaving every compact. If g ≥ 1, let Xn, X and
Yn be as in Lemma 6.

Fix a surface Σ homeomorphic to Xn, F ⊂ Σ homeomorphic to Yn, and homeo-
morphisms θn : Σ → Xn restricting to homeomorphisms F → Yn. Let f be a pure
mapping class on Σ, supported on F and such that f |F is a pseudo-Anosov. Let f̄
be the mapping class on S given by

f̄ =
∞∏
n=1

θn ◦ fn ◦ θ−1n .

Informally, f̄ is supported on
⋃
Yn and restricts to fn on Yn.

We claim that f̄ is not in the group generated by multitwists. By contradiction,
suppose that f̄ is a product of k multitwists. Note that f̄ leaves each Xn invariant
and restricts to fn on each Yn, so by Lemma 5 the map induced by f̄ on X̃n is
a product of at most k multitwists. Tracing the definition of f̄ , this implies that
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for every n ≥ 1, fn ∈ MCG(Σ̃) is a product of at most k multitwists. Let ϕ be a
quasimorphism on MCG(Σ̃) as in Proposition 2. Then

lim
n→∞

|ϕ(fn)| =∞,

but since fn is a product of at most k multitwists,

|ϕ(fn)| ≤ k∆(ϕ),

a contradiction. �
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