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Abstract

We study graph parameters arising from different types of colourings of random

graphs, defined broadly as an assignment of colours to either the vertices or the

edges of a graph.

The chromatic number of a graph is the minimum number of colours required for

a vertex colouring where no two adjacent vertices are coloured the same. Determin-

ing the chromatic number is one of the classic challenges in random graph theory.

In Chapter 3, we give new upper and lower bounds for the chromatic number of

the dense random graph G(n, p) where p ∈ (0, 1) is constant. These bounds are

the first to match up to an additive term of order o(1) in the denominator, and in

particular, they determine the average colour class size in an optimal colouring up

to an additive term of order o(1).

In Chapter 4, we study a related graph parameter called the equitable chromatic

number. This is defined as the minimum number of colours needed for a vertex

colouring where no two adjacent vertices are coloured the same and, additionally, all

colour classes are as equal in size as possible. We prove one point concentration of the

equitable chromatic number of the dense random graph G(n,m) with m =
⌊
p
(
n
2

)⌋
,

p < 1 − 1/e2 constant, on a subsequence of the integers. We also show that whp,

the dense random graph G(n, p) allows an almost equitable colouring with a near

optimal number of colours.

We call an edge colouring of a graph G a rainbow colouring if every pair of

vertices is joined by a rainbow path, which is a path where no colour is repeated.

The least number of colours where this is possible is called the rainbow connection

number rc(G). For any graph G, rc(G) > diam(G), where diam(G) denotes the

diameter. In Chapter 5, we will see that in the random graph G(n, p), rainbow

connection number 2 is essentially equivalent to diameter 2. More specifically, we

consider G ∼ G(n, p) close to the diameter 2 threshold and show that whp rc(G) =

diam(G) ∈ {2, 3}. Furthermore, we show that in the random graph process, whp

the hitting times of diameter 2 and of rainbow connection number 2 coincide.

In Chapter 6, we investigate sharp thresholds for the property rc(G) 6 r where

r is a fixed integer. The results of Chapter 5 imply that for r = 2, the properties

rc(G) 6 2 and diam(G) 6 2 share the same sharp threshold. For r > 3, the situation

seems quite different. We propose an alternative threshold and prove that this is an

upper bound for the sharp threshold for rc(G) 6 r where r > 3.
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Chapter 1

Introduction

A graph G = (V,E), consisting of a set V of vertices with a set E ⊂
(
V
2

)
of edges

between them, is a mathematical model of a network. In a random graph, there is

typically a large number of vertices and the edges are drawn at random, representing

a large disordered network. Random graph theory has a long and rich history which

we will not attempt to give a full account of, instead we refer to the books by

Bollobás [7] and by Janson,  Luczak and Ruciński [33].

All graphs that we consider are finite and simple (no loops or multiple edges),

and usually the vertex set is taken to be V = [n] = {1, . . . , n} for a positive integer

n and we let N =
(
n
2

)
denote the maximum possible number of edges. Given n

and p ∈ [0, 1], the binomial random graph G(n, p) is the graph with vertex set [n]

where each of the N possible edges is present independently with probability p. This

random graph model was originally proposed by Gilbert [26] in 1959.

A closely related model, the uniform random graph G(n,m), was introduced at

the same time in a seminal paper by Erdős and Rényi [20]. Given positive integers

n and m 6 N , G(n,m) is the random graph with vertex set V = [n] and edge

set E which is chosen uniformly at random from all
(
N
m

)
possible edge sets of size

exactly m.

We are usually interested in the asymptotic behaviour of random graphs: as the

number n of vertices tends to infinity, can we find properties which the random

graph possesses with probability approaching 1, or properties where this probability
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tends to 0? We say that a sequence of events E = E(n) holds with high probability

(whp) if limn→∞ P(E(n)) = 1.

A colouring of a graph, in the broad sense, is an assignment of colours to either

the vertices or the edges of a graph. We are going to study graph parameters

which arise from different types of colourings and what they tell us about the global

structure of the random graph in question.

In the remainder of this chapter, we will give a brief overview of the main results

contained in this thesis. A longer introduction to each topic can be found at the

beginning of each chapter. We assume familiarity with basic concepts from prob-

ability theory. We will also use standard graph theoretic notions and asymptotic

notation which will be reviewed in Chapter 2.

1.1 Chromatic number

One of the central concepts in graph theory is that of a proper colouring where

every vertex of a graph G is assigned a colour so that no two adjacent vertices

are coloured the same. The minimum number of colours where this is possible is

called the chromatic number χ(G). Typical applications are scheduling and resource

allocation problems: suppose that a number of classes needs to be scheduled, but

certain pairs of classes may not be scheduled at the same time, for example because

some students are required to attend both. We can think of the classes as vertices in

a graph and draw an edge between them whenever there is a conflict. The task is now

to group the vertices into conflict free timeslots, which is exactly what is achieved by

a proper colouring of the vertices. The chromatic number is the required minimum

number of timeslots.

A classic challenge in random graph theory, which was raised in one of the earliest

papers by Erdős and Rényi [21], is finding the likely value of the chromatic number

of a random graph, and a wealth of results has been published over the years in this

area. Most notably, in 1987 Bollobás [6] first determined the asymptotic value of

the chromatic number of dense random graphs. In Chapter 3, which is based on the
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manuscript [30], we will give new upper and lower bounds for the chromatic number

of these random graphs; these bounds determine, for the first time, the average

colour class size in an optimal colouring up to an additive term of order o(1). The

main result of Chapter 3 is the following theorem.

Theorem 3.1. Let p ∈ (0, 1) be constant, and consider the random graph G ∼

G(n, p). Let q = 1 − p, b = 1
q
, γ = γp(n) = 2 logb n − 2 logb logb n − 2 logb 2 and

∆ = ∆p(n) = γ − bγc. Then whp,

χ(G) =
n

γ − x0 + o(1)
,

where x0 > 0 is the smallest nonnegative solution of

(1−∆ + x) logb(1−∆ + x) +
(∆− x)(1−∆)

2
6 0.

The lower bound in Theorem 3.1 is proved through a relatively easy first moment

argument. Somewhat surprisingly, there are two different random variables whose

first moments are the bottleneck for different constant values of p.

Proving good upper bounds for χ (G(n, p)) has historically been a greater chal-

lenge than finding good lower bounds, and the proof of Theorem 3.1 is no exception.

The best previously known upper bounds for χ (G(n, p)) have been derived through

refinements of the classic approach due to Bollobás [6]. A key ingredient in these

proofs is to show that whp, every sufficiently large set of vertices contains a large

independent set, which is a set of vertices without any edges between them. A

colouring is then constructed by successively selecting independent sets and assign-

ing a colour to each one until only a few vertices are left which can be coloured

individually.

In contrast, the proof of the upper bound in Theorem 3.1 does not follow this

strategy but is instead based on an elaborate application of the second moment

method. Since this approach involves considering complete, global colourings, it

yields a sharper bound than those that can be achieved through a step-by-step

construction of a colouring.
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In a nutshell, the proof involves considering all pairs of possible complete colour-

ings and calculating the joint probability that they are both proper colourings of the

random graph at the same time. Since this probability depends critically on how

similar the two colourings are, the main technical difficulty lies in classifying how

two colourings may overlap and splitting up the calculations into more manageable

cases.

While Theorem 3.1 addresses the likely value of the chromatic number of dense

random graphs, another important open problem is its concentration, i.e., the length

of the shortest interval which contains the chromatic number whp (see for exam-

ple [8]). In Chapter 4, we will harness the second moment calculations from the

proof of Theorem 3.1 to show that a related graph parameter, the equitable chro-

matic number, is very sharply concentrated for the dense random graph G(n,m) on

a subsequence of the integers.

An equitable proper colouring of a graph is a proper colouring where all colour

classes are as equal in size as possible. Since the number of colours does not neces-

sarily divide the number of vertices, this means that the colour class sizes may differ

by 1. The minimum required number of colours is called the equitable chromatic

number χ=(G).

In view of possible applications, the notion of an equitable colouring is a natural

one: in the scheduling problem described before, the colour class sizes are simply the

numbers of classes which are scheduled to take place at the same time. To optimise

the use of available resources such as the number of rooms in a building, it is often

desirable to keep this number as equal as possible between different time slots.

For constant p < 1 − 1/e2, we will consider the dense random graph G(n,m)

with m = m(n) = bpNc. Refining the calculations from Chapter 3, we will prove

that there is a subsequence (nj)j>1 of the integers such that χ= (G(nj,m(nj))) is

whp concentrated on one value. Moreover, we can pick the subsequence in such a

way that whp, all colour classes in an optimal equitable colouring of G(nj,m(nj))

have size exactly j.
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Theorem 4.2. Let 0 < p < 1− 1/e2 be constant. There exists a strictly increasing

sequence of integers (nj)j>1 and j0 > 1 such that

a) for all j > j0, j|nj,

b) letting b = 1
1−p and γj = 2 logb nj − 2 logb logb nj − 2 logb 2,

γj = j + o(1) as j →∞, and

c) letting G ∼ G(nj,mj) with mj =
⌊
p
(
nj
2

)⌋
, with high probability as j →∞,

χ= (G) =
nj
j
.

We will also show that there is an almost equitable proper colouring of G(n, p)

with a near optimal number of colours.

Theorem 4.1. Let p ∈ (0, 1) be constant, and consider the random graph G ∼

G(n, p). Define b, γ and x0 as in Theorem 3.1. Then whp, G has a colouring with

n

γ − x0 + o(1)

colours such that the sizes of all but o
(
n
γ

)
colour classes differ by at most 1.

1.2 Rainbow connectivity

Another fundamental and global graph property is connectivity : starting from any

vertex, can we reach any other vertex through a sequence of steps along edges of the

graph? Moreover, if a given graph is connected, can we quantify how well connected

it is?

The rainbow connection number rc(G) of a graph G was introduced in 2008 by

Chartrand, Johns, McKeon and Zhang [12] as a novel way to measure the connectiv-

ity of G and has since attracted the attention of a great number of researchers (see

for example the survey by Li and Sun [38]). Like the chromatic number, the rainbow

connection number arises from a type of graph colouring: we call an assignment of
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colours to the edges of a graph G a rainbow colouring if every pair of vertices is

joined by a rainbow path, which is a path where no colour is repeated. The rainbow

connection number rc(G) is the least number of colours where this is possible. If

rc(G) is low, this indicates that G is well connected.

We will investigate the following basic question: for a given r > 2, how many

edges need to be added to n vertices at random in order to ensure that whp, the

resulting graph has rainbow connection number r?

In Chapter 5, which is based on the paper [31], we obtain an essentially complete

answer to this question for r = 2. The rainbow connection number of any graph is

always at least as large as its diameter. We will see that rainbow connection number

2 and diameter 2 are essentially equivalent in random graphs.

It is well known (see [5]) that the ‘critical window’ for diameter 2 in random

graphs G ∼ G(n, p) occurs at p(n) =
√

2 logn+ω(n)
n

: if ω(n) → ∞, then whp

diam(G) 6 2, and if ω(n) → −∞, then whp diam(G) > 3. In this range, the

rainbow connection number is whp the same as the diameter of the random graph:

Theorem 5.1. Let p = p(n) =
√

2 logn+ω(n)
n

where ω(n) = o(log n) and let G ∼

G(n, p). Then whp rc(G) = diam(G) ∈ {2, 3}.

In fact, we can prove an even stronger result. Consider the random graph process,

which will be formally introduced in Chapter 2, where we start at time t = 0 with an

empty graph on n vertices and successively add edges chosen uniformly at random

from all edges not already present, until at time t = N we have the complete graph

on n vertices. Let τR and τD denote the hitting times of rainbow connection number

2 and diameter 2, respectively, i.e., the smallest t such that at time t the graph has

rainbow connection number at most 2 and diameter at most 2, respectively. We

always have τR > τD, but in fact, the two hitting times coincide whp.

Theorem 5.4. In the random graph process (Gt)
N
t=0, whp τD = τR.

In Chapter 6, which is based on the paper [32], we examine the case r > 3 where

the arguments used to prove Theorems 5.1 and 5.4 do not apply.
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It is not hard to show that for constant r, the graph property Rr of having

rainbow connection number at most r has a sharp threshold. This is defined as a

sequence p∗ = p∗(n) ∈ [0, 1] such that for all constants c < 1 < C, if p = p(n) 6

cp∗(n) for all sufficiently large n, then whp rc(G(n, p)) > r, and if p = p(n) > Cp∗(n)

for all sufficiently large n, then whp rc(G(n, p)) 6 r (see also Section 2.3.2 in the

next chapter).

The function p(n) = (2 logn)1/r

n1−1/r is a sharp threshold for the graph property of

having diameter at most r (see [5]), and the results of Chapter 5 imply that for

r = 2, this is also a sharp threshold for R2. In Chapter 6, we propose an alternative

sharp threshold for Rr where r > 3.

Conjecture 6.1. Fix an integer r > 3, set C = rr−2

(r−2)!
, and let

p(n) =
(C log n)1/r

n1−1/r
.

Then p(n) is a sharp threshold for the graph property Rr.

The function p(n) from Conjecture 6.1 is chosen so that if we colour the edges

of the random graph independently and uniformly at random with r colours, the

number of pairs of vertices which are joined by only a few rainbow paths is roughly

the same as the number of edges in the graph. In one direction, we will give a

heuristic argument why p(n) could be a lower bound for the sharp threshold of Rr.

We will show that it is an upper bound in the following theorem.

Theorem 6.2. Fix an integer r > 3 and ε > 0, and let C = rr−2

(r−2)!
. Set p = p(n) =

(C(1+ε) logn)1/r

n1−1/r , and let G ∼ G(n, p). Then whp, rc(G) = r.

7



8



Chapter 2

Preliminaries

In this chapter we will formally introduce some of the basic concepts and results

which will be used throughout the thesis.

2.1 Asymptotic notation

For two functions f, g : N→ R, we write

• f = o(g) if f(n)/g(n)→ 0 as n→∞.

• f = O(g) if there are constants C and n0 such that |f(n)| 6 Cg(n) for all

n > n0.

• f = Θ(g) if f = O(g) and g = O(f).

• f = O∗(g) if there are constants C and n0 such that |f(n)| 6 (log n)Cg(n) for

all n > n0, where log n denotes the natural logarithm.

• f ∼ g if f(n) = (1 + o(1))g(n), i.e., f(n)/g(n)→ 1.

• f . g if f(n) 6 (1 + o(1))g(n).

• f & g if f(n) > (1 + o(1))g(n).

2.2 Graph theoretic notions

A graph G = (V,E) consists of a vertex set V and an edge set

E ⊂
(
V

2

)
=
{
{u, v} | u, v ∈ V, u 6= v

}
.
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All the graphs we will consider are finite, i.e., |V | < ∞. We will usually take

V = [n] = {1, 2, . . . , n}, and let N =
(
n
2

)
. Furthermore, all the graphs we study are

simple, i.e., there are no multiple edges or loops from a vertex to itself. We denote

an edge e = {u, v} by uv or vu.

We say that two vertices u, v ∈ V are adjacent if uv ∈ E, and we denote by

Γ(v) = {u ∈ V | uv ∈ E}

the neighbourhood of a vertex v, and by d(v) = |Γ(v)| the degree of v.

A path of length l in G consists of a sequence v0, v1, . . . , vl of distinct vertices

such that for all 0 6 i 6 l − 1, vivi+1 ∈ E. We say that a path v0, . . . , vl joins

the vertices v0 and vl. For two given vertices u, v ∈ V , we call the length of the

shortest path in G which joins u and v the graph distance between u and v, denoted

by d(u, v). If there is no such path, we set d(u, v) =∞.

We say that the graph G is connected if any two vertices are joined by a path.

For a connected graph G, the diameter of G is defined as the maximum distance

between any two vertices in V , i.e.,

diam(G) = max {d(u, v) | u, v ∈ V } .

For n ∈ N, let Ωn denote the set of all graphs with vertex set [n]. Any subset

Q ⊂ Ωn is called a graph property. We say that a graph property Q is monotone

increasing if it is preserved under the addition of edges, that is, if G1 and G2 are

graphs in Ωn with edge sets E1 and E2, respectively, such that E1 ⊂ E2, then

G1 ∈ Q implies G2 ∈ Q. We say that a graph property Q is monotone decreasing

if it is preserved under the removal of edges, or, equivalently, if Ωn \ Q is monotone

increasing.

2.3 Random graphs

Recall from the introduction that given n > 1 and p ∈ [0, 1], we denote by G ∼

G(n, p) the binomial random graph with vertex set [n] = {1, . . . , n} where each of

10



the N =
(
n
2

)
possible edges is present independently with probability p. Given

n,m ∈ N, we denote by G ∼ G(n,m) the uniform random graph with vertex set

V = [n] and edge set E of size exactly m which is chosen uniformly at random from

all
(
N
m

)
possible edge sets of size m.

We will also study the random graph process (Gt)
N
t=0. At time t = 0, we start with

the empty graph on n vertices, G0 = ([n], ∅). At time t, we choose one edge uniformly

at random from all those not already present in the graph in Gt and add it to the

graph to yield Gt+1, until at time N we have a complete graph GN =
(

[n],
(

[n]
2

))
.

For a monotone increasing graph property Q, let τQ denote the hitting time of Q,

i.e., the smallest t such that Gt ∈ Q.

2.3.1 Asymptotic equivalence

If m is close to pN and n is large, then the random graphs G(n,m) and G(n, p)

behave in a similar way. We will use the following asymptotic equivalence theorem

(see Proposition 1.13 in [33]).

Theorem 2.1. Let Q = Q(n) ⊂ Ωn be a monotone graph property, and let m =

m(n) be a sequence of integers and a ∈ [0, 1]. If for every sequence p = p(n) ∈ [0, 1]

such that

p =
m

N
+O

(√
m(N −m)

N3

)
,

it holds that P (G(n, p) ∈ Q) → a as n → ∞, then also P (G(n,m) ∈ Q) → a as

n→∞.

There is a corresponding result in the other direction which does not require

monotonicity (see Proposition 1.12 in [33]).

2.3.2 Threshold functions

For n ∈ N, consider a graph property Q = Q(n) ⊂ Ωn and a sequence p∗ = p∗(n) ∈

[0, 1]. We call p∗ a threshold function for Q if the following holds: for all sequences
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p = p(n) ∈ [0, 1] such that p = o(p∗), whp G(n, p) /∈ Q, and for all sequences

p = p(n) ∈ [0, 1] such that p∗ = o(p), whp G(n, p) ∈ Q. Furthermore, if there are

constants c, C > 0 such that these properties hold for all sequences p = p(n) ∈ [0, 1]

where for all large enough n, p(n) 6 cp∗(n) and p(n) > Cp∗(n), respectively, then

we say that p∗ is a semi-sharp threshold function for Q. Finally, if these properties

hold for any constants c < 1 and C > 1 and all sequences p = p(n) ∈ [0, 1] where for

all large enough n, p(n) 6 cp∗(n) and p(n) > Cp∗(n), respectively, then p∗ is called

a sharp threshold function.

The notion of a semi-sharp threshold is non-standard, and lies in between that

of a (weak) threshold and of a truly sharp threshold.

Bollobás and Thomason [10] showed that every monotone graph property has a

threshold function, and Friedgut [23] gave conditions for the existence of a sharp

threshold.

2.4 Inequalities

We will now review a number of inequalities and approximations.

2.4.1 Union of events

We start with a simple observation on the probability of a union of events (which

also appeared in [32]).

Lemma 2.2. Let Ai, i = 1, . . . , k, be events in a probability space (Ω,F ,P). Then

∑
i

P (Ai)−
∑
i

∑
j<i

P(Ai ∩ Aj) 6 P

(⋃
i

Ai

)
6
∑
i

P (Ai) .

Proof. The second inequality is the well known union bound. For the first inequality,

which is a special case of the inclusion–exclusion principle, note that the events

Ai \
⋃
j<i

(Ai ∩ Aj)

12



are disjoint for different i. Hence, using the union bound again in the last step,

P

(⋃
i

Ai

)
= P

(⋃
i

(
Ai \

⋃
j<i

(Ai ∩ Aj)

))
=
∑
i

P

(
Ai \

⋃
j<i

(Ai ∩ Aj)

)

=
∑
i

P(Ai)−
∑
i

P

(⋃
j<i

(Ai ∩ Aj)

)
>
∑
i

P (Ai)−
∑
i

∑
j<i

P(Ai ∩ Aj).

2.4.2 Chernoff bounds

We will need a number of tail bounds for binomial distributions. Recall the well-

known Chernoff bounds ([14], see also [33, p.26]).

Theorem 2.3 (Chernoff bounds). Let X be distributed binomially with parameters

n and p, and let 0 < x < 1.

(i) If x > p, then P(X > nx) 6
[(

p
x

)x ( 1−p
1−x

)1−x
]n

.

(ii) If x 6 p, then P(X 6 nx) 6
[(

p
x

)x ( 1−p
1−x

)1−x
]n

.

The following corollary of Theorem 2.3 is given in Theorem 2.1 in [33].

Corollary 2.4. Let X be distributed binomially with parameters n and p, and let

ϕ(x) = (1 + x) log(1 + x) − x for x > −1 and ϕ(x) = −∞ otherwise. Then for all

t > 0,

P(X 6 np− t) 6 exp

(
−npϕ

(
− t

np

))
.

In many cases the following simpler bound is sufficient (see Corollary 2.3 in [33]).

Corollary 2.5. Let X be distributed binomially with parameters n and p. If 0 <

ε 6 3
2
, then

P (|X − np| > εnp) 6 2e−ε
2np/3.

13



We will also need the following consequence of the Chernoff bounds (which ap-

peared in [31] together with its proof).

Corollary 2.6. Let (ni)i∈Z be a sequence of integers such that ni → ∞ as i → ∞,

and let (pi)i∈N be a sequence of probabilities. Let Xi ∼ Bin(ni, pi), and let k ∈ N be

constant. Suppose that µi := nipi →∞ as i→∞. Then

P(Xi 6 k) = O(µki e
−µi).

Proof. Applying Theorem 2.3 to Xi with xi = k
ni

gives

P(Xi 6 k) = P(Xi 6 nixi) 6
(µi
k

)k( 1− pi
1− k

ni

)ni−k

= O

(
µki
e−µi+pik

e−k

)
= O(e−µiµki ),

using the fact that 1− y 6 e−y and that limn→∞(1− y
n
)n = e−y for every y ∈ R.

2.4.3 Markov’s Inequality and the First Moment Method

A simple yet powerful tool in probabilistic combinatorics is the first moment method.

It is based on Markov’s Inequality, which says that for any integrable random vari-

able X > 0 and constant c > 0, P (X > c) 6 E[X]/c.

IfX is an integrable random variable which only takes nonnegative integer values,

then Markov’s Inequality gives

P (X > 0) = P (X > 1) 6 E[X].

In typical application, we would like to find out whether or not a certain object

exists whp, such as a colouring of a random graph with a certain number of colours.

If X = X(n) counts the number of these objects — the number of colourings of the

random graph, say — and we can show that E[X] = o(1), then whp no such object

exists. This approach is called the first moment method.

2.4.4 The Paley–Zygmund Inequality and the Second Mo-
ment Method

A proof of the whp existence of an object is slightly more complicated. In particular,

showing that E[X] → ∞ is not sufficient, we also usually need a bound on the

variance or the second moment of X.
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This type of argument is called the second moment method, and there are several

ways to phrase it. The variant we are going to use is based on the Paley–Zygmund

Inequality ([48, 49], see also A.12 in [54]).

Theorem 2.7 (Paley–Zygmund Inequality). If X > 0 is an integrable random

variable with finite variance and c ∈ [0, 1], then

P(X > cE[X]) > (1− c)2 E[X]2

E[X2]
.

Setting c = 0 yields a lower bound for the probability of the event {X > 0}.

P(X > 0) >
E[X]2

E[X2]
.

2.4.5 Bounded Differences Inequality

Another widely used tool in combinatorics is the method of bounded differences.

The following inequality is also referred to as McDiarmid’s Inequality and is similar

to the Azuma–Hoeffding Inequality.

Theorem 2.8 (Bounded Differences Inequality [45]). Let X1, . . . , Xn be independent

random variables where Xi takes values in the set Λi. Suppose that f :
∏n

i=1 Λi → R

is a measurable function and there are numbers ci such that whenever x, x′ ∈
∏n

i=1 Λi

differ only in the ith coordinate, then

|f(x)− f(x′)| 6 ci.

Let X = f(X1, . . . , Xn), then for all t > 0,

P (|X − EX| > t) 6 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

The proof of this theorem is based on martingale inequalities, for full details see

[45] or Chapter 2.4 in [33].

In the random graph setting G(n, p), the random variables Xi are usually defined

in terms of the N independent indicator variables (1e)e∈(V2) of the edges. Most
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importantly, given the vertex set V = [n], we often take Xi to be the sequence of

indicator variables (1ji)16j<i. These n random variablesX1, . . . , Xn are independent.

If we can show that a graph parameter does not change too much if the edges incident

with any particular vertex are changed arbitrarily, then the Bounded Differences

Inequality tells us that in the random graph G(n, p), this graph parameter is tightly

concentrated about its mean.

Shamir and Spencer [53] famously gave this argument to show that for any

function p = p(n), the chromatic number of G(n, p) is whp concentrated on an

interval of length
√
nω(n) where ω(n) tends to infinity arbitrarily slowly.
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Chapter 3

The chromatic number of dense
random graphs

3.1 Background and results

The chromatic number, defined as the minimum number of colours needed for a

vertex colouring where no two adjacent vertices are coloured the same, is one of

the central topics in graph theory and has a wide range of applications including

scheduling and resource allocation problems. The question of determining the chro-

matic number of random graphs was first asked in 1960 by Erdős and Rényi [21],

and a plethora of results has since been published in this area (see for example the

recent survey by Kang and McDiarmid [35]).

The order of magnitude of the chromatic number of the dense random graph

G ∼ G(n, p) where p ∈ (0, 1) is constant was first established in 1975 by Grimmett

and McDiarmid, who showed that whp,

(1 + o(1))
n

2 logb n
6 χ(G) 6 (1 + o(1))

n

logb n
,

where b = 1
1−p . They also conjectured that the asymptotic value of χ(G) lies near the

lower bound. Establishing the asymptotic behaviour of χ(G) remained one of the

major open problems in random graph theory until it was settled by a breakthrough

result of Bollobás in 1987 [6], who used martingale inequalities to prove the matching

upper bound: he showed that whp,

χ(G) = (1 + o(1))
n

2 logb n
.
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The same result was obtained independently by Matula and Kučera [44], using the

expose-and-merge approach due to Matula [43].

Let

γ = γp(n) = 2 logb n− 2 logb logb n− 2 logb 2. (3.1)

Refining Bollobás’ approach, more accurate bounds for χ(G) were given by McDi-

armid [45, 46] who showed that whp,

n

γ + 2
log b

+ o(1)
6 χ(G) 6

n

γ + 2
log b
− 1

2
− 1

1−
√

1−p + o(1)
. (3.2)

In particular, whp

χ(G) =
n

2 logb n− 2 logb logb n+O(1)
.

The current best upper bound was obtained by Fountoulakis, Kang and McDiarmid

[22] through a very accurate analysis of Bollobás’ general approach, and the best

known lower bound comes from a first moment argument due to Panagiotou and

Steger [50]:

n

γ + o(1)
6 χ(G) 6

n

γ − 1 + o(1)
. (3.3)

It should be noted that the proof of (3.2) does in fact yield the lower bound

χ(G) >
n⌊

γ + 2
log b

+ o(1)
⌋

+ o(1)

whp, which is sharper than the lower bound in (3.3) for infinitely many n if p >

1− 1/e2.

As observed in [22], considering (3.3) in terms of the colouring rate ᾱ(G) =

n/χ(G), defined as the average colour class size of a proper colouring with the

minimum number of colours, these inequalities provide an explicit interval of length

1 + o(1) which contains ᾱ(G) whp. In [35], Kang and McDiarmid remark that it is

a natural problem to determine the value of ᾱ(G) up to an error of size o(1).

The following result settles this question, giving new upper and lower bounds for

χ(G) which match up to the o(1) term in the denominator.
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Theorem 3.1. Let p ∈ (0, 1) be constant, and consider the random graph G ∼

G(n, p). Let q = 1 − p, b = 1
q
, γ = γp(n) = 2 logb n − 2 logb logb n − 2 logb 2 and

∆ = ∆p(n) = γ − bγc. Then whp,

χ(G) =
n

γ − x0 + o(1)
,

where x0 > 0 is the smallest nonnegative solution of

(1−∆ + x) logb(1−∆ + x) +
(∆− x)(1−∆)

2
6 0. (3.4)

As ∆ > 0 is a solution of (3.4), x0 is well-defined, and 0 6 x0 6 ∆. We will

see in Section 3.3.2 that for p 6 1− 1/e2, the smallest nonnegative solution of (3.4)

is x0 = 0, while for p > 1 − 1/e2, the solutions of (3.4) depend not only on p but

also on n, and we have 0 6 x0 6 1− 2
log b

(in fact, the values of x0 are dense in the

interval [0, 1− 2
log b

]). Therefore, we can derive the following simpler bounds.

Corollary 3.2. Let p ∈ (0, 1) be constant, b = 1
1−p and define γ as in (3.1). Con-

sider the random graph G ∼ G(n, p).

a) If p 6 1− 1/e2, then whp,

χ(G) =
n

γ + o(1)
.

b) If p > 1− 1/e2, then whp,

n

γ + o(1)
6 χ(G) 6

n

γ − 1 + 2
log b

+ o(1)
.

For p 6 1 − 1/e2, the lower bound in Theorem 3.1 is simply the known lower

bound (3.3) due to Panagiotou and Steger, which was obtained by estimating the

first moment of the number of vertex partitions which induce proper colourings.

The first moment threshold of this random variable, i.e., the point where the first

moment changes from tending to 0 to tending to ∞, occurs at about n
γ+o(1)

colours.

For p > 1− 1/e2, we shall also employ the first moment method to establish our

new lower bound, although a different first moment threshold will take precedence.

The independence number α(G) is defined as the size of the largest independent set
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inG, i.e., the largest set of vertices without any edges between them. ForG ∼ G(n, p)

with p constant, α(G) takes one of at most two explicitly known consecutive values

whp (for more details see Section 3.2). In a proper colouring, each colour class forms

an independent set, and so no colour class can be larger than α(G). It will turn out

that for p > 1− 1/e2, γ is so close to the likely values of α(G) that the hardest part

in colouring G is finding a sufficient number of disjoint independent sets of size dγe

or larger. If we colour G with about n
γ−x colours for some x > 0, then the average

colour class size is about γ−x. If the independence number α(G) is not much larger

than its likely values, then in every such colouring, there must be a certain minimum

number of colour classes of size at least dγe. Therefore, whp a partial colouring with

this number of colour classes of size dγe exists if G is n
γ−x–colourable. Condition

(3.4) describes the first moment threshold of the number of such partial colourings.

The upper bound in Theorem 3.1 is much harder to prove. In contrast to the

best previous upper bounds, it will not be obtained through a variant of Bollobás’

method but through the second moment method, and our approach will be outlined

in Section 3.2. Analysing the second moment of the number of colourings of a

random graph is a notoriously hard problem, as it involves examining the joint

behaviour of all pairs of possible colourings, which varies considerably depending

on how similar they are to each other. Therefore, we will distinguish three different

ranges of “overlap” between different pairs of colourings; each range requires different

tools and ideas which will be outlined in Section 3.5.1.

Related work

Recall from Section 2.4.5 that Shamir and Spencer [53] showed in 1987 that for

any function p = p(n), the chromatic number of G(n, p) is whp concentrated on an

interval of length about
√
n. For constant p, this can be improved to an interval

of length about
√
n/ log n (this is an exercise in Chapter 7.3 of [4], see also [52]).

For smaller functions p = p(n), much more is known. Shamir and Spencer also

showed that for p = n−c where c > 1/2 is constant, the chromatic number of G(n, p)
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is concentrated on an interval of constant length.  Luczak [40] improved this to an

interval of length 2 for c > 5/6, and finally Alon and Krivelevich [3] showed two-point

concentration for all c > 1/2.

None of these concentration results gives any information about the location of

the intervals, however.  Luczak [39] determined the asymptotic value of the chromatic

number of G ∼ G(n, p) whenever d0/n 6 p = o(1) for some large enough constant

d0. For p = d/n, where d is constant, Achlioptas and Naor [2] gave two explicit

values which the chromatic number of G(n, p) may take whp, and determined the

chromatic number exactly for roughly half of all values d. Recently, Coja-Oghlan

and Vilenchik [18] extended this result to almost all constant values d. For p = n−c

where 3/4 < c 6 1, Coja-Oghlan, Panagiotou and Steger [16] gave three explicit

values for the chromatic number.

In another direction, the search for sharp thresholds for k-colourability has re-

ceived a lot of attention. Achlioptas and Friedgut [1] showed that for every fixed k

there is a sharp threshold sequence dk(n)
n

such that for any ε > 0, if p = (dk − ε)/n,

then whp G ∼ G(n, p) is k-colourable, and if p = (dk + ε)/n, then whp G ∼ G(n, p)

is not k-colourable. It is unknown whether the sequence dk(n) converges, but it fol-

lows from the results of Achlioptas and Naor [2] that if it does, it lies in an explicit

interval of length of order O(log k). Recently, there has been considerable progress

in this area by Coja-Oghlan and Vilenchik [17] and Coja-Oghlan [15], who used

ideas inspired by statistical physics to narrow down the length of this interval to

roughly 0.39.

3.2 Outline

From now on, let p ∈ (0, 1) be constant and G ∼ G(n, p).

Independence number, first moment method and the lower bound

The chromatic number χ(G) is closely linked to the independence number α(G), and

the behaviour of the independence number of random graphs is very well understood.
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Recall that b = 1/(1− p), and let

α0 = 2 logb n− 2 logb logb n+ 2 logb (e/2) + 1.

For p constant, Matula [41, 42] and independently Bollobás and Erdős [9] showed

in the 1970s that whp,

α(G) = bα0 + o(1)c =

⌊
γ +

2

log b
+ 1 + o(1)

⌋
, (3.5)

pinning down α(G) to at most two values whp.

In a proper colouring each colour class forms an independent set, so for any graph

G, χ(G) > n/α(G). For a long time, the best known lower bound for the chromatic

number of dense random graphs was obtained from this simple fact. McDiarmid [46]

sharpened this to n/(α0 − 1 + o(1)) by considering the first moment of the number

of independent sets of a certain size, and finally Panagiotou and Steger [50] used a

first moment argument on the number of colourings to prove the lower bound n
γ+o(1)

.

Recall from Section 2.4.3 that if X = X(n) > 0 is a sequence of nonnegative

integer random variables such that E[X] tends to 0, then by Markov’s inequality,

P(X > 0) = P(X > 1) tends to 0 as well. In [50], X is the number of all vertex

partitions of G which induce valid colourings (i.e., unordered colourings) with n
γ+o(1)

colours. Since E[X] → 0 for an appropriate choice of the o(1)-term in the denom-

inator, it follows that whp no proper colouring with this number of colours exists,

and the lower bound (3.3) follows.

It turns out, however, that for p > 1 − 1/e2, the chromatic number of G(n, p)

can not in general be found near n
γ
. This is because for colourings with about n

γ

colours, the average colour class size γ gets so close to α(G) that there are simply

not enough disjoint independent sets of size at least a := dγe.

Note that in this case α0 − γ = 2
log b

+ 1 < 2, so it follows from (3.5) that

α(G) = a or α(G) = a+ 1 whp as shown in Figure 3.1. In particular, there are whp

no independent sets larger than a+ 1. Therefore, any colouring with average colour

class size about γ must contain a certain proportion of colour classes of size at least

a (and at most a+ 1).
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x0

γ − x0 γ α0

α(G)

1 + 2
log b

∆

x0

γ − x0 γ α0

α(G)

1 + 2
log b

∆

Figure 3.1: If p > 1− 1/e2, whp either α(G) = a = dγe (top picture) or α(G) = a + 1
(bottom picture). In the first case, there are only o (n/ log n) independent sets of size
dγe, and so the colouring rate n/χ(G) drops back to the next smaller integer bγc, i.e.,
x0 = ∆. In the second case, there are enough independent sets of size dγe, but not
necessarily enough disjoint ones, and we have to correct the colouring rate n/χ(G) by
x0 ∈ [0, 1− 2

log b ] to reflect this.

In Section 3.4, we shall consider the number of such partial colourings with

large colour classes (or rather, the number of sets of disjoint large independent sets

inducing them) which are required for colourings with average colour class size of

a little more than γ − x0, where x0 is the solution of (3.4). We will show that

their expected number is o(1), so whp no such partial colouring and hence no such

complete colouring of G exists.

The second moment method and the upper bound

The upper bound in Theorem 3.1 will be proved using the second moment method.

Fix an arbitrary ε ∈ (0, 1). If we can show that whp,

χ(G) 6
n

γ − x0 − 2ε
, (3.6)

this suffices to establish the upper bound in Theorem 3.1. Letting

k = k(n) =

⌈
n

γ − x0 − ε

⌉
, (3.7)
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we shall study k-colourings of G. We will only consider equitable k-colourings where

the sizes of the colour classes differ by at most 1 (because the method fails if we

allow general colourings).

We call a vertex partition into k parts a k-equipartition if the part sizes differ by

at most 1. We call an ordered partition an ordered k-equipartition if the parts sizes

differ by at most 1 and decrease in size (so the parts of size
⌈
n
k

⌉
come first, followed

by the parts of size
⌊
n
k

⌋
).

Denote by Zk the number of ordered k-equipartitions which induce proper colour-

ings, i.e., where all parts form independent sets. Then our goal will be to bound the

second moment of Zk in terms of E[Zk]
2. More specifically, our aim will be to show

that for n large enough,

E[Z2
k ]

E[Zk]2
6 exp

(
n

log7 n

)
. (3.8)

Let us briefly discuss why (3.8) suffices to prove (3.6). By the Paley–Zygmund

Inequality, Theorem 2.7, (3.8) implies that

P (Zk > 0) >
E[Zk]

2

E[Z2
k ]

> exp

(
− n

log7 n

)
(3.9)

for large enough n. Therefore, for n large enough,

P(χ(G) 6 k) > P (Zk > 0) > exp

(
− n

log7 n

)
. (3.10)

The term on the right-hand side of course tends to 0, so it may at first seem that

(3.10) is not particularly helpful in proving (3.6). However, as first noted by Frieze

in [24], all is not lost in cases like these where we have a lower bound on a probability

which tends to 0 sufficiently slowly. Using the Bounded Differences Inequality (The-

orem 2.8, also often referred to as the Azuma–Hoeffding or McDiarmid Inequality),

we will see that the chromatic number of random graphs is concentrated so tightly

around its mean that by adding only a few additional colours, we can boost the

lower bound (3.10) to a bound which tends to 1.

Indeed, consider G ∼ G(n, p): arbitrarily modifying the edges incident with any

particular vertex of G can change the value of χ(G) by at most 1. Therefore, by the
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Bounded Differences Inequality, Theorem 2.8,

P
(
|χ(G)− E (χ(G)) | > t

)
6 2 exp

(
−2t2

n

)
. (3.11)

This implies that k > E (χ(G))− n
log3 n

for n large enough, because otherwise (3.11)

with t = n
log3 n

would contradict (3.10). But then again by (3.11), if we let k̂ =

k + 2n
log3 n

,

P
(
χ(G) > k̂

)
6 P

(
χ(G) > E (χ(G)) +

n

log3 n

)
→ 0

as n→∞. Therefore, whp

χ(G) 6 k̂ = k +
2n

log3 n
6

n

γ − x0 − 2ε
,

as required.

So to prove the upper bound in Theorem 3.1, it remains to show (3.8). Note

that as

Zk =
∑

π an ordered k-equipartition

1{π induces a proper colouring},

by linearity of the expectation,

E[Z2
k ] =

∑
π1,π2 ordered k-equipartitions

P (both π1 and π2 induce proper colourings) ,

(3.12)

where the joint probability that both π1 and π2 induce proper colourings of course

depends critically on how similar they are.

Classifying the amount of overlap between π1 and π2 and splitting up the cal-

culation into manageable cases will be the main challenge of the proof. In Section

3.5, we will quantify the amount of overlap between two partitions, and in Sec-

tions 3.5.2–3.5.4, we will proceed to distinguish three different ranges of overlap and

bound their respective contributions to (3.8). Each range will be tackled through

a different approach. A more detailed overview of the different ideas and tools for

each range is given in Section 3.5.1.
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Remark

Like Bollobás’ original proof of the asymptotic upper bound [6], our proof of the

upper bound in Theorem 3.1 requires martingale concentration inequalities. This

is necessary because for our choice of k, E[Z2
k ]/E[Zk]

2 9 1, so the second moment

method alone cannot yield the whp existence of a colouring.

However, it is possible to obtain an upper bound of the form n
γ−O(1)

using only

the second moment method. For this, we need to work in G(n,m) with m ≈ p
(
n
2

)
instead of G(n, p) in order to control the variations in Zk which can be attributed

to variations in the number of edges. Furthermore, all colour classes need to be of

exactly the same size γ − t for some t = O(1) which will be specified below. As

γ − t does not necessarily divide n, we may need to include up to γ − t = O(log n)

extra vertices so that all colour classes are of exactly the same size — these vertices

can then simply be removed afterwards once we have proved the whp existence of a

colouring.

If n′ denotes the number of vertices and Z denotes the number of equitable n′

γ−t -

colourings of G ∼ G(n′,m), then we can show that E[Z2]/E[Z]2 → 1 for t = ∆ + 1

(yielding the upper bound n+γ−∆−1
γ−∆−1

= n
bγc−1

+ 1), and possibly also for t = ∆.

Choosing t = ∆ + 1 would also simplify the proof considerably, as much of the

technical difficulty stems from pairs of partitions which overlap in subsets of parts

of size at least bγc, which is not possible if all parts of the partitions are of size

γ −∆− 1 = bγc − 1.

In the next chapter, we will prove a related result about the equitable chromatic

number of dense random graphs. In Section 4.6, we will see how the arguments and

conditions from this chapter can be adapted in this case to yield E[Z2]/E[Z]2 → 1.

3.3 Preliminaries and notation

From now on, we will always assume that n is large enough so that various bounds

and approximations hold, even when this is not stated explicitly. Recall that γ =
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2 logb n− 2 logb logb n− 2 logb 2 and that we fixed an arbitrary ε ∈ (0, 1), and let

k =

⌈
n

γ − x0 − ε

⌉
.

Similarly, let

l =

⌊
n

γ − x0 + ε

⌋
.

We are going to show that for any fixed ε > 0, whp χ(G) > l, and that

P (χ(G) 6 k) > exp

(
− n

log7 n

)
.

Furthermore, let

δ =
n

k
−
⌊n
k

⌋
, k1 = δk and k2 = (1− δ)k.

If k does not divide n, then a k-equipartition consists of exactly k1 parts of size⌈
n
k

⌉
and exactly k2 parts of size

⌊
n
k

⌋
. If k divides n, then k1 = 0 and k2 = k,

and a k-equipartition consists of exactly k2 parts of size
⌊
n
k

⌋
= n

k
. In an ordered

k-equipartition, the first k1 parts are of size
⌈
n
k

⌉
and the remaining k2 parts are of

size
⌊
n
k

⌋
.

Let P denote the total number of ordered k-equipartitions of the n vertices, then

P =
n!⌈

n
k

⌉
!k1
⌊
n
k

⌋
!k2
. (3.13)

Since by Stirling’s approximation, n! = Θ
(
nn+1/2e−n

)
,

P = kn exp(o(n)). (3.14)

Given a k-equipartition, there are exactly

f = k1 ·
(
dn/ke

2

)
+ k2 ·

(
bn/kc

2

)
=
n
(
n
k
− 1
)

2
+
δ(1− δ)

2
· k (3.15)

forbidden edges which are not present inG if the partition induces a proper colouring.

Therefore, the probability that a given ordered k-equipartition induces a proper

colouring is exactly qf , so

µk := E[Zk] = Pqf . (3.16)
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Considering the known upper bound for χ(G) in (3.3), we may assume that

n

k
= γ − x0 − ε+ o(1) > γ − 1,

since we can simply use (3.3) instead for all n where this is not the case. Recalling

that

a = dγe = γ + 1−∆,

then by our assumption
⌈
n
k

⌉
∈ {a− 1, a}.

For easier notation, we will also assume that γ is not an integer, and that there-

fore bγc = a− 1. We may replace γ by γ − 1/n, say, for all n where this is not the

case (if there are any such n at all), and the statement of the theorem and its proof

remain unchanged.

3.3.1 List of key facts and relations

Below is a list of some facts, bounds and approximations so that we can conveniently

refer back to them later on.

(A) If p > 1− 1/e2, then whp α(G) ∈ {a, a+ 1}, where α(G) denotes the indepen-

dence number and a = dγe (as remarked in Section 3.2).

(B) By our assumption,
⌈
n
k

⌉
∈ {a, a−1}, where a = dγe. We may also assume that

γ is not an integer.

(C) In a k-equipartition, there are k1 = δk parts of size
⌈
n
k

⌉
and k2 = (1− δ)k parts

of size
⌊
n
k

⌋
, where δ = n

k
−
⌊
n
k

⌋
.

(D) γ ∼ a ∼ n
k
∼ n

l
∼ 2 logb n = Θ (log n)

(E) k ∼ l ∼ n
γ
∼ n

a
∼ n

2 logb n
= Θ

(
n

logn

)
(F) q−γ/2 = bγ/2 = n

2 logb n
∼ k ∼ l

(G) k
1
n/k = O(1) and k

1
logn = O(1).

(H) f ∼ n logb n.
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(J) For any integer function ϕ = ϕ(n) = o(n),
(
n
ϕ

)
6 exp (o(n)).

(K) µk
k1!k2!

> bεn/4.

Proof. Note that k1!k2! 6 k! exp (o(n)), since
(
k
k1

)
6 2k. Furthermore, by (E)

we have k ∼ n
2 logb n

, so with Stirling’s formula, k! = kk(1+o(1)) = nk(1+o(1)) =

bn(
1
2

+o(1)). From the definition (3.15) of f , we can see that qf = b−f =

b−
n2

2k
+n

2 exp(o(n)). Therefore, from (3.14) and (3.16),

µk
k1!k2!

=
Pqf

k1!k2!
=
knqf

k!
exp (o(n)) =

(
kb−

n
2k

)n
exp (o(n)) .

Note that n
k

= γ − x0 − ε+ o(1) 6 γ − ε+ o(1), so by (F),

kb−
n
2k > kb

−γ+ε+o(1)
2 ∼ bε/2,

and therefore, for n large enough, µk
k1!k2!

> bεn/4 as required.

3.3.2 On the solutions of (3.4)

In this section we will explore the solutions of the inequality (3.4) in Theorem 3.1,

and prove some technical lemmas which will be needed later. All the proofs in this

section are straightforward analytical arguments, so the reader might wish to skip

the details.

Let

f(x) = fn(x) = (1−∆ + x) logb(1−∆ + x) + (1−∆)(∆− x)/2.

Then x0 is defined in Theorem 3.1 as the smallest nonnegative solution of f(x) 6 0.

Since f(∆) = 0, x0 is well-defined and x0 ∈ [0,∆]. Note that

f ′(x) = logb(1−∆ + x) +
1

log b
− 1−∆

2

f ′′(x) =
1

(1−∆ + x) log b
> 0.

Therefore, f is convex and there are three different possible cases for the location

of x0 as shown in Figure 3.2. In the first case, f(0) 6 0 and therefore x0 = 0. In
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the second and third case, f(0) > 0, so x0 > 0. In the second case, x0 lies strictly

between 0 and ∆, and in the third case, x0 = ∆, which happens if and only if

f ′(∆) 6 0, or equivalently 1−∆ > 2
log b

. This case corresponds to the upper picture

in Figure 3.1.

We will first prove the two lemmas needed to obtain Corollary 3.2 from Theo-

rem 3.1.

Lemma 3.3. If p 6 1− 1/e2, then x0 = 0.

Proof. Note that p 6 1− 1/e2 is equivalent to log b 6 2, and therefore,

logb(1−∆) +
∆

2
6

1

2

(
log(1−∆) + ∆

)
6 0,

since log(1− y) 6 −y for all y ∈ [0, 1). Hence, f(0) 6 0.

Lemma 3.4. If p > 1− 1/e2, then 0 6 x0 6 1− 2
log b

.

Proof. Of course x0 > 0 is true by definition, and if ∆ 6 1 − 2
log b

, then x0 6

∆ 6 1 − 2
log b

. So suppose ∆ > 1 − 2
log b

, then the claim follows if we can show

f
(

1− 2
log b

)
6 0. Note that f

(
1− 2

log b

)
6 0 is equivalent to g

(
2− 2

log b
−∆

)
6 0,

where

g(y) = y log y +
log b

2

(
y +

2

log b
− 1

)
(1− y).

Note that g′(y) = log y − y log b+ log b and g′′(y) = 1
y
− log b.

The function g has no maximum in
(

1− 2
log b

, 1
)

: suppose that y ∈
(

1− 2
log b

, 1
)

with g′(y) = 0 and g′′(y) 6 0. It follows that 0 = log y + (1− y) log b > log y + 1−y
y

,

but this is a contradiction since log z + 1−z
z
> 0 for all z ∈ (0, 1).

In the boundary cases y = 1− 2
log b

and y = 1, we have g(y) 6 0. Since 1− 2
log b

<

∆ 6 1, it follows that 2− 2
log b
−∆ ∈

[
1− 2

log b
, 1
)

, and therefore g
(

2− 2
log b
−∆

)
6 0

as required.

We now proceed with the technical lemmas which we will need later on.
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x0 = 0 ∆ x0 ∆ x0 = ∆

Figure 3.2: The three possible cases for the function f(x). In the first case, f(0) 6 0, so
x0 = 0. In the second case, x0 ∈ (0,∆). In the third case, ∆ is the smallest nonnegative
solution of f(x) 6 0, so x0 = ∆.

Lemma 3.5. Suppose p > 1 − 1/e2, and fix ε′ > 0. Then there is a constant

c1 = c1(ε′) > 0 such that if x0 > ε′, then

f(x0 − ε′) > c1.

Proof. Since x0 > 0, the definition of x0 implies that f(x) > 0 for all x ∈ [0, x0),

so by continuity f(x0) = 0 and furthermore f ′(x0) 6 0. As f ′′ > 1
log b

on [0,∆] for

all n, f ′′ is strongly convex on [0,∆] with parameter at least 1
log b

for all n, and the

claim follows.

Lemma 3.6. There is a constant c2 = c2(ε) ∈ (0, 1) such that if x0 6 ∆− ε, then

1−∆ 6
2c2

log b
.

Proof. As f(∆) = 0 and f(x0) 6 0, there cannot be an x ∈ (x0,∆) such that

f(x) > 0, otherwise there would have to be a local maximum which is impossible

since f ′′ > 0.

So f(∆− ε) 6 0 and rearranging terms gives

1−∆ 6 −(1− ε) log(1− ε)
ε

· 2

log b
,

so we can let c2 = − (1−ε) log(1−ε)
ε

∈ (0, 1) as ε ∈ (0, 1).
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Lemma 3.7. Fix ε′ > 0. There is a constant c3 = c3(ε, ε′) > 0 such that if

ε′ 6 y 6 ∆− x0 − ε, then

f(∆− y) 6 −c3.

Proof. Let

c3 = min

(
ε2

4 log b
,
ε′2

4 log b

)
> 0.

Note that x0 + ε 6 ∆ − y 6 ∆ − ε′. As f ′′ > 0, f has no internal maxima in

(x0 + ε,∆− ε′), so

f(∆− y) 6 max (f(x0 + ε), f(∆− ε′)) .

We distinguish two cases.

• Case 1: f(x0 + ε) > f(∆− ε′)

Then as f ′ is increasing, f ′(x0 + ε) = logb(1 −∆ + x0 + ε) + 1
log b
− 1−∆

2
6 0.

For any z1, z2 > 0 with z1 + z2 < 1, we have log(z1 + z2) > log(z1) + z2, so

f ′
(
x0 +

ε

2

)
6 f ′(x0 + ε)− ε

2 log b
6 − ε

2 log b
.

As f ′ is increasing, f ′(x) < 0 for all x ∈ [x0, x0 + ε], and since by definition

f(x0) 6 0,

f (x0 + ε) 6
∫ x0+ε

x0

f ′(x) dx 6
∫ x0+ε/2

x0

f ′(x) dx 6
ε

2
f ′
(
x0 +

ε

2

)
6 − ε2

4 log b
6 −c3.

• Case 2: f(x0 + ε) < f(∆− ε′)

Then as f ′ is increasing, f ′(∆ − ε′) = logb(1 − ε′) + 1
log b
− 1−∆

2
> 0. For any

z1, z2 > 0 with z1 + z2 < 1, we have log(z1 + z2) > log(z1) + z2, so

f ′
(

∆− ε′

2

)
> f ′(∆− ε′) +

ε′

2 log b
>

ε′

2 log b
.

As f ′ is increasing, f ′(x) > 0 for all x > ∆− ε, and since f(∆) = 0,
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f(∆− ε′) = −
∫ ∆

∆−ε′
f ′(x) dx 6 −

∫ ∆

∆−ε′/2
f ′(x) dx 6 −ε

′

2
f ′
(

∆− ε′

2

)
6 − ε′2

4 log b
6 −c3.

Lemma 3.8. Fix ε′ > 0. There is a constant c4 = c4(ε, ε′) > 0 such that if

ε′ 6 ∆− x0 − ε 6 y 6 1, then

(1− y) logb(1− y) +
∆

2
(1− y)− x0 + ε

2
6 −c4.

Proof. Let

h(x) = (1− x) logb(1− x) +
∆

2
(1− x)− x0 + ε

2
.

Note that h(∆ − x0 − ε) = f(x0 + ε). Furthermore, limx→1 h(x) = −x0+ε
2

6 − ε
2
.

Since h′′(x) = 1
(1−x) log b

> 0 for x ∈ (0, 1), h has no internal maxima in (0, 1), so

since ∆− x0 − ε 6 y 6 1,

h(y) 6 max
(
h(∆− x0 − ε),−

ε

2

)
6 max

(
f(x0 + ε),−ε

2

)
.

Applying Lemma 3.7 to y′ = ∆ − x0 − ε, we can see that f(x0 + ε) 6 −c3(ε, ε′).

Letting

c4 = min
(
c3(ε, ε′),

ε

2

)
> 0,

it follows that h(y) 6 −c4 for all ∆− x0 − ε 6 y 6 1.

3.4 Proof of the lower bound

We may assume that p > 1 − 1/e2, because otherwise x0 = 0 and the lower bound

in Theorem 3.1 is simply the known lower bound (3.3). Recall that we defined

l =
⌊

n
γp(n)−x0+ε

⌋
for an arbitrary fixed ε ∈ (0, 1). We may assume x0 − ε > 0,

because we can just use the known bound (3.3) instead for all n where this is not

the case. We will show that any l-colouring must contain a certain proportion of

large colour classes of size a = dγe, and then prove that the expected number of

33



unordered partial colourings with just these large colour classes tends to 0, which

means that whp no such partial and therefore no complete l-colouring exists.

As x0 6 ∆ (see Section 3.3.2),

dγe > dγ − x0 + εe > dγe ,

so dγ − x0 + εe = dγe =: a. This is very close to the independence number α(G) :

by (A) from Section 3.3.1, whp α(G) = a or α(G) = a+ 1. In particular, whp there

are no independent sets of size a+ 2 in G.

Recall that α0 = γ+1+ 2
log b

. Standard calculations show that for any t = t(n) =

O(1) such that α0− t is an integer, the expected number of independent sets of size

α0 − t in G is nt+o(1) (see also 3.c) in [45]). Therefore, as a = dγe = γ + 1 − ∆ =

α0 − 2
log b
−∆, (

n

a

)
q(

a
2) = n

2
log b

+∆+o(1)(
n

a+ 1

)
q(

a+1
2 ) = n

2
log b

+∆−1+o(1). (3.17)

Note that as 2
log b

+ ∆ − 1 6 2
log b

< 1 and by (E), l = Θ
(

n
logn

)
, it follows from

Markov’s inequality that whp only o(l) independent sets of size a+ 1 exist in G.

We assume from now on that no independent sets of size a + 2 and only o(l)

independent sets of size a + 1 are present in G, both of which hold whp. A valid

l-colouring consists of l disjoint independent sets of average size n
l
> γ−x0 + ε, and

therefore a certain proportion of the l colour classes must be of size a in order to

obtain an average colour class size of at least γ − x0 + ε. More specifically, given

an l-colouring, if we let y ∈ [0, 1] be the proportion of colour classes of size a in the

colouring, and let z = o(1) be such that there are exactly zl independent sets of size

a+ 1 in G, then adding up the number of vertices in each colour class yields

n 6 ayl + (a+ 1)zl + (a− 1)(1− y − z)l.

Therefore, since n/l > γ − x0 + ε,

γ − x0 + ε 6 y + a− 1 + 2z.

34



As a = γ + 1−∆ and z = o(1), it follows that

y > ∆− x0 + ε+ o(1).

Hence, as l ∼ n
2 logb n

by (E), if a proper l-colouring exists and n is large enough,

then in particular G must contain at least

s :=

⌈
(∆− x0 + ε/2)n

2 logb n

⌉
disjoint independent sets of size a. We shall call such an (unordered) collection of

s disjoint independent sets of size a a precolouring, and denote by Z̄ the number of

precolourings in G.

Since for all m ∈ N, mm/em 6 m! 6 mm+O(1)/em,

E[Z̄] =
1

s!

(
n

a

)(
n− a
a

)
· · ·
(
n− (s− 1)a

a

)
qs(

a
2) =

n!qs(
a
2)

s!a!s(n− as)!

6
es−asnn+O(1)qs(

a
2)

ssa!s(n− as)n−as
= nO(1)

(
naq(

a
2)

ea−1sa!

)s(
n

n− as

)n−as
.

By (E), a ∼ 2 logb n, so it follows from (3.17) that na

a!
q(

a
2) ∼

(
n
a

)
q(

a
2) = n

2
log b

+∆+o(1).

Furthermore, ea−1 = n
2

log b
+o(1). Therefore, since n1−o(1) 6 s 6 n,

E[Z̄] 6 nO(1)
(
n∆+o(1)s−1

)s (
1− as

n

)−n(1−as
n )

6 eo(n)n−s(1−∆)
(

1− as

n

)−n(1−as
n )
.

As as/n ∼ ∆− x0 + ε/2, this gives

E[Z̄] 6 eo(n)n−s(1−∆)
(

1−∆ + x0 −
ε

2

)−(1−∆+x0− ε2)n

= b−((1−∆+x0− ε2) logb(1−∆+x0− ε2)+(1−∆)(∆−x0+ ε
2)/2+o(1))n.

Note that with the exception of the o(1) term, the expression in the exponent is now

simply the left-hand side of condition (3.4) in Theorem 3.1 with x = x0 − ε/2. As

ε/2 < ε 6 x0, we may apply Lemma 3.5 with ε′ = ε/2 to conclude that

E[Z̄] 6 b−(c1+o(1))n = o(1).

By Markov’s inequality, whp no precolouring and consequently no proper l-colouring

exists.
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3.5 Bounding the second moment

We now proceed to the main part of the proof. Recall that to prove Theorem 3.1,

it remains to show that for an arbitrary fixed ε ∈ (0, 1) and k = k(n) =
⌈

n
γ−x0−ε

⌉
,

if n is large enough,

E[Z2
k ]/µ2

k 6 exp

(
n

log7 n

)
.

Because of the known upper bound (3.3), we may assume that n
k
> γ − 1 and that

therefore x0 + ε 6 1.

By (3.12), in order to bound E[Z2
k ], we need to study the joint probability that

two partitions both induce proper colourings, a quantity which of course depends

on how similar the two partitions are. To quantify the amount of overlap between

two partitions, we define the overlap sequence r. For 2 6 i 6 a := dγe, given two

ordered k-equipartitions π1, π2, denote by ri the number of pairs of parts (the first

being a part in π1 and the second being a part in π2) which intersect in exactly i

vertices. Denote by

r = (r2, r3, . . . , ra)

the overlap sequence of the two ordered k-equipartitions π1, π2. If the intersection

of two parts contains at least two vertices, we call the intersection an overlap block.

If there is only a single vertex in the intersection of two parts, we call that vertex a

singleton. Note that since ⌈n
k

⌉
6 dγe = a,

no overlap block is larger than a.

Conversely, given an overlap sequence r, denote by Pr the number of ordered

pairs of ordered k-equipartitions with overlap sequence r. Let

v = v(r) =
a∑
i=2

iri

be the number of vertices involved in the overlap, and let

ρ = v/n 6 1
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denote the proportion of those vertices in the graph. Furthermore, denote by

d = d(r) =
a∑
i=2

ri

(
i

2

)
(3.18)

the number of common forbidden edges that two ordered k-equipartitions π1, π2

with overlap sequence r share. Since the number of forbidden edges in one partition

is exactly f , where f was defined in (3.15), both π1 and π2 induce proper colourings

if and only if none of exactly 2f − d forbidden edges are present. Therefore, from

(3.12) and (3.16),

E[Z2
k ] =

∑
r

Prq
2f−d = µ2

k

∑
r

Pr

P 2
bd.

Let

Qr =
Pr

P 2
, (3.19)

then our goal is to show that for n large enough,

E[Z2
k ]

µ2
k

=
∑
r

Qrb
d 6 exp

(
n

log7 n

)
. (3.20)

Since the summands in (3.20) vary considerably for different types of overlap se-

quences r, we split up our calculations into three parts in Sections 3.5.2 – 3.5.4. The

behaviour of the summands is rather different in each case, and so different methods

and ideas will be required to bound them.

3.5.1 Outline

Typical case

In Section 3.5.2, we first discuss the typical type of overlap between pairs of par-

titions. If a partition is chosen uniformly at random from all possible ordered k-

equipartitions, then the probability that two given vertices are in the same part is

roughly 1
k
. Consequently, if two ordered k-equipartitions are sampled independently

and uniformly at random, then the expected number d of forbidden edges they have

in common, i.e., pairs of vertices which are in the same part in both partitions, is
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of order n2

k2 = O(log2 n). In particular, we do not expect the number v of vertices

involved in the overlap to be much larger than 2d = O(log2 n).

Furthermore, the expected number of triangles which the two partitions have in

common, i.e., triples of vertices that are in the same part in both partitions, is of

order n3

k4 = O
(

log4 n
n

)
= o(1). Therefore, typically two partitions have no triangles

or larger cliques in common, and overlap in about O(log2 n) disjoint pairs of vertices.

In fact, we will cover a much larger range of overlap sequences r in Section 3.5.2,

namely those r where at most a constant fraction of all vertices are involved in the

overlap, i.e., where v = v(r) 6 cn for a constant c which will be defined in (3.21).

To bound the number of such pairs of partitions, we will count the number

of corresponding overlap matrices. The overlap matrix between two partitions π1

and π2 is defined as the matrix M = (Mxy), where Mxy denotes the number of

vertices that are in part number x in π1 and in part number y in π2. If π1 and π2

overlap according to a given overlap sequence r, then the entries of M are exactly

ri instances of the number i for all 2 6 i 6
⌈
n
k

⌉
, as well as n − v instances of the

number 1, with the remaining entries 0. As π1 and π2 are ordered k-equipartitions,

all rows and columns of M sum to
⌈
n
k

⌉
or
⌊
n
k

⌋
.

Since there are typically few pairs and very few triangles or larger cliques in the

overlap, one crucial idea is that we can count the number of overlap matrices by

first placing any entries 2, 3, . . . ,
⌈
n
k

⌉
in the matrix separately, and then treating the

rest of the matrix as a 0 − 1 matrix with given row and column sums close to n
k
.

An important tool is Theorem 3.9, due to McKay, which gives an estimate for the

number of 0− 1 matrices with prescribed row and column sums.

After some fairly accurate calculations, we will see that the contribution from

each r in this case is bounded by an expression of the form
∏a

i=2
T
ri
i

ri!
, where the terms

Ti still depend on ρ(r) = v/n. We will then show that if ρ 6 c, the terms Ti are

small enough so that the overall contribution to (3.20) is bounded by exp
(

n
log8 n

)
.

The bound for the term Tdnke will require condition (3.4) from Theorem 3.1 to hold.
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Let us remark that if we work with G(n,m) instead of G(n, p) and conduct

a much more detailed analysis, it is possible to show that if p < 1 − 1/e, the

contribution from this range of r is in fact asymptotically equal to e∆(1−∆) 6 e1/4,

where ∆ = γ − bγc. The bulk of this contribution comes from overlap sequences of

the form r = (r2, 0, 0, . . . , 0) with r2 = O(log2 n). However, only the coarser bound

is needed for our result.

In Section 4.6.2 of the next chapter, we will perform this more accurate calcula-

tion in the special case where all colour classes have exactly the same size γ + o(1)

(and ∆ = o(1)).

Many small overlap blocks

An intermediate degree of overlap is examined in Section 3.5.3, where at least a

constant fraction cn of vertices are involved in the overlap between the two partitions,

but there are either still many small overlap blocks, or many vertices not involved

in the overlap at all. More specifically, for an arbitrary constant c′ > 0, we will

consider all r with ρ = v/n > c and

∑
26i60.6γ

iri > c′n or ρ 6 1− c′,

i.e., those r where there are either at least c′n vertices not in the overlap, or at least

c′n vertices in overlap blocks of size at most 0.6γ.

Let us assume for the moment that n
k

is an integer in order to simplify notation.

It will be useful to define a simple parameter β which measures how close the overlap

of two ordered k-equipartitions is to consisting entirely of complete parts of size n
k

(with the remaining n− v vertices being singletons not involved in the overlap).

Any overlap block contains at most n
k

vertices. Therefore, if we view the overlap

blocks of two k-equipartitions as cliques making up a graph, then each vertex has

degree at most n
k
−1 within this overlap graph. Hence, given the number v of vertices

involved in the overlap and the number d of common forbidden edges, we know that
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2d 6 (n
k
− 1)v, and we let

β =
2d

(n
k
− 1)v

6 1.

If β is close to 1, then the overlap consists almost entirely of very large overlap

blocks which are almost entire parts.

In Section 3.5.3.2, we will first consider the case where β is not too close to 1

(so there are enough small overlap blocks). Thereafter, in Section 3.5.3.3, we will

study the case where β is close to 1 (so the overlap of the pairs of partitions consists

almost exclusively of very large overlap blocks), but there are still many vertices

which are not involved in the overlap at all, i.e., n− v is large enough.

In both cases, we will bound the number Pr of pairs of ordered k-equipartitions

with overlap sequence r according to the same strategy. We fix the first ordered

k-partition π1 arbitrarily, and then we generate the second partition in the following

way.

We first subdivide the parts of π1 into overlap parameter blocks and singletons

according to r. In the first case, a fairly slack bound on the number of ways to do

this will suffice (Lemma 3.13). In the second case, we need to be more careful, and

so we will show that this can be done in subexponentially many ways (Lemma 3.15).

Thereafter, we sort the overlap blocks and singletons into k parts in order to

form the new partition π2. In the first case the number of ways to do this is simply

bounded by kR+n−v, where R denotes the number of overlap blocks. Bounding R in

terms of β in (3.37) and (3.38), we will see that the overall contribution from the

first case to the sum (3.20) is o(1).

In the second case we again need a better bound for the number of ways to sort

the overlap blocks into the k parts in order to form π2. Note that in this case,

almost the entire overlap consists of very large overlap blocks. If we sort these large

overlap blocks into the k parts first, then they occupy their assigned parts almost

completely. As there are v = ρn vertices in the overlap, this means that roughly ρk

of the k parts are now filled or almost filled. The remaining smaller overlap blocks

and singletons, of which there are roughly (1 − ρ)n, do not have k parts to pick
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from. Instead, their choice is limited to about (1−ρ)k parts. Therefore, in this case

we get an additional factor of roughly (1− ρ)(1−ρ)n.

As almost everything else turns out to be subexponential in the second case, this

would be the end of the story if n
k

were indeed an integer: as long as c < ρ < 1− c′,

the overall contribution to the sum (3.20) would decrease exponentially, and in

particular it would be o(1).

Perhaps surprisingly, however, the fact that n
k

is not in general an integer is not

purely a notational inconvenience. When we do distinguish between parts of size⌈
n
k

⌉
and

⌊
n
k

⌋
(or rather, for technical reasons, between parts of size a = dγe and of

size at most a− 1) then there is an additional factor of size about bv1(1−∆)/2, where

v1 denotes the number of vertices in the overlap which are in parts of size a within

the first partition π1.

As v1 6 v = ρn, this means that overall, in equation (3.45), we arrive at an

expression which is roughly

(1− ρ)(1−ρ)nbρ(1−∆)n/2 = bn((1−ρ) logb(1−ρ)+ρ(1−∆)/2).

Noting in (3.46) that the proportion of vertices in sets of size a in a k-equipartition

is roughly ∆− x0 − ε, it is now not very hard, but slightly tedious, to compare this

last exponent to condition (3.4) in Theorem 3.1 in order to show that this expression

is exponentially decreasing in n. We will need to consider several cases, and we will

also use the technical Lemmas 3.7 and 3.8 from Section 3.3.2.

This suffices to show that the overall contribution from the second case to the

sum (3.20) is o(1).

High overlap

Finally, in Section 3.5.4 we will study those r where the corresponding pairs of

partitions are very similar to each other. In this range, most of the overlap consists

of almost entire parts which are merely permuted, with a few exceptional small

overlap blocks and singletons.
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Figure 3.3: In the high overlap case, the second partition is largely generated by per-
muting the exceptional vertices and then permuting the parts of size

⌈
n
k

⌉
(shown on the

left) and of size
⌊
n
k

⌋
(shown on the right). Exceptional vertices may also jump to smaller

parts of size
⌊
n
k

⌋
.

We will show that this range of overlap contributes O(k1!k2!
µk
· 2k) to the sum

(3.20). Since we are sufficiently far above the first moment threshold for the number

of colourings, this is o(1), and summing up the contributions from each of the three

cases yields (3.20) and thereby concludes the proof of Theorem 3.1.

It is helpful to first consider the extreme case of those pairs of partitions π1, π2

which are simply permutations of each other: as there are k1 parts of size
⌈
n
k

⌉
and

k2 parts of size
⌊
n
k

⌋
, there are exactly Pk1!k2! such (ordered) pairs of partitions,

where P is defined in (3.13) as the total number of k-equipartitions. The number

of overlapping edges is maximal, so d = f . Therefore, from (3.16), the overall

contribution to (3.20) is exactly

Pk1!k2!

P 2
bf =

k1!k2!

Pqf
=
k1!k2!

µk
.

More generally, we will consider pairs of partitions which are largely just permuta-

tions of each other, but where there are also a few exceptional vertices which are

essentially permuted amongst themselves first, as shown in Figure 3.3. As the part

sizes may vary by 1, however, the number of ‘available slots’ for exceptional ver-

tices in each of the k parts may vary by 1. We will bound these variations with an

additional factor 2k.

From Section 3.5.3, we can assume that there are at most 2c′n exceptional ver-

tices, where we can make the constant c′ as small as we like. We will distinguish
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three different types of exceptional vertices. Starting with the first partition π1,

we will first select the exceptional vertices of each type, and bound the number of

choices in Lemma 3.17. Then we generate π2 and bound the number of ways to do

this in Lemma 3.18. Finally, we examine how much each exceptional vertex sub-

tracts from the maximum number f of shared forbidden edges between π1 and π2 in

Lemma 3.19. Summing over the number of exceptional vertices, we will see that the

overall contribution to (3.20) is of order O(k1!k2!
µk
· 2k) if c′ is chosen small enough.

3.5.2 Typical overlap range

We will first consider all those overlap sequences r where the proportion ρ = v/n of

the vertices which are involved in the overlap is at most

c =
1− c2

2
∈
(

0,
1

2

)
, (3.21)

where c2 is the constant from Lemma 3.6. So let

R1 = {r | ρ = ρ(r) 6 c} .

The vast majority of all pairs of partitions overlap in a parameter sequence r ∈ R1,

and this is also where the bulk of the sum (3.20) comes from. We will show that

the contribution of the overlap sequences r ∈ R1 to (3.20) is at most exp
(

n
log8 n

)
.

To do this, we will find a bound for the contribution from each r of the form
∏

i
T
ri
i

ri!
,

and then bound the terms Ti.

Any pair of ordered k-equipartitions π1 and π2 defines a k × k overlap matrix

M = (Mxy), where Mxy is the number of vertices that are in part x in π1 and in part

y in π2. Since π1 and π2 are ordered k-equipartitions, the first k1 rows and columns

ofM sum to
⌈
n
k

⌉
and the remaining k2 rows and columns sum to

⌊
n
k

⌋
. If π1 and π2

overlap according to the overlap sequence r, this means that for every 2 6 i 6 a,

exactly ri of the entries of the overlap matrix are i, exactly n− v = n− v(r) entries

are 1, and the remaining entries are 0.
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Conversely, given such a matrix, the number of corresponding pairs of ordered

k-equipartitions is given by the multinomial coefficient

n!∏a
i=2 i!

ri
.

This is because, given the matrix and n vertices, we must pick ri sets of i vertices that

correspond to the i-entries in the matrix for each i, as well as n−v single vertices for

each of the 1-entries, and then this exactly defines the two ordered k-equipartitions.

Given r, denote by Mr the number of corresponding matrices, then

Pr =
n!∏a
i=2 i!

ri
·Mr. (3.22)

To bound Qr = Pr/P
2, we will count the number Mr of corresponding overlap

matrices in the following way. Take an empty k × k-matrix, and write the number

2 in r2 empty slots, write the number 3 in r3 empty slots, and so on. There are at

most (
k2

r2

)(
k2

r3

)
. . .

(
k2

ra

)
6
k2
∑a
i=2 ri∏a

i=2 ri!
(3.23)

ways to do this. The rest of the matrix has entries 0 and 1, and the number of ways

to fill in these entries is bounded by the total number of k × k 0-1 matrices where

the row and column sums are given by
⌈
n
k

⌉
or
⌊
n
k

⌋
minus the values of the entries

that are already written in these rows and columns. Note that we are of course

overcounting Mr, since not all placements of the numbers 2, 3, . . . , are valid, and

not all 0-1 matrices are possible afterwards, but this will be insignificant.

To estimate the number of 0-1 matrices with prescribed row and column sums,

we use the following result of McKay ([47], see also [27]).

Theorem 3.9. Let N(s, t) be the number of m × n 0-1 matrices with row sums

s = (s1, . . . , sm) and column sums t = (t1, . . . , tn). Let S =
∑m

x=1 sx, s = maxx sx,

t = maxy ty, S2 =
∑m

x=1 sx(sx − 1) and T2 =
∑n

y=1 ty(ty − 1).

If S →∞ and 1 6 max{s, t}2 < cS for some constant c < 1
6
, then

N(s, t) =
S!∏m

x=1 sx!
∏n

y=1 ty!
exp

(
−S2T2

2S2
+O

(
max{s, t}4

S

))
.
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Having written the numbers 2, . . . ,
⌈
n
k

⌉
in the matrix, the remaining 0-1 entries

must be placed so that the rows sum to s = (s1, . . . , sk), and the columns sum to

t = (t1, . . . , tk), where sx, ty 6
⌈
n
k

⌉
for all x, y. The exact values for sx and ty depend

on the placement of the numbers 2, . . . ,
⌈
n
k

⌉
. In the terminology of Theorem 3.9, we

have S = n− v > (1− c)n→∞ and 1 6 max{s, t}2 6
⌈
n
k

⌉2
= O(log2 n) = o(S), so

we can apply Theorem 3.9.

N(s, t) =

=
(n− v)!∏k

x=1 sx!
∏k

y=1 ty!
· exp

(
−
∑k

x=1 sx(sx − 1)
∑k

y=1 ty(ty − 1)

2(n− v)2
+O

(
log4 n

n

))

.
(n− v)!∏k

x=1 sx!
∏k

y=1 ty!
. (3.24)

Now the sequence s1, . . . , sk can be obtained from the sequence
⌈
n
k

⌉
,
⌈
n
k

⌉
, . . . ,⌊

n
k

⌋
(k1 times

⌈
n
k

⌉
and k2 times

⌊
n
k

⌋
) by successively subtracting the number 2 from

r2 members of the sequence, the number 3 from r3 members of the sequence, and so

on.

The product
∏k

x=1 sx! can then be obtained from the product
⌈
n
k

⌉
!k1
⌊
n
k

⌋
!k2 by

removing the corresponding v =
∑a

i=2 iri factors of the factorials. If
∑a

i=2 ri 6 k1,

the product of these factors is maximal if sx =
⌈
n
k

⌉
− i for exactly ri values x for all

i > 2. For all remaining values x, sx =
⌈
n
k

⌉
or sx =

⌊
n
k

⌋
. Therefore, in this case

k∏
x=2

sx! >
⌈n
k

⌉
!k1

⌊n
k

⌋
!k2 ·

a∏
i=2

(⌈
n
k

⌉
− i
)
!ri⌈

n
k

⌉
!ri

.

Note that the above remains valid if
∑a

i=2 ri > k1 — it is just not tight in this case.

If
⌈
n
k

⌉
< a = dγe (so by our assumptions

⌈
n
k

⌉
= a − 1), there are no parts of size

at least a in the partitions, so ra = 0 and the above is still well-defined as there are

no terms for i = a. The corresponding inequality of course also holds for
∏k

y=2 ty!.

Therefore,

N(s, t) .
(n− v)!⌈

n
k

⌉
!2k1
⌊
n
k

⌋
!2k2

a∏
i=2

⌈
n
k

⌉
!2ri(⌈

n
k

⌉
− i
)
!2ri

.
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Using (3.22) and (3.23), this gives

Pr .
(n− v)!n!⌈
n
k

⌉
!2k1
⌊
n
k

⌋
!2k2

a∏
i=2

k2ri
⌈
n
k

⌉
!2ri

i!riri!
(⌈

n
k

⌉
− i
)
!2ri

. (3.25)

Note that by Stirling’s formula n! ∼
√

2πnnn/en, and using 1 + x 6 ex,

(n− v)!

n!
.

(n− v)n−vev

nn
= n−v

(
1− v

n

)n−v
ev 6 n−vev

2/n = n−veρv.

Together with (3.19), (3.25) and (3.13), and as v =
∑a

i=2 iri, this gives

Qr =
Pr

P 2
.

a∏
i=2

(
1

ri!

(
eρik2

⌈
n
k

⌉
!2

nii!
(⌈

n
k

⌉
− i
)
!2

)ri)
. (3.26)

Recalling that d =
∑a

i=2

(
i
2

)
ri, and that by (B) from Section 3.3.1,

⌈
n
k

⌉
6 a,

Qrb
d .

a∏
i=2

(
1

ri!

(
eρib(

i
2)k2

⌈
n
k

⌉
!2

nii!
(⌈

n
k

⌉
− i
)
!2

)ri)
6

a∏
i=2

(
1

ri!

(
eρib(

i
2)k2a!2

nii! (a− i)!2

)ri)

as
dnke!

(dnke−i)!
6 a!

(a−i)! for all i. Therefore, letting

Ti :=
eρib(

i
2)k2a!2

nii! (a− i)!2
,

we have

Qrb
d .

a∏
i=2

T rii
ri!
.

By (B), either
⌈
n
k

⌉
= a or

⌈
n
k

⌉
= a− 1. In the latter case, there are no parts of size

a, so ra = 0. Therefore,

Qrb
d .

dnke∏
i=2

T rii
ri!
. (3.27)

Note that the terms Ti still depend on r, but only through ρ(r). The next lemma

ensures that the terms Ti are small enough as long as ρ 6 c. Let

c5 = min

{
1

10
,

c

2 log b
,

1− c
2 log b

}
∈ (0, 1),

where c is defined in (3.21).
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Lemma 3.10. If r ∈ R1 and n is large enough, then for all 3 6 i 6
⌈
n
k

⌉
− 1,

Ti 6 n−c5 ,

and for i ∈
{

2,
⌈
n
k

⌉}
,

Ti 6 n1−c5 .

Proof. As usual, we assume throughout that n is large enough for our various bounds

to hold. First, note that

Ti+1

Ti
=

eρb(
i+1
2 ) (a− i)!2

b(
i
2)n(i+ 1) (a− i− 1)!2

=
eρbi(a− i)2

n(i+ 1)
. (3.28)

Now consider i = 2: since a ∼ n
k

= O(log n) by (D) in Section 3.3.1,

T2 =
e2ρb(

2
2)k2a!2

n22! (a− 2)!2
6
e2bk2a4

2n2
= O

(
log2 n

)
6 n1−c5 .

By (3.28), for i 6 5,

Ti+1 = O

(
log2 n

n

)
· Ti 6 n−1+o(1)Ti,

so in particular for all 3 6 i 6 6,

Ti 6 T3 6 n−1+o(1)O(log2 n) 6 n−c5 . (3.29)

For 7 6 i 6 1.2 logb n, note that as a 6 2 logb n,

Ti 6
eib

i2

2 n2a2i

ni
= n2

(
eb

i
2a2

n

)i

6 n2

(
4eb0.6 logb n log2

b n

n

)i
6 n2−0.3i 6 n−0.1 6 n−c5 .

Next, we take a look at the special case i = a. Since a = γ + 1−∆, by (F),

b(
a
2) = b(γ−∆)(γ+1−∆)/2 = b

γ
2

(γ+1−2∆)no(1) = ((1 + o(1))k)γ+1−2∆no(1) = ka−∆no(1),

so by Stirling’s formula,

Ta =
eρab(

a
2)k2a!

na
∼ eρaka−∆+2no(1)

√
2πaaa

naea
6

(
ka

n

)a
n2−∆e−(1−ρ)ano(1). (3.30)

Since by (D), a ∼ n
k
∼ 2 logb n and as r ∈ R1, this gives

Ta 6 n2−∆−(1−ρ) 2
log b

+o(1) 6 n2−∆−(1−c) 2
log b

+o(1).
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For i ∈ {a− 1, a− 2}, by (3.28) and (F) and since a = dγe,

Ti+1

Ti
6
no(1)bi

n
= n1+o(1). (3.31)

Therefore,

Ta−1 = Tan
−1+o(1) 6 n1−∆−(1−c) 2

log b
+o(1).

To bound Tdnke, we need to distinguish between two cases. By (B),
⌈
n
k

⌉
= a or⌈

n
k

⌉
= a− 1, and γ is not an integer.

• Case 1:
⌈
n
k

⌉
= a.

Since n
k
6 γ − x0 − ε, a = dγe and ∆ = γ − bγc, we have x0 + ε 6 ∆. By

Lemma 3.6,

1−∆ <
2c2

log b
.

By the definition (3.21) of c, c2 = 1− 2c and since c5 6 c
2 log b

,

Tdnke = Ta 6 n2−∆−(1−c) 2
log b

+o(1) 6 n1− 2c
log b

+o(1) 6 n1−2c5 .

• Case 2:
⌈
n
k

⌉
= a− 1.

By the definition of c5 6 1−c
2 log b

,

Tdnke = Ta−1 6 n1−(1−c) 2
log b

+o(1) 6 n1−2c5 .

So in both cases we have Tdnke 6 n1−2c5 6 n1−c5 . By (3.31), this gives

Tbnkc 6 n−1+o(1)Tdnke 6 n−c5 .

Finally, for i > 1.2 logb n, by (3.28),

Ti+1

Ti
=
eρbi(a− i)2

n(i+ 1)
> n0.2+o(1) > 1,

so for all 1.2 logb n 6 i 6
⌊
n
k

⌋
,

Ti 6 Tbnkc 6 n−c5 .
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Let

R =
a∑
i=2

ri

denote the total number of overlap blocks. The following lemma gives a bound for

the quantity appearing in (3.27) in terms of R instead of the individual ri’s.

Lemma 3.11. If n is large enough, then for all r ∈ R1,

Qrb
d . n−c5R/2 exp

(
n

log9 n

)
, (3.32)

where c5 > 0 is the constant from Lemma 3.10.

Proof. For 3 6 i 6
⌊
n
k

⌋
, the previous lemma gives

1

ri!
T rii 6 n−c5ri 6 n−c5ri/2.

Now suppose i ∈
{

2,
⌈
n
k

⌉}
. If ri 6 n

log11 n
, then

1

ri!
T rii 6 n(1−c5)ri 6 n−c5ri/2 exp

(
n

2 log9 n

)
.

Otherwise, if ri >
n

log11 n
, then since ri! > rrii /e

ri ,

1

ri!
T rii 6

(
en1−c5

ri

)ri
6
(
en−c5 log11 n

)ri 6 n−c5ri/2.

Together with (3.27), this gives the result.

Now we are finally ready to sum (3.32) over all r ∈ R1. For this, note that if n

is large enough, then given R, there are at most (2e logb n)R ways to select r2, . . . , ra

such that
∑a

i=2 ri = R. This is because there are(
R + a− 2

R

)
6

(
e (R + a− 2)

R

)R
6 (e (1 + a− 2))R 6 (2e logb n)R (3.33)

ways to write R as an ordered sum with a− 1 nonnegative summands.

Using this and Lemma 3.11, if n is large enough, we can now simply take the

sum over R.∑
r∈R1

Qrb
d .

∞∑
R=0

(
(2e logb n)R n−c5R/2 exp

(
n

log9 n

))

= exp

(
n

log9 n

) ∞∑
R=0

(
2e logb n

nc5/2

)R
6 2 exp

(
n

log9 n

)
.

Therefore,
∑

r∈R1
Qrb

d 6 exp
(

n
log8 n

)
for n large enough as required.
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3.5.3 Pairs of partitions with many small overlap blocks

In this section, we will bound the contribution to the sum (3.20) from those overlap

sequences r with ρ = ρ(n) := v/n > c, but where there are either still many

singletons which are not involved in the overlap (so n− v is large) or many vertices

in ‘small’ overlap blocks of size at most 0.6γ. More specifically, fix a constant

0 < c′ < 1 and consider only those r with ρ > c such that there are at least c′n

singletons or at least c′n vertices in overlap blocks of size at most 0.6γ.

Rc′

2 =

{
r | ρ > c ∧

( ∑
26i60.6γ

iri > c′n ∨ ρ 6 1− c′
)}

. (3.34)

We will prove that for any fixed c′ ∈ (0, 1), the contribution to the sum (3.20) from

these overlap sequences is negligible, i.e.,

∑
r∈Rc′2

Qrb
d = o(1).

To do this, we will generate all pairs of partitions in this range by taking the first

partition, grouping the vertices into subsets of its parts which will form the singletons

and overlap blocks, and rearranging them into k sets to get the new partition. If

we do this according to some r ∈ Rc′
2 , then we can bound the number of ways to

generate another partition and show that the number of overlapping edges d between

the two partitions is small enough.

3.5.3.1 Preliminaries

We first need some notation and preliminary results. Since some of our bounds need

to be extremely accurate, we distinguish between parts of size a and parts of size at

most a− 1. Since by (B),
⌈
n
k

⌉
∈ {a, a− 1}, there may of course not be any parts of

size a at all. Fix an arbitrary ordered k-equipartition π1, and let

Pc′2 =
{

ordered k-equipartitions π2 such that r(π1, π2) ∈ Rc′

2

}
.
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Given π2 ∈ Pc
′

2 , let

V1 = set of vertices in the overlap of π1 and π2 that are in parts of size a in π1

V2 = set of vertices in the overlap of π1 and π2 that are in parts of size at most

a− 1 in π1

D1 = set of overlapping forbidden edges between vertices in V1

D2 = set of overlapping forbidden edges between vertices in V2.

For i ∈ {1, 2}, let vi = |Vi| and di = |Di|, so v1 + v2 = v and d1 + d2 = d.

Given π1 and π2, we define the overlap graph of π1 and π2 as the union of all the

vertices in overlap blocks together with all the joint forbidden edges. By definition,

the overlap graph is a disjoint union of cliques, each containing between 2 and
⌈
n
k

⌉
vertices. Note that the vertex set is exactly V1∪V2 and the edge set exactly D1∪D2.

Denote by g = (gj)
v1
j=1 the degree sequence in the overlap graph of the vertices in

V1. Then gj 6 a− 1 for all j, so

2d1 =

v1∑
j=1

gj 6 v1 (a− 1) .

Similarly,

2d2 6 v2 (a− 2) .

Let

β1 =
2d1

v1 (a− 1)
6 1

β2 =
2d2

v2 (a− 2)
6 1.

For x ∈ (0, 1), denote by wx,1 the proportion of vertices in V1 which have degree at

most x (a− 1) within the overlap graph, i.e.,

wx,1 =
# j with gj 6 x (a− 1)

v1

.

Then, as gj 6 a− 1 for all j, for any x ∈ (0, 1),

β1v1 (a− 1) = 2d1 =

v1∑
j=1

gj 6 wx,1v1x (a− 1) + (1− wx,1)v1 (a− 1) ,
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so

wx,1 6
1− β1

1− x
. (3.35)

Similarly, define wx,2 as the proportion of vertices in V2 that have degree in the

overlap graph of at most x (a− 2). Analogously, we have

wx,2 6
1− β2

1− x
.

Next, we need a bound for the total number of overlap blocks. As in the previous

section, let

R =
a∑
i=2

ri (3.36)

denote the number of overlap blocks. Let R1 and R2 denote the number of overlap

blocks in parts of size a and of size at most a− 1 in π1, respectively, so R = R1 +R2.

Note that

R1 =

v1∑
j=1

1

gj + 1
,

as every overlap block of s vertices contributes exactly s instances of the summand

1
s
. For any 0 < x < y < 1, there are wx,1v1 values i such that 1 6 gi 6 x (a− 1),

at most wy,1v1 values i such that x (a− 1) < gi 6 y (a− 1), and for the remaining

values i, gi > y (a− 1). Therefore,

R1 6
wx,1v1

2
+

wy,1v1

x (a− 1) + 1
+

v1

y (a− 1) + 1
6
wx,1v1

2
+
wy,1v1

xγ
+
v1

yγ
.

Using (3.35), it follows that

R1 6
(1− β1)v1

2(1− x)
+

(1− β1)v1

x(1− y)γ − 1
+

v1

yγ − 1
, (3.37)

where in the last term yγ was replaced by yγ−1 so that the corresponding expression

holds for R2 as well. Indeed, we can see that

R2 6
(1− β2)v2

2(1− x)
+

(1− β2)v2

x(1− y)γ − 1
+

v2

yγ − 1
. (3.38)

We will now give some weaker conditions for π2 which are more convenient to

work with, and show that any π2 ∈ Pc
′

2 meets these conditions.
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Lemma 3.12. If π2 ∈ Pc
′

2 and n is large enough, then at least one of the following

three conditions applies:

I) v1 > n
(log logn)2 and β1 6 1− (log logn)4

logn
.

II) v2 > n
(log logn)2 and β2 6 1− (log logn)4

logn
.

III) Neither I nor II holds, and c < ρ 6 1− c′.

Proof. By the definition of Rc′
2 , it suffices to show that if

∑
26i60.6γ iri > c′n, then

I or II holds. So suppose that
∑

26i60.6γ iri > c′n. Of those vertices that are in

overlap blocks of size at most 0.6γ, either at least c′n/2 are in parts of size a or at

least c′n/2 are in parts of size a− 1 in π1.

So say that at least c′n/2 of them are in parts of size a. In particular, v1 >

c′n/2 > n
(log logn)2 . Furthermore, if we denote by r̂i the number of overlap blocks of

size i in parts of size a in π1, then

d1 =
a∑
i=2

(
i

2

)
r̂i 6 0.3γ

∑
26i60.6γ

ir̂i +
a− 1

2

∑
0.6γ<i6a

ir̂i.

Since 0.3γ 6 a−1
2

and
∑

26i60.6γ ir̂i > c′n/2 and γ 6 dγe = a, this is at most

0.3γc′n

2
+
a− 1

2

(
v1 −

c′n

2

)
6
a− 1

2
v1 − 0.05ac′n.

Therefore,

β1 =
2d1

v1 (a− 1)
6 1− (0.1 + o(1))

c′n

v1

.

As v1 6 n, this is at most

1− 0.05c′ < 1− (log log n)4

log n
,

so I holds if n is large enough.

The second case is analogous and implies II.
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Still fixing the arbitrary ordered k-equipartition π1, let

P I =

{
ordered k-equipartitions π2 such that v1 >

n

(log log n)2

and β1 6 1− (log log n)4

log n

}

P II =

{
ordered k-equipartitions π2 such that v2 >

n

(log log n)2

and β2 6 1− (log log n)4

log n

}

P III =

{
ordered k-equipartitions π2 such that c < ρ 6 1− c′

}
\ P I \ P II, (3.39)

where vi, βi and ρ refer to the overlap of π1 and π2. Then by Lemma 3.12 for n

large enough,

Pc′2 ⊂ P I ∪ P II ∪ P III.

For an overlap sequence r, denote by P ′r the number of ordered k-equipartitions with

overlap r with π1. Then by the definition (3.19) of Qr,

Qr =
Pr

P 2
=
P ′r
P
. (3.40)

Using (3.14) in the last step, if n is large enough,∑
r∈Rc′2

Qrb
d =

∑
r∈Rc′2

P ′r
P
bd =

∑
π2∈Pc

′
2

P−1bd(π1,π2) 6
∑

π2∈PI∪PII∪PIII

P−1bd(π1,π2)

=
∑

π2∈PI∪PII∪PIII

k−nbd(π1,π2) exp(o(n)), (3.41)

where d(π1, π2) := d(r) if r is the overlap sequence of π1 and π2.

We will now generate and count all π2 ∈ P I ∪ P II ∪ P III. Starting with π1, we

first subdivide the parts into overlap blocks and singletons. Then we arrange those

overlap blocks and singletons into k new parts to generate π2, and sum the resulting

bd(π1,π2).

3.5.3.2 Contribution from Cases I and II

We start by generating the partitions in P I ∪ P II. The strategy is as follows. We

group the vertices into subsets of the parts of π1 which form the overlap blocks and
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singletons for the overlap with π2, and give a bound for the number of ways this can

be done in Lemma 3.13. Then we sort the overlap blocks and singletons into the k

parts of π2. If there are R overlap blocks and n − v singletons, then there are at

most kn−v+R choices for this. Considering (3.41), the term kn cancels out with k−n,

leaving just k−v+Rbd multiplied by the bound from Lemma 3.13 as an upper bound

for (3.41). If Cases I or II apply and we also use the bounds (3.37) and (3.38) for R,

then di will be small enough in comparison to vi for at least one i ∈ {1, 2} so that

k−v+R is much smaller than bd, allowing us to bound the total contribution from

Cases I and II to (3.41) and thereby to (3.20) by o(1).

Lemma 3.13. Denote by S the number of ways the n vertices can be grouped into

subsets (of any size and number) of the parts of π1. Then

S 6 exp (O (n log log n)) .

Proof. If we sort the n vertices into a containers, this defines a subdivision of π1 by

letting all vertices be in the same set that are in the same part of π1 and in the same

container. Conversely, any possible subdivision of π1 can be obtained in this way,

since every part can only be partitioned into at most a non-empty sets. Therefore,

as a = O(log n),

S 6 an = exp (O (n log log n)) .

We are now ready to show that the contribution to (3.41) from all ordered k-

equipartitions in P I ∪ P II to (3.41) is o(1).

Lemma 3.14. ∑
π2∈PI∪PII

k−nbd(π1,π2) exp(o(n)) = o(1).

Proof. Fix v1, v2, d1 and d2 so that I or II holds. Let

P(v1, v2, d1, d2) =
{
π2 ∈ P I ∪ P II | vi(π1, π2) = vi, di(π1, π2) = di, i = 1, 2

}
.
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Arrange the n vertices into singletons and overlap blocks that are subsets of the

parts of π1 in accordance with v1, v2, d1 and d2. Now that we know the R overlap

blocks and n − v singletons, the number of ordered k-equipartitions π2 with these

overlap blocks with π1 is at most kn−v+R, since we need to sort n− v singletons and

R overlap blocks into k parts.

Therefore, if we let x = 1
4

and y = 1 − 1
log logn

, then with (3.37), (3.38) and

Lemma 3.13,

∑
π2∈P(r1,r2,d1,d2)

k−nbd(π1,π2) 6 Sk
−n+n−v+

∑2
i=1

(
2(1−βi)vi

3
+

4(1−βi)vi
(1−y)γ−4

+
vi

yγ−1

)
bd1+d2 exp (o(n))

6 k
∑2
i=1

(
−vi+

2(1−βi)vi
3

+
4(1−βi)vi
(1−y)γ−4

+
vi

yγ−1

)
bd1+d2 exp (O(n log log n)) . (3.42)

Note that as by (F) from Section 3.3.1, b
γ
2 ∼ k, and since βivi 6 n for i ∈ {1, 2}

and a = dγe 6 γ + 1,

bd1+d2 = bβ1v1·a−1
2

+β2v2·a−2
2 6 b(β1v1+β2v2)· γ

2 6 kβ1v1+β2v2 exp(o(n)).

By (G) and since vi 6 n, k
vi

yγ−1 6 exp(O(n)) for i ∈ {1, 2}, and therefore (3.42)

becomes

∑
π2∈P(r1,r2,d1,d2)

k−nbd(π1,π2) 6 k−
∑2
i=1(vi(1−βi)( 1

3
− 4

(1−y)γ−4)) exp (O(n log log n)) .

Recall that y = 1− 1
log logn

, so (1−y)γ →∞, and we have 1
3
− 4

(1−y)γ−4
> 1

4
for n large

enough. Since I or II holds, there is an i ∈ {1, 2} such that (1− βi)vi > n(log logn)2

logn
,

so by (G),

∑
π2∈P(r1,r2,d1,d2)

k−nbd(π1,π2) 6 k−
n(log logn)2

4 logn exp (O(n log log n)) .

As f = O(n log n) by (H), and since vi 6 n and di 6 f for i ∈ {1, 2}, there are only

at most O(n4 log2 n) choices for the values of vi 6 n and di for i ∈ {1, 2}. Hence,

∑
π2∈PI∪PII

k−nbd(π1,π2) exp(o(n)) 6 k−
n(log logn)2

4 logn exp (O(n log log n))

= exp
(
−Θ

(
n(log log n)2

))
= o(1).
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3.5.3.3 Contribution from Case III

We have to be a bit more careful in the case where neither I nor II holds. We

will proceed similarly as in the proof of Lemma 3.14: we subdivide π1 into subsets

and then sort the singletons and overlap blocks into the k parts to form the new

partition π2. Since for both i ∈ {1, 2}, βi is either close to 1 or vi is negligibly

small, most of the overlap blocks will be almost entire parts of π1. If we place

those large overlap blocks first, they occupy a constant fraction of about ρk of the k

parts almost entirely, so the remaining roughly (1−ρ)n vertices and smaller overlap

blocks have fewer choices left, namely only about (1 − ρ)k choices each. This will

give an additional factor of about (1−ρ)(1−ρ)n. Almost everything else will turn out

to be subexponential, except for a term which is about b(1−∆)v/2. As v = ρn, this

will result in a total bound which is roughly of the form b−((1−ρ) logb(1−ρ)−(1−∆)ρ/2)n.

Comparing the exponent of this expression with condition (3.4) from Theorem 3.1

(using the technical lemmas we proved in Section 3.3.2), we will show that the sum

is o(1) for c < ρ < 1− c′.

Instead of Lemma 3.13, which gave a fairly slack bound on the number of ways

the vertices may be arranged into subsets of the parts of π1, we now need a more

accurate bound. The following lemma ensures that if Condition III applies, the

number of ways to subdivide π1 is subexponential.

Lemma 3.15. Fix integers v1, v2, d1, d2 so that I and II do not hold as above.

Denote by S(v1, v2, d1, d2) the number of ways the vertices can be arranged into

subsets of the parts of π1 which form overlap blocks and singletons according to vi

and di, i ∈ {1, 2}. Then there is a function S ′ = S ′(n) which does not depend on vi

or di, i = 1, 2, such that

S(v1, v2, d1, d2) 6 S ′ 6 exp (o(n)) .

Proof. We first split up the parts of size a. Since I does not hold, either v1 <
n

(log logn)2

or β1 > 1− (log logn)4

logn
.
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In the first case, select the v1 <
n

(log logn)2 = o(n) vertices which form the overlap

blocks in parts of size a. Using (J) from Section 3.3.1, there are at most(
n

v1

)
6

(
n⌊
n

(log logn)2

⌋) 6 exp(o(n))

ways to do this. All the other vertices in parts of size a must be singletons. To find

out how the v1 vertices are arranged into overlap blocks, we can proceed as in the

proof of Lemma 3.13: sort the v1 vertices into a containers, and let those vertices

be in the same overlap block that are in the same container and in the same part of

π1. There are

av1 6 a
n

(log logn)2 = exp

(
O

(
n

log log n

))
6 exp(o(n))

possibilities for this, so altogether there are exp(o(n)) ways to split up the parts of

size a in the case v1 <
n

(log logn)2 .

In the second case, we have β1 > 1 − (log logn)4

logn
. Let x = 1 − (log logn)2

(logn)1/2 , then by

(3.35), if π2 overlaps with π1 according to vi and di, then

wx,1 6
(log logn)4

logn

(log logn)2

(logn)1/2

=
(log log n)2

(log n)1/2
=: ŵx → 0.

This means that almost all of the v1 vertices in the overlap must be arranged into

large overlap blocks of size greater than x (a− 1) + 1. As x → 1, we can assume

x > 1/2. Therefore, any part of π1 contains at most one such large overlap block,

and we can group the vertices in parts of size a into overlap blocks and singletons

in the following way.

• First we select the parts which contain large overlap blocks. There are at most

2k = exp (O (n/ log n)) = exp(o(n))

choices.

• Next, given these k′ 6 k parts, we pick the vertices within the parts that are

not in the large overlap blocks. Since x→ 1, there are at most

k′(a− x(a− 1)− 1) 6 (1− x)ak′ = o (ak′) = o(n)
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such vertices. Therefore, there are at most∑
l6(1−x)ak′

(
ak′

l

)
6 ((1− x)ak′ + 1) ·

(
ak′

b(1− x)ak′c

)
6 n ·

(
n

(1− x)n

)
6 exp(o(n))

possibilities for this.

• Now we know all the large overlap blocks in V1. From the remaining vertices,

we choose those vertices that are not singletons, i.e., which are in overlap

blocks of size at least 2, but not in big overlap blocks. There cannot be more

than ŵxv1 6 ŵxn = o(n) such vertices. Therefore, there are at most∑
j6ŵxn

(
n

j

)
6 (ŵxn+ 1)

(
n

bwxnc

)
6 exp(o(n))

choices.

• We have determined all of the large overlap blocks and which of the remaining

vertices are singletons and which are in overlap blocks. It only remains to

group the vertices that are in overlap blocks into subsets of the parts of π1. As

in the proof of Lemma 3.13, each such partition into subsets can be obtained by

sorting the vertices into a containers, and since there are at most ŵxv1 6 ŵxn

vertices left, this can be done in at most

aŵxn = exp [O (nŵx log log n)] = exp(o(n))

ways.

Multiplying everything, and noting that none of the bounds depend on the spe-

cific choice of vi and di, gives the bound exp(o(n)) for the number of ways we can

subdivide the parts of size a in the second case, and hence in both cases.

The bound exp(o(n)) for subdividing the parts of size at most a−1 can be proved

analogously. Multiplying those two bounds gives S ′ = S ′(n) such that

S(v1, v2, d1, d2) 6 S ′ 6 exp(o(n)).
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Now we are ready to show that the contribution to (3.41) from Case III is o(1).

Lemma 3.16. ∑
π2∈PIII

k−nbd(π1,π2) exp(o(n)) = o(1).

Proof. Suppose we have fixed v1, v2, d1 and d2 in such a way that I and II do not

hold but III does. Let

P ′(v1, v2, d1, d2) =
{
π2 ∈ P III | vi(π1, π2) = vi, di(π1, π2) = di, i = 1, 2

}
.

Let u = 1− (log logn)5

logn
→ 1. Recall that ρ = v/n = (v1 + v2)/n.

Claim. For any π2 ∈ P ′(v1, v2, d1, d2), there are (1 + o(1))ρk ‘large’ overlap blocks

of size at least u(a− 2) in the overlap of π1 and π2.

Proof. Of course there are asymptotically at most v
u(a−2)

∼ ρk such blocks, so we

only need to show that there are asymptotically at least ρk of them.

Note that if vi > n
(log logn)2 for i ∈ {1, 2}, then as I and II do not hold, βi >

1− (log logn)4

logn
, and therefore,

1− βi
1− u

6
1

log log n
→ 0. (3.43)

If π2 ∈ P ′(v1, v2, d1, d2), then by (3.35), there are at least

(1− wu,1)v1 + (1− wu,2)v2 >
2∑
i=1

(
1− 1− βi

1− u

)
vi

vertices in large overlap blocks of size at least u(a − 2). Since no overlap block

contains more than a vertices, there are at least

2∑
i=1

(
1− 1− βi

1− u

)
vi
a

(3.44)

such large overlap blocks. As III holds, v1 + v2 = v > cn, so there can be at most

one i ∈ {1, 2} with vi <
n

(log logn)2 . If this is the case and j is the other element of

{1, 2}, then vi � vj ∼ v ∼ ρn, so together with (3.43), (3.44) is

o
(n
a

)
+

(
1− 1− βj

1− u

)
vj
a

= o(k) + (1 + o(1))ρ
n

a
∼ ρk,
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as n
a
∼ k by (E). Otherwise, if for both i ∈ {1, 2}, vi > n

(log logn)2 , (3.44) and (3.43)

give
2∑
i=1

(
1− 1− βi

1− u

)
vi
a

>

(
1− 1

log log n

)
v1 + v2

a
∼ v1 + v2

a
∼ ρk.

So in both cases, there are asymptotically at least ρk large overlap blocks of size at

least u (a− 2).

Having subdivided the partition π1 into overlap blocks and singletons according

to v1, v2, d1, d2, we now generate all π2 ∈ P ′(v1, v2, d1, d2). Recall that R was defined

in (3.36) as the total number of overlap blocks.

Claim. There are at most

(1− ρ)(1−ρ)nkn−v+R exp(o(n))

other ordered k-equipartitions with the given overlap blocks with the original parti-

tion π1.

Proof. We sort the overlap blocks and singletons into k parts to create a new ordered

k-equipartition π2, and start with the large sets of size at least u (a− 2). By the

previous claim, there are (1 + o(1))ρk of them, and each has at most k choices. As

u → 1, we can assume u > 0.6, so no two large overlap blocks can be assigned to

the same part.

After we are finished with the large overlap blocks, the remaining vertices can

either be sorted into the small remainder of the (1 + o(1))ρk parts of π2 which have

been assigned a large block, or they can be sorted into the remaining (1−ρ+o(1))k

parts of π2.

As u → 1, we can fit at most (1 + o(1))ρk · (a− u (a− 2)) = o(n) vertices into

the remainder of the parts of π2 with large overlap blocks. Therefore, by (J) there

are at most (
n

o(n)

)
6 exp(o(n))

ways of picking these vertices, and for each there are at most k choices for which

part of π2 it is assigned to.
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There are now at least n − v − o(n) = (1 − ρ + o(1))n singletons and overlap

blocks left to be assigned to the remaining (1− ρ+ o(1))k parts. For each of these

there are at most (1− ρ+ o(1))k choices.

We have now sorted R overlap blocks and n− v singletons into the k parts, and

bounded the number of choices for each by at most k, and for (1 − ρ + o(1))n of

them by (1− ρ+ o(1))k. Therefore, in total there are at most

(1− ρ+ o(1))(1−ρ+o(1))n kn−v+R 6 (1− ρ)(1−ρ)nkn−v+R exp(o(n))

ways to build a new partition π2 from the given overlap blocks and singletons.

Now as in the previous part, let x = 1
4

and y = 1 − 1
log logn

. Then as in (3.42),

by Lemma 3.15, (3.37) and (3.38), and since R = R1 +R2,

∑
π2∈P ′(v1,v2,d1,d2)

k−nbd(π1,π2)

6 S(v1, v2, d1, d2)(1− ρ)(1−ρ)nk
−n+n−v+

∑2
i=1

(
2(1−βi)vi

3
+

4(1−βi)vi
(1−y)γ−4

+
vi

yγ−1

)
bd1+d2 exp(o(n))

6 (1− ρ)(1−ρ)nk
∑2
i=1

(
−vi+

2(1−βi)vi
3

+
4(1−βi)vi
(1−y)γ−4

+
vi

yγ−1

)
· bd1+d2 exp (o(n)) .

Note that as by (F), b
γ
2 ∼ k, and as a = dγe = γ + 1−∆,

bd1+d2 = bβ1v1·a−1
2

+β2v2·a−2
2 = b(β1v1+β2v2)· γ

2
− 1

2
(∆β1v1+(1+∆)β2v2)

6 kβ1v1+β2v2b−
1
2

(∆β1v1+(1+∆)β2v2) exp(o(n)).

Since I and II do not hold, vi(1− βi) = o(n) for i = 1, 2, and therefore,

bd1+d2 6 kβ1v1+β2v2b−
1
2

(∆v1+(1+∆)v2) exp(o(n)).

Hence,

∑
π2∈P ′(v1,v2,d1,d2)

k−nbd(π1,π2) 6(1− ρ)(1−ρ)nk−
∑2
i=1(vi(1−βi)( 1

3
− 4

(1−y)γ−4))k
v1+v2
yγ−1

· b−
1
2

(∆v1+(1+∆)v2) exp (o(n))

6(1− ρ)(1−ρ)nk
v1+v2
yγ−1 b−

1
2

(∆v1+(1+∆)v2) exp (o(n))
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as 1
3
− 4

(1−y)γ−4
> 0 because (1− y)γ →∞. Since γ ∼ 2 logb n and y → 1,

k
v1+v2
yγ−1 b−

1
2

(∆v1+(1+∆)v2) 6 n
v1+v2
yγ−1 b−

1
2

(∆v1+(1+∆)v2) = b
v1+v2
2+o(1)

− 1
2

(∆v1+(1+∆)v2)

6 b
1−∆

2
·v1−∆

2
·v2 exp(o(n)).

Hence, ∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 bn(1−ρ) logb(1−ρ)+
v1
2
−∆v

2 exp(o(n)). (3.45)

We will show that this last expression is exponentially decreasing in n, and need

to distinguish three cases, depending how large ∆ − x0 − ε is in comparison to ρ.

Note that since γ is not an integer by (B),

n

k
= γ−x0− ε+ o(1) = bγc+ ∆−x0− ε+ o(1) = a− 1 + ∆−x0− ε+ o(1). (3.46)

Roughly speaking, ∆−x0−ε is the proportion of parts of size a in a k-equipartition,

and we need to distinguish between Case 1 where there are few (or no) such parts,

Case 2 where there are more such parts but still not so many that all of the v = ρn

vertices in the overlap can be in parts of size a, and finally Case 3 where there are

enough parts of size a that the overlap blocks between π1 and π2 can all be in parts

of size a in π1. In the first case, we shall only need the condition that c < ρ < 1− c′;

the second and third cases are where condition (3.4) from Theorem 3.1 is crucial.

• Case 1: ∆− x0 − ε < ∆ρ.

Recall that by (C) in Section 3.3.1, k1 = δk where δ = n
k
−
⌊
n
k

⌋
. If n

k
6 a− 1,

then there are no parts of size a in π1. If n
k
> a− 1, then by (B),

⌈
n
k

⌉
= a and⌊

n
k

⌋
= a− 1, so it follows from (3.46) that δ = ∆− x0− ε+ o(1) 6 ∆ρ+ o(1).

Therefore, if n
k
> a− 1, there are k1 = δk 6 ∆ρk + o(k) parts of size a in π1,

so v1 6 k1a 6 ∆ρn+ o(n). In both cases, from (3.45),∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 bn(1−ρ) logb(1−ρ)+ ∆ρn
2
−∆

2
·ρn exp(o(n))

= bn(1−ρ) logb(1−ρ) exp(o(n)) 6 b−c6n exp(o(n)),
(3.47)

where c6 := min (−(1− c) log(1− c),−c′ log c′) > 0, since c < ρ 6 1− c′.
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• Case 2: ∆ρ 6 ∆− x0 − ε 6 ρ.

Note that ∆ρ > cε since ρ > c, and ∆ > ε+x0 +∆ρ > ε. Therefore, by (3.46)

and as ∆ 6 1,

a− 1 + cε 6
n

k
+ o(1) 6 a− ε+ o(1),

so in particular
⌊
n
k

⌋
= a− 1. By (C) and (3.46), π1 has k1 = δk = (∆− x0 −

ε+ o(1))k parts of size a. Therefore, v1 can be at most (∆− x0− ε+ o(1))ka,

and as ka ∼ n,

v1

2
− ∆v

2
6

∆− x0 − ε
2

· n− ∆

2
ρn+ o(n) = n

[
∆

2
(1− ρ)− x0 + ε

2

]
+ o(n).

Hence, by (3.45),

∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 bn[(1−ρ) logb(1−ρ)+ ∆
2

(1−ρ)−x0+ε
2 ] exp(o(n)).

As remarked above, ∆ρ > cε, so ∆ − ε − x0 > cε. Therefore, we can apply

Lemma 3.8 with ε′ = cε and c4 = c4(ε, cε) to conclude that

∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 b−c4n exp(o(n)). (3.48)

Note that the proof of Lemma 3.8 requires Lemma 3.7, which in turn uses

condition (3.4).

• Case 3: ∆− x0 − ε > ρ.

Noting that v1 + v2 = v = ρn, we proceed from (3.45).

∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 bn(1−ρ) logb(1−ρ)+ 1−∆
2
v exp(o(n))

= bn·[(1−ρ) logb(1−ρ)+ 1−∆
2
ρ] exp(o(n)).

Since c 6 ρ 6 ∆−x0− ε, we can use Lemma 3.7 (the proof of which uses con-

dition (3.4)) with ε′ = c to see that this expression is exponentially decreasing

in n.

∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 b−c3n exp(o(n)). (3.49)
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By (3.47), (3.48) and (3.49), if we let c7 = min(c3, c4, c6) > 0, then

∑
π2∈P ′(r1,r2,d1,d2)

k−nbd(π1,π2) 6 b−c7n exp(o(n)).

Since there are only O(n4 log2 n) choices for the values of vi 6 n and di 6 f =

O(n log n) for i = 1, 2, this implies

∑
π2∈PIII

k−nbd(π1,π2) exp(o(log n)) = o(1).

From Lemmas 3.14 and 3.16 together with (3.41), it follows that

∑
r∈Rc′2

Qrb
d = o(1),

as required.

3.5.4 Very high overlap

We are left with those overlap sequences r where ρ = v/n > 1−c′ and
∑

26i60.6γ iri 6

c′n for any constant c′ ∈ (0, 1) of our choosing. This means that all but at most c′n

vertices are involved in the overlap, and of those vertices involved in the overlap, all

but at most c′n are in large overlap blocks of size at least 0.6γ. Roughly speaking,

in this case the large overlap blocks are mostly just permuted amongst themselves,

and there are a small number of exceptional vertices which need to be studied in

more detail. Let

Rc′

3 =

{
r | ρ > 1− c′,

∑
26i60.6γ

iri 6 c′n

}
. (3.50)

We will show that if we pick c′ > 0 small enough, then the contribution from Rc′
3 to

the sum (3.20) is o(1). We will pick c′ > 0 later in this section, and to ensure this is

not circular, we will take care that none of the implicit constants in our O-notation

depend on c′.
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As in the previous section, let π1 be an arbitrary fixed ordered k-equipartition.

Recall that for an overlap sequence r, we denote by P ′r the number of ordered k-

equipartitions with overlap r with π1, and that by (3.40), Qr = P ′r
P

. Let

P3 =
{

ordered k-equipartitions π2 such that r(π1, π2) ∈ Rc′

3

}
, (3.51)

and recall that µk = Pqf by (3.16). Then

∑
r∈Rc′3

Qrb
d =

∑
r∈Rc′3

P ′r
P
bd =

bf

P

∑
r∈Rc′3

P ′r · bd−f =
1

µk

∑
r∈Rc′3

P ′r · b−(f−d)

=
1

µk

∑
π2∈P3

b−(f−d(π1,π2)), (3.52)

where d(π1, π2) := d(r) if r is the overlap sequence of π1 and π2.

Starting with π1, we will generate, and count the number of choices for, π2 ∈ P3.

Since v = ρn > (1−c′)n and
∑

26i60.6γ iri 6 c′n, most of the overlap between π1 and

π2 consists of large overlap blocks which are merely permuted. More specifically,

given π2 ∈ P3, we call an overlap block large if it contains at least 0.53γ vertices,

and let

L = set of large overlap blocks of size at least 0.53γ.

No part of π1 can contain more than one large overlap block, and some parts may

not contain any large overlap block at all. It will be more important later to talk

about the latter type of part, so given π2 ∈ P3, let

T = set of parts of π1 containing no large overlap block.

We call a vertex exceptional if it is either not in the overlap at all or not in a large

overlap block. If π2 ∈ P3, then by definition there are at most 2c′n exceptional

vertices. We shall distinguish between three types of exceptional vertices.
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Again given π2 ∈ P3, let

S = set of exceptional vertices

S1 = set of exceptional vertices not in parts in T , i.e., in parts containing

a large overlap block

S2 = set of exceptional vertices in parts in T which are either not in the

overlap at all or in overlap blocks of size at most 100

S3 = set of exceptional vertices in parts in T which are in overlap blocks

of size greater than 100

g = number of overlap blocks of vertices in S3.

Let s = |S|, si = |Si|, and t = |T |. Then, as the vertices in parts in T are exactly

those in S2 ∪ S3, and since by (B), a− 2 6
⌊
n
k

⌋
6
⌈
n
k

⌉
6 a,

s2 + s3

a
6 t 6

s2 + s3

a− 2
. (3.53)

The vertices in S3 are arranged in blocks of size between 100 and 0.53γ, so

s3

0.53γ
6 g 6

s3

100
. (3.54)

Fix s = (s1, s2, s3), g, and t such that s = s1 + s2 + s3 6 2c′n and (3.53) and (3.54)

hold, and let

P(s, t, g) =
{
π2 ∈ P3 | s(π1, π2) = s, t(π1, π2) = t, g(π1, π2) = g

}
.

Note that

P3 =
⋃

s,t,g:s62c′n

P(s, t, g). (3.55)

Starting with the fixed partition π1 and given s, g, t, we will generate all π2 ∈

P(s, t, g) and sum b−(f−d(π1,π2)) to bound the contribution to (3.52). We will proceed

in the following way: first, we choose all three sets of exceptional vertices, bounding

the number of choices in Lemma 3.17. Next, we generate π2 by permuting the

exceptional vertices amongst themselves and then permuting all the parts, taking
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into account that part sizes may vary between
⌈
n
k

⌉
and

⌊
n
k

⌋
. The number of ways

to generate π2 in this way is bounded in Lemma 3.18. Finally, in Lemma 3.19,

we will examine how much each exceptional vertex of each type subtracts from the

maximum possible number f of shared forbidden edges between π1 and π2, and

we obtain a lower bound for f − d(π1, π2) which will be used afterwards to bound

b−(f−d(π1,π2)) from above.

Lemma 3.17. For fixed s = (s1, s2, s3), g and t and the fixed partition π1, there are

at most

ns1kt2s3tgas3

s1!g!

ways to choose the sets S1, S2 and S3 and arrange the vertices in S3 into g overlap

blocks.

Proof. We first choose the vertices in S1 and the parts in T . For this there are at

most (
n

s1

)(
k

t

)
6
ns1kt

s1!

possibilities. Next, we pick the vertices in S3 from within the parts in T along with

the g overlap blocks they make up. Since we do not know the exact sizes of these

overlap blocks, we first write s3 as an ordered sum of g positive summands, which

can be done in
(
s3−1
g−1

)
ways. Next, we decide which of the parts in T each of the g

blocks is in, for which there are at most tg choices, and then we pick the vertices

that belong to each of the g blocks. We know which part of size at most a each such

vertex is in, and we choose s3 vertices in total, so there are at most as3 possibilities

for this. Finally, since we do not care about the order of the g overlap blocks, we

can divide by g!. So overall, there are at most(
s3 − 1

g − 1

)
tgas3

1

g!
6

2s3tg

g!
as3

ways of selecting the vertices in S3 along with the g overlap blocks they are arranged

in. The remaining vertices in the parts in T must be exactly those in S2.
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Let

τ = max

(
1,Γ

(s2

t

)t)
, (3.56)

where Γ(·) denotes the gamma function.

Lemma 3.18. Given π1, S1, S2, S3 and the overlap blocks that the vertices in S3

are arranged in, there are at most

2k
(s1 + s2 + g)!

τ
k1!k2!

possibilities for π2.

Proof. Note that each part in π1 and π2 contains at most one large overlap block

from L, since one such block occupies more than half of a part. Therefore, since we

know S1, S2 and S3, we also know L. In each part of π1, there are a certain number

of ‘slots’ for exceptional vertices, with the rest of the part occupied by at most

one block from L. The numbers of slots for exceptional vertices in parts of π2 are

essentially just a permutation of the numbers of slots in π1, because the remainders

of the parts in π2 are again occupied by at most one block from L. However, as

total part sizes vary between
⌈
n
k

⌉
and

⌊
n
k

⌋
, the numbers of available slots in each

part may also increase or decrease by 1.

Therefore, starting with π1, we can generate every possible partition π2 in the

following way. Each of the k parts of π1 contains a certain number of exceptional

vertices, and for each part we decide whether or not to increase or decrease the

number of available slots for exceptional vertices by 1, for which there are at most

2k possibilities. We write the vertices in S1 and S2 along with the g blocks comprising

the vertices in S3 as a list and permute them, which can be done in

(s1 + s2 + g)!

ways. Now we divide up the list successively according to the number of available

slots in each of the k parts (discarding the cases where this is not possible because

one of the g blocks would have to be divided), and move the vertices from each
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division to the corresponding part. Finally, we permute all k1 parts of (new) size⌈
n
k

⌉
and all k2 parts of (new) size

⌊
n
k

⌋
, for which there are

k1!k2!

possibilities, and re-order the parts so that those of size
⌈
n
k

⌉
come first, followed by

those of size
⌊
n
k

⌋
, yielding the new ordered k-equipartition π2.

However, we have overcounted the number of ways to generate π2: each possible

partition π2 was counted at least τ times, where τ is defined in (3.56). To see this,

suppose we have generated a partition π2. Note that the number of available slots

for exceptional vertices in the parts in T is at least s2 + s3 − t, since there were

initially s2 + s3 exceptional vertices in the parts in T , and at most t slots can be

‘lost’. So at least s2 + s3 − t vertices were moved to the available slots in T , and of

these, at most s3 were in one of the g overlap blocks. Therefore, there were at least

s2− t vertices which were permuted and then moved to the parts in T as singletons.

Denote the number of such singletons assigned to each of the parts in T by l1, l2,

..., lt, where
∑t

i=1 li > s2 − t. Then, since we do not care about the order of the

vertices within the parts, we counted π2 at least
∏t

i=1 li! times.

Note that li! = Γ(li + 1), where Γ(·) denotes the gamma function. By the Bohr–

Mollerup Theorem (see for example §13.1.10 in [36]), log Γ(·) is a convex function

on the positive reals, so from Jensen’s inequality,

log

(
t∏
i=1

li!

)
=

t∑
i=1

log(Γ(li + 1)) > t log

(
Γ

(
1

t

t∑
i=1

li + 1

))
,

and therefore
∏t

i=1 li! > Γ
(
s2−t
t

+ 1
)t

= Γ
(
s2
t

)t
. Hence, we may divide our result

by τ .

Lemma 3.19. If π2 ∈ P(s, t, g), then

f − d(π1, π2) > 0.53γs1 + (γ/2− 51) s2 + 0.23γs3.

Proof. Note that the number d(π1, π2) of shared forbidden edges is exactly the num-

ber of pairs of vertices which are in the same part in both π1 and π2, and f is the
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number of pairs of vertices which are in the same part of π1. Therefore, if we let

E =
{
{v, w} | v and w are in the same part of π1 but in different parts of π2

}
,

then f−d(π1, π2) = |E|. Each exceptional vertex v ∈ S contributes at least a certain

amount to |E| according to its type.

If v is in S1, then v is in a part of π1 which contains a large overlap block.

Therefore, there are at least 0.53γ vertices w /∈ S such that {v, w} ∈ E. Therefore,

the contribution from S1 to |E| is at least 0.53γs1.

Since the vertices in S2 are in overlap blocks of size at most 100, for each v ∈ S2,

there are at least
⌊
n
k

⌋
− 100 > γ − 102 vertices w such that {v, w} ∈ E. As

the vertices in S3 are exceptional and therefore in overlap blocks of size at most

0.53γ, for each v ∈ S3, there are at least
⌊
n
k

⌋
− 0.53γ > 0.46γ vertices w such

that {v, w} ∈ E. However, we have counted each such pair {v, w} twice, and must

therefore divide the total number by 2. So the contribution from S2 ∪ S3 to |E| is

at least (γ/2− 51) s2 + 0.23γs3.

By (F) from Section 3.3.1, b−γ ∼ k−2, so if π2 ∈ P(s, t, g), from Lemma 3.19,

b−(f−d(π1,π2)) 6 k−1.06s1−s2−0.46s3 exp (O (s)) 6 n−1.05s1k−s2−0.46s3 exp (O (s)) .

Together with Lemmas 3.17 and 3.18, this gives

∑
π2∈P(s,t,g)

b−(f−d(π1,π2))

6
ns1kt2s3tgas3

s1!g!
2k

(s1 + s2 + g)!

τ
k1!k2!n−1.05s1k−s2−0.46s3 exp (O (s))

= k1!k2!2kn−0.05s1tgas3
(s1 + s2 + g)!

s1!g!τ
kt−s2−0.46s3 exp (O (s))

= k1!k2!2kn−0.05s1tgas3
(s1 + s2 + g)!s2!

s1!s2!g!τ
kt−s2−0.46s3 exp (O (s)) .

Note that (s1+s2+g)!
s1!s2!g!

6 3s1+s2+g = exp (O (s)) and by (3.53), s2! 6 ss22 6 ts2as2 , so
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together with (3.54),∑
π2∈P(s,t,g)

b−(f−d(π1,π2)) 6k1!k2!2kn−0.05s1ts2+s3/100as2+s3
1

τ
kt−s2−0.46s3 exp (O (s))

6k1!k2!2kn−0.05s1ts2+s3/100as2+s3
1

τ
k−s2−0.46s3 exp (O (s)) ,

(3.57)

as kt 6 k(s2+s3)/(a−2) 6 exp(O(s2 + s3)) by (G) from Section 3.3.1. Let

T (s2, s3) = ts2+s3/100as2+s3
1

τ
k−s2−0.46s3 exp (C2(s2 + s3)) ,

where C2 > 0 is the constant implicit in the term O (s) above. We distinguish two

cases.

• Case 1: s3 > 100s2.

By (3.53), s3 6 s2+s3 6 at, so s2 6 0.01at. Since again by (3.53), s2+0.46s3 >

0.46(s2 + s3) > 0.46(a− 2)t, and t 6 k and τ > 1,

T (s2, s3) 6 t0.02ataatk−0.46(a−2)t exp(O(s2 + s3)) 6

(
k0.02a

k0.45

)at
exp(O(s2 + s3))

6 n−0.4at exp(O(s2 + s3)) 6 n−0.3(s2+s3)

if n is large enough.

• Case 2: s3 < 100s2.

Then by (3.53), t 6 101s2
a−2

6 51s2
logb n

, so s2
t
> logb n

51
. By the Stirling approximation

of the Gamma function,

τ > Γ (s2/t)
t >

( s2
t
− 1

e

)s2−t
> (log n)s2 exp(O(s2)).

Furthermore, t 6 s2+s3
a−2

6 s
a−2

6 2c′n
a−2

6 3c′k if n is large enough, and therefore

t
k
6 3c′ for n large enough. So since a 6 2 logb n = 2 log n/ log b,

T (s2, s3) 6

(
ta

k log n

)s2 (t0.01a

k0.46

)s3
exp(O(s2 + s3))

6

(
6c′

log b

)s2 (t0.01a

k0.46

)s3
exp(O(s2 + s3)) 6

(
1

2

)s2
n−0.3s3

for n large enough if c′ > 0 is picked small enough. Pick the constant c′ > 0

small enough for this.
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Therefore in both cases, from (3.57) if n is large enough,

∑
π2∈P(s,t,g)

b−(f−d(π1,π2)) 6 k1!k2!2kn−0.05s12−s2n−0.3s3 exp(O(s1))

6 k1!k2!2kn−0.04s12−s2n−0.3s3 .

If we sum over s1, s2 and s3 and recall that g 6 s3/100 and t 6 s2 + s3, by (3.55)

we get a bound for (3.52).

∑
r∈Rc′3

Qrb
d 6

k1!k2!2k

µk

∑
s1,s2,s3

(
0.01s3(s2 + s3)n−0.04s12−s2n−0.3s3

)
= O

(
k1!k2!

µk
· 2k
)
.

As k = O
(

n
logn

)
, and since by (K) from Section 3.3.1, µk

k1!k2!
> bεn/4, we can see that

this last expression is exponentially decreasing in n, and in particular it is o(1) as

required. This concludes the proof of Theorem 3.1.

3.6 Outlook

Recall that the chromatic number of random graphs is highly concentrated, and that

in particular for constant p, there is an interval of length roughly
√
n/ log n which

contains χ(G) whp. The proof of this concentration result gives no clue about the

location of this interval, however. While the new explicit bounds match up to the

o(1)-term in the denominator, the absolute gap between them which is implicit in

the proof is still at least n log logn
log3 n

, which is of course larger than
√
n/ log n.

Therefore, a more detailed result about the size of the o(1)-term would be in-

teresting. For p 6 1 − 1/e2, where the lower bound comes from the first moment

threshold for the number of partitions which induce proper colourings [50], this gap

is unavoidable as long as the upper bound is obtained through the study of partitions

which induce equitable colourings, since the first moment thresholds of colourings

and equitable colourings are separated by this distance.

Recall also that for small p = p(n) � n−1/2, the chromatic number of G(n, p)

is concentrated on two values whp [3], and this is generally the smallest possible

interval one can hope for. In contrast, the question of the concentration of the
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chromatic number of dense random graphs is wide open. Even the most basic non-

concentration results, such as showing that we do not in general have two-point

concentration, would be of interest (see also [8]).

In the next chapter, we will show that for the dense random graph G(n,m), the

equitable chromatic number is concentrated on one explicit value for a subsequence

of the integers.
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Chapter 4

Equitable colourings

4.1 Background and results

In the last chapter, we considered proper colourings of G ∼ G(n, p) with p constant

and determined the average colour class size in an optimal colouring up to a term of

order o(1). In many applications of proper graph colourings, it is desirable for the

colour classes to be as equal in size as possible. For example, consider a scheduling

problem where the vertices of a graph represent events and the edges signify pairs

of events that may not be scheduled at the same time. While the number of colours

in a proper colouring gives us the required number of time slots, the colour class

sizes tell us how many events take place at the same time. It often makes sense to

keep the number of parallel events as equal as possible in order to optimise the use

of available resources, such as the number of available rooms in a building.

This is exactly what is achieved by an equitable colouring of the vertices of a

graph G, i.e., a colouring where the colour class sizes differ by at most 1. Recall

from the introduction that the equitable chromatic number χ=(G) of a graph G

is the minimum number colours needed for an equitable colouring. The equitable

chromatic threshold χ∗=(G) is defined as the least number k such that for all l > k,

there is an equitable l-colouring of G. The Hajnal-Szemerédi Theorem states that

if ∆(G) is the maximum degree of a graph G, then

χ∗=(G) 6 ∆(G) + 1.

This was proved by Hajnal and Szemerédi in 1970 [28], confirming a conjecture by
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Erdős. Chen, Li and Wu [13] conjectured that in fact χ∗=(G) 6 ∆(G) for every

connected graph G which is not an odd cycle C2n+1, the complete graph Kn, or the

complete bipartite graph K2n+1,2n+1 with equal odd part sizes.

For random graphs, Krivelevich and Patkós [37] proved, amongst other things,

that for G ∼ G(n, p) with n−1/5+ε 6 p 6 0.99, whp

χ(G) 6 χ=(G) 6 (1 + o(1))χ(G),

and if p < 0.99 and log log n� log(np),

χ(G) 6 χ∗=(G) 6 (2 + o(1))χ(G).

They also conjecture that there is a constant C such that if C/n < p < 0.99,

χ∗=(G) 6 (1 + o(1))χ(G).

Rombach and Scott give more results in their forthcoming paper [51].

Despite the fact that we used equitable colourings to prove the upper bound

in Theorem 3.1, the proof itself does not imply the whp existence of an equitable

colouring of G ∼ G(n, p), p constant, with a near optimal number of colours. The

only direct implication of the proof is that by (3.9), for k as in (3.7), the probability

that there is an equitable k-colouring of G is at least exp
(
− n

log7 n

)
.

We proceeded with bounded differences arguments to boost this lower bound to

one that tends to 1 by adding only a few colours, but these arguments only apply

to general colourings, not equitable ones.

We can, however, use a different bounded differences argument to show that

there is an ‘almost equitable’ colouring with a near optimal number of colours.

Theorem 4.1. Let p ∈ (0, 1) be constant, and consider the random graph G ∼

G(n, p). Define b, γ and x0 as in Theorem 3.1. Then whp, G has a colouring with

n

γ − x0 + o(1)

colours such that the sizes of all but o
(
n
γ

)
colour classes differ by at most 1.
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We will prove Theorem 4.1 in Section 4.2. While Theorem 4.1 implies the ex-

istence of an almost equitable colouring, the main focus of this chapter will be on

completely equitable colourings.

Recall from the introduction that the question of the concentration of the chro-

matic number is an important open problem for dense random graphs – see for

example [8]. While the bounds from the last chapter narrow down the smallest

explicit interval known to contain the chromatic number whp, they do not improve

the current best concentration result, namely that the chromatic number is whp

contained in a (non-explicit) interval of size about
√
n/ log n.

We will adapt arguments from the proof of Theorem 3.1 to show that on a

subsequence of the integers, the equitable chromatic number of the dense random

graph G(n,m) is concentrated on one explicit value.

Theorem 4.2. Let 0 < p < 1− 1/e2 be constant. There exists a strictly increasing

sequence of integers (nj)j>1 and j0 > 1 such that

a) for all j > j0, j|nj,

b) letting b = 1
1−p and γj = 2 logb nj − 2 logb logb nj − 2 logb 2,

γj = j + o(1) as j →∞, and

c) letting G ∼ G(nj,mj) with mj =
⌊
p
(
nj
2

)⌋
, with high probability as j →∞,

χ= (G) =
nj
j
.

In other words, we can pick a subsequence (nj)j>1 of the integers so that whp

as j → ∞, the equitable chromatic number of G ∼ G(nj,mj) with mj =
⌊
p
(
nj
2

)⌋
is

exactly
nj
j

.

We will prove Theorem 4.2 in Sections 4.3–4.6. The proof relies on choosing the

subsequence (nj)j>1 in such a way that exactly as the expected number of equitable

colourings starts tending to infinity, all the colour classes have exactly the same size.

Working in G(n,m) instead of G(n, p), we can then show that the second moment
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of the number of equitable colourings is asymptotically equal to the square of the

first moment, which will imply the whp existence of an equitable colouring.

4.2 Proof of Theorem 4.1

The proof is similar to an argument due to Frieze, see Fact 1 in [40]. In (3.9), we

showed that for any fixed ε > 0 and

k =

⌈
n

γ − x0 − ε

⌉
,

if n is large enough, then the probability that G has an equitable k-colouring is at

least exp
(
− n

log7 n

)
. Since ε > 0 was arbitrary, we can also pick a sequence ε(n)→ 0

so that this remains true for k′ = k′(n, ε(n)).

Now let Y denote the maximum number of vertices which can be coloured using

at most k′ colours such that the colour classes are all of size exactly
⌈
n
k′

⌉
or
⌊
n
k′

⌋
.

Then

P (Y = n) > exp

(
− n

log7 n

)
. (4.1)

If we change all the edges of G incident with any particular vertex v, then Y changes

by at most 2 logb n: a given partial colouring remains valid if we remove the colour

class containing v (if v is in a colour class), which is of size at most
⌈
n
k′

⌉
6 2 logb n,

so Y cannot increase or decrease by more than 2 logb n. Therefore, the Bounded

Differences Inequality, Theorem 2.8, implies that for any t > 0,

P (|Y − EY | > t) 6 2 exp
(
−t2/(2n log2

b n)
)
. (4.2)

Hence, EY > n − n
log2.4 n

; otherwise (4.1) would be a contradiction to (4.2) with

t = n
log2.4 n

. But then again using (4.2), we get

P
(
Y < n− 2n

log2.4 n

)
6 P

(
|Y − EY | > n

log2.4 n

)
= o(1).

Therefore, whp there is a partial colouring with at most k′ colours where all colour

classes are of size exactly
⌈
n
k′

⌉
or
⌊
n
k′

⌋
, and where at most 2n

log2.4 n
= o

(
n

logn

)
= o

(
n
γ

)
vertices are left over. We can extend this to a complete colouring by creating an
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individual colour class for each leftover vertex, and denote by K the total number of

colour classes. Then this colouring is of the desired form, and as γ − x0 = Θ(log n),

K 6 k′ +
2n

log2.4 n
=

n

γ − x0 + o(1)
+O

(
n

log2.4 n

)
=

n

γ − x0 + o(1)
.

Furthermore, by Theorem 3.1, whp

K > χ(G) =
n

γ − x0 + o(1)
.

4.3 Outline of the proof of Theorem 4.2

From now on, fix p < 1− 1/e2. For n ∈ N, let m(n) =
⌊
p
(
n
2

)⌋
and G ∼ G(n,m(n)).

For u ∈ N, recall from the last chapter that an ordered partition of n vertices into

u parts is called an ordered u-equipartition if all u parts have size
⌈
n
u

⌉
or
⌊
n
u

⌋
and

decrease in size (so the parts of size
⌈
n
u

⌉
come first, followed by the parts of size⌊

n
u

⌋
). Denote by Xn,u the number of ordered u-equipartitions of G which induce

valid colourings.

We will start with a straightforward analysis of the first moment of Xn,u in

Section 4.4. Next, in Section 4.5, we will show that there is a strictly increasing

sequence (nj)j>1 which fulfils parts a) and b) of Theorem 4.2, and furthermore,

letting uj = nj/j,

E[Xnj ,uj ]→∞ as j →∞.

We will give a first moment argument to show that whp G has no equitable colouring

with fewer than uj colours, i.e., whp

χ= (G) > uj =
nj
j
.

The matching upper bound will be proved through the second moment method,

adapting the arguments from the proof of Theorem 3.1. More specifically, in Sec-

tion 4.6 we will show that

E[X2
nj ,uj

]/E[Xnj ,uj ]
2 → 1 as j →∞.
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Together with the Paley-Zygmund Inequality, Theorem 2.7, this implies that whp

Xnj ,uj > 0, so

χ= (G) 6 uj =
nj
j

whp as j →∞,

concluding the proof of Theorem 4.2.

Remark

The fact that by our choice of nj, all colour classes are of exactly the same size is

crucial for E[X2
nj ,uj

]/E[Xnj ,uj ]
2 → 1. Roughly speaking, in order for this ratio to

come out as 1, conditioning on the event E that one particular partition π1 induces

a colouring may not affect the expected number of other colourings very much, i.e.,

we must have E[X | E] ∼ E[X] where X denotes the number of partitions which

induce valid colourings. But if the part sizes are not exactly the same, then after

conditioning on E, we expect a lot of partitions which are very similar to π1 to

induce valid colourings as well. For example, suppose that u ∼ n
γ(n)

and about half

of all parts are of size
⌈
n
u

⌉
and the other half of size

⌊
n
u

⌋
. Select one of the roughly

n/2 vertices in the larger parts and move it to one of the roughly u/2 smaller parts.

The probability that this vertex is not adjacent to any of the vertices in the new

part is about qb
n
uc = qγ(n)+O(1) = Θ

(
log2 n
n2

)
. So conditional on E inducing a valid

colouring, we expect that roughly

Θ

(
nu

log2 n

n2

)
= Θ (log n)

other partitions which can be obtained from π1 by moving a single vertex from a

larger to a smaller part induce valid colourings as well. Of course there are many

more such partitions if we allow slightly larger variations. If E[X] tends to infinity

relatively slowly, as it is the case for our sequence (nj)j>1, then E[X | E] � E[X]

and E[X2]/E[X]2 9 1.
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4.4 The first moment

Given integers n and u, m = m(n) as before and G ∼ G(n,m(n)), we start by

analysing the first moment of Xn,u. As in Chapter 3, let

γ = γ(n) = 2 logb n− 2 logb logb n− 2 logb 2.

We will only examine the range

u =
n

γ +O(1)
.

Let q = 1 − p, N =
(
n
2

)
, and δ = δn,u = n

u
−
⌊
n
u

⌋
. If u does not divide n, then an

ordered u-equipartition of n vertices consists of uL = uL(n) = δn,uu larger parts of

size
⌈
n
u

⌉
, followed by uS = uS(n) = (1− δn,u)u smaller parts of size

⌊
n
u

⌋
. If u divides

n, then all u = uS(n) parts are of size exactly n
u

=
⌊
n
u

⌋
. As in (3.13), the total

number of u-equipartitions is

Pn,u =
n!⌈

n
u

⌉
!uL

⌊
n
u

⌋
!uS
, (4.3)

and as in (3.14),

Pn,u = un exp(o(n)). (4.4)

As in (3.15), denote by

f = fn,u = uL

(
dn/ue

2

)
+uS

(
bn/uc

2

)
=
n
(
n
u
− 1
)

2
+
δn,u(1− δn,u)

2
u ∼ n logb n (4.5)

the number of forbidden edges that may not be present in a u-equipartition for it to

induce a valid u-colouring. Let

ε = Np−m ∈ [0, 1].

Since f = fn,u ∼ n logb n and by Stirling’s formula n! ∼
√

2πnnn/en, the probability

that any such given partition induces a valid colouring of G is(
N−f
m

)(
N
m

) =
(N − f)!(qN + ε)!

N !(qN − f + ε)!
∼ (N − f)N−f (qN + ε)qN+ε

NN(qN − f + ε)qN−f+ε

= qf
(1− f

N
)N−f (1 + ε

qN
)qN+ε

(1− f
qN

+ ε
qN

)qN−f+ε
∼ qf

(1− f
N

)N−f (1 + ε
qN

)qN

(1− f
qN

+ ε
qN

)qN−f
.
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Using log(1 + x) = x− x2

2
+O(x3) for x→ 0 and that ε ∈ (0, 1) and f = Θ(n log n),

log

(
N−f
m

)(
N
m

) = f log q − f 2p

2qN
+O

(
f 3

N2

)
.

Since f3

N2 = o(1),

µn,u :=E[Xn,u] = Pn,u

(
N−fn,u

m

)(
N
m

) ∼ Pn,uq
fn,u exp

(
−
f 2
n,up

2qN

)
. (4.6)

The expected number of unordered equitable partitions which induce valid colourings

is

µ̄n,u =
µn,u
uL!uS!

∼ Pn,uq
fn,u

uL!uS!
exp

(
−
f 2
n,up

2qN

)
. (4.7)

The next lemma gives an approximation of µ̄n,u when u is not too close to n/γ.

Lemma 4.3. Given n and u and x = O(1) such that

u =
n

γ + x
,

then

µ̄n,u = b−
x
2
n+o(n).

Proof. As in the proof of (K) in Section 3.3.1, since 1 6
(
u
uS

)
6 2u and u ∼ n

2 logb n
,

we can show that

uS!uL! = u! exp(o(n)) = bn/2 exp (o(n)) . (4.8)

Furthermore, by (4.5),

qfn,u = b−
n(nu−1)

2 exp (o(n)) = b
n
2

(1−γ−x) = bn
1−x

2

(
2 logb n

n

)n
. (4.9)

Finally, note that

exp

(
−
f 2
n,up

2qN

)
= exp

(
O
(
log2 n

))
= exp (o(n)) .

Together with (4.4), (4.7), (4.8), and (4.9), this gives

µ̄n,u =
unbn

1−x
2

bn/2

(
2 logb n

n

)n
exp (o(n)) = b−

x
2
n(1 + o(1))n exp (o(n)) = b−

x
2
n+o(n).
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Later on, in Lemma 4.7, we will pick a sequence (nj)j>1 such that µ̄nj ,uj starts

tending to infinity just as all parts of a uj-equipartition are of size exactly j. For

this, we will need the following lemmas which examine how much µn,u and µ̄n,u

change if we increase u by 1.

It should be noted that µ̄n,u behaves in a slightly irregular way: while µn,u

increases steadily if we increase u, as can be seen in Lemma 4.4, the increases in

µ̄n,u are not as large as one might expect if n/u is close to an integer. This is because

the product uL!uS! is larger when n/u is close to an integer (i.e., if either uL or uS

is close to u) than when n/u is sufficiently far away from any integers. However, in

Lemma 4.5 we will show that even in the ‘worst case scenario’, µ̄n,u still increases

by a sufficient amount.

Lemma 4.4. Given n and u such that u = n
γ+O(1)

,

µn,u+1

µn,u
& b

n2

2u(u+1)
− n

2u .

Proof. First note that

Pn,u+1 > Pn,u. (4.10)

To see that this is true, note that the product
⌈
n
u

⌉
!uL
⌊
n
u

⌋
!uS contains exactly n

factors, and increasing u by 1 can only decrease those n factors.

Now let

x =
n

u
− n

u+ 1
=

n

u(u+ 1)
.

If
⌊
n
u

⌋
=
⌊

n
u+1

⌋
, then δn,u+1 = δn,u − x. Otherwise,

⌊
n
u

⌋
=
⌊

n
u+1

⌋
+ 1 and δn,u + (1−

δn,u+1) = x. In both cases,

|δn,u+1(1− δn,u+1)− δn,u(1− δn,u)| 6 x.

Therefore, by (4.5),

fn,u − fn,u+1 >
n2

2u(u+ 1)
− x

2
(u+ 1) =

n2

2u(u+ 1)
− n

2u
. (4.11)

Furthermore,

|fn,u − fn,u+1| =
n2

2u(u+ 1)
+O

(n
u

)
= O

(
log2 n

)
,
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so as fn,u ∼ n logb n,

exp

(
−
f 2
n,u+1p

2qN
+
f 2
n,up

2qN

)
= exp (o(1)) ∼ 1.

Together with (4.6), (4.10), and (4.11), this completes the proof.

Lemma 4.5. Given n and u such that u = n
γ+O(1)

,

µ̄n,u+1

µ̄n,u
> exp (Θ (log n log log n)) .

Proof. Let u′L = δn,u+1(u+ 1) and u′S = (1− δn,u+1)(u+ 1), then

u′L + u′S = u+ 1 = uL + uS + 1.

If uL >
⌊
n
u

⌋
, then given a u-equipartition of n vertices, we can form a (u + 1)-

equipartition by removing one vertex from
⌊
n
u

⌋
parts of size

⌈
n
u

⌉
and forming a

new part of size
⌊
n
u

⌋
from the removed vertices. In this case, u′L = uL −

⌊
n
u

⌋
and

u′S = uS +
⌊
n
u

⌋
+ 1, and so

u′L!u′S!

uL!uS!
=

∏bnuc+1

t=1 (uS + t)∏bnuc−1

t=0 (uL − t)
6

(u+ 1)b
n
uc+1⌊

n
u

⌋
!

. (4.12)

Otherwise, if uL 6
⌊
n
u

⌋
, then starting with a u-equipartition, we can form a (u+ 1)-

equipartition by removing one vertex from each of the uL parts of size
⌈
n
u

⌉
and from⌊

n
u

⌋
− uL parts of size

⌊
n
u

⌋
, and forming a new part of size

⌊
n
u

⌋
from the removed

vertices. In this case, u′S =
⌊
n
u

⌋
− uL and u′L = u + 1−

⌊
n
u

⌋
+ uL. Note that for all

integers 1 6 x1 6 x2 6 x3 6 x4 with x1 + x4 = x2 + x3, we have x1!x4! > x2!x3!.

Therefore, if u′S > uL, then

u′L!u′S! 6 u′S! (u− u′S)!(u+ 1) 6 uL!uS!(u+ 1). (4.13)

Otherwise, if u′S =
⌊
n
u

⌋
− uL < uL 6

⌊
n
u

⌋
, then

u′L!u′S!

uL!uS!
=
u′L!/uS!

uL!/u′S!
6

(u+ 1)u
′
L−uS

(uL − u′S)!
=

(u+ 1)1+uL−u′S

(uL − u′S)!
6

(u+ 1)b
n
uc+1⌊

n
u

⌋
!

.
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Comparing this to (4.12) and (4.13), we can see that in every case,

u′L!u′S!

uL!uS!
6

(u+ 1)b
n
uc+1⌊

n
u

⌋
!

6
eb

n
uc(u+ 1)b

n
uc+1⌊

n
u

⌋bnuc 6

(
e(u+ 1)
n
u
− 1

)bnuc
(u+ 1)

6

(
e(u+ 1)u

n− u

)n/u
(u+ 1).

Together with Lemma 4.4, and since n
u

= γ +O(1) = Θ(log n), this gives

µ̄n,u+1

µ̄n,u
& b

n2

2u(u+1)
− n

2u

(
n− u

(u+ 1)u

)n/u
nO(1) = b

γn
2(u+1)

( n
u2

)γ
nO(1)

=

(
n

2 logb n

) n
u+1 ( n

u2

)γ
nO(1) =

(
n2

u2 logb n

)γ
nO(1) = (Θ (log n))γ nO(1)

= exp (Θ (log n log log n)) .

We will also need the following lemma which examines how much µn,u increases

if n is increased by 1.

Lemma 4.6. Given n and u such that u = n
γ+O(1)

,

µn+1,u

µn,u
= Θ

(
log n

n

)
.

Proof. Given a u-equipartition of n vertices, adding a vertex to a part of size
⌊
n
u

⌋
yields a u-equipartition of n+ 1 vertices, so

fn+1,u = fn,u +
⌊n
u

⌋
. (4.14)

Therefore, since
⌊
n
u

⌋
= γ(n) +O(1),

qfn+1,u−fn,u = Θ(1)

(
2 logb n

n

)2

. (4.15)

Furthermore, as fn,u = O(n log n) and from (4.14),

−
f 2
n+1,up

2qN
+
f 2
n,up

2qN
= O

(
log2 n

n

)
= o(1). (4.16)

Finally, note that by (4.3),

Pn+1,u

Pn,u
∼ n

2 logb n
,

since the factorial is multiplied by n+ 1 ∼ n and the product in the denominator is

multiplied by exactly one factor
⌊
n
u

⌋
+ 1 ∼ γ ∼ 2 logb n if n is increased to n+ 1.

Together with (4.6), (4.15) and (4.16), this completes the proof.
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4.5 Choice of the subsequence

In the next proposition, we choose an appropriate subsequence of the integers for

Theorem 4.2.

Proposition 4.7. There is a constant j0 ∈ N and a strictly increasing sequence

(nj)j>1 such that for all j > j0,

a) uj :=
nj
j
∈ Z.

b) γj = j + o(1) as j →∞, where γj = 2 logb nj − 2 logb logb nj − 2 logb 2.

c) µ̄nj ,uj →∞ as j →∞.

d) Let G ∼ G(nj,mj) with mj =
⌊
p
(
nj
2

)⌋
, then whp as j → ∞, for all u 6 uj − 1,

G has no equitable u-colouring.

Proof. It suffices to show that there is a strictly increasing sequence (nj)j>j0 which

fulfils a)–d) for some large enough j0: given such a sequence, by b) nj grows ex-

ponentially in j, so without loss of generality we can assume that nj0 > j0 and let

nj = j for 1 6 j < j0.

From Lemma 4.3, we can make the following two easy observations.

Observation 1. Given integers n and u such that
∣∣n
u
− γ(n)

∣∣ 6 10, if µ̄n,u > 1,

then

u >
n

γ(n) + on(1)
.

Observation 2. Given integers n and u such that
∣∣n
u
− γ(n)

∣∣ 6 10, if µ̄n,u 6 n,

then

u 6
n

γ(n) + on(1)
.

Now for large enough j ∈ N, let nj be the smallest multiple of j such that, letting

uj = nj/j,

(1) γ(nj) ∈ [j − 10, j + 10]

(2) µ̄nj ,uj > log j.
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Claim 1. If j is large enough, then nj is well-defined.

Proof. Fix j and consider the sequence (gt)t>j with gt = γ(tj). If j is large enough

and t > j, then

0 < gt+1 − gt 6 3 (logb ((t+ 1)j)− logb (tj)) = 3 logb

(
1 +

1

t

)
<

1

10
. (4.17)

Furthermore, if j is large enough, then gj 6 j and gt →∞ as t→∞. Therefore, if

j is large enough, there is an integer t0 > j such that

gt0 ∈ [j + 0.1, j + 0.2] .

By Lemma 4.3, letting n′ = t0j,

µ̄n′,t0 > b(0.05+o(1))n′ > log n′ > log j.

Therefore, n′ is a multiple of j such that the two conditions (1) and (2) from the

definition of nj are fulfilled, so nj is well-defined.

The definition of nj immediately implies a) and c). We now show that b) holds.

Claim 2. As j →∞, γj = j + o(1).

Proof. By definition,

µ̄nj ,uj > log j > 1,

so Observation 1 gives

uj =
nj
j

>
nj

γ(nj) + o(1)
.

In particular, j 6 γ(nj) + o(1) = γj + o(1) 6 2 logb nj for j large enough (note that

nj > j by definition). By (4.17), for j large enough,

γ(nj) > γ(nj − j) > γ(nj)−
1

10
> j − 1

20
,

so in particular

γ(nj − j) ∈ [j − 10, j + 10]. (4.18)
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By the minimality of nj in its definition, we must therefore have

µ̄nj−j,uj−1 < log j 6 log
(
2 logb nj

)
6 nj − j. (4.19)

By Observation 2,

uj − 1 =
nj − j
j

6
nj − j

γ(nj − j) + o(1)
,

so j > γ(nj − j) + o(1). By (4.17),

γ(nj − j) = γ(nj) +O

(
log

(
1 +

1

(nj − j)/j

))
= γ(nj) + o(1).

Therefore, γ(nj) 6 j + o(1).

Since γ(n) is strictly increasing for large enough n, it follows that nj is strictly

increasing if j is large enough. It only remains to show d).

Claim 3. If j is large enough, then

µ̄nj ,uj−1 6
1

j
.

Proof. By (4.19),

µ̄nj−j,uj−1 =
µnj−j,uj−1

(uj − 1)!
< log j. (4.20)

Note that by Lemma 4.6,

µnj ,uj−1

µnj−j,uj−1

6

(
Θ

(
log nj
nj

))j
. (4.21)

Since uj =
nj
j

, an equitable partition of nj vertices into uj − 1 parts consists of

exactly j larger parts of size j + 1 and uj − 1− j smaller parts of size j. Hence,

µ̄nj ,uj−1 =
µnj ,uj−1

j!(uj − 1− j)!
.

Together with (4.20) and (4.21) and the facts that j! > jj/ej, j = Θ(log nj) and

uj = Θ (nj/ log nj), this gives

µ̄nj ,uj−1 6 log j

(
Θ

(
log nj
nj

))j
(uj − 1)!

j!(uj − 1− j)!
6 log j

(
Θ

(
log nj
nj

))j
(uj − 1)j

j!

6 log j

(
Θ

(
uj log nj
jnj

))j
= log j (Θ (1/j))j < 1/j

if j is large enough.
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To show d), note that whp, χ(G) = n
γ(n)+o(1)

for G ∼ G(n,m(n)), as it is for

G ∼ G(n, p) with p < 1−1/e2 by Theorem 3.1. This follows from Theorem 2.1 since

for p′ = p+O(1/n), γp′(n) = γp(n) + o(1); and because the properties of having and

of not having a colouring with a certain given number of colours is monotone.

So whp G ∼ G(nj,mj) has no general colouring and therefore no equitable

colouring with less than
nj

γj+o(1)
colours. It only remains to prove that whp G has no

equitable colouring with at least
nj

γj+o(1)
colours (where the o(1)-term is an arbitrary

function that tends to 0) but at most uj − 1 colours (of course uj − 1 is of the form

nj
γj+o(1)

as well). By Lemma 4.5 and Claim 3, the expected number of (unordered)

partitions which induce such a colouring is

∑
n

γj+o(1)
6u6uj−1

µ̄nj ,u = O
(
µ̄nj ,uj−1

)
= O (1/j) = o(1),

so whp no equitable colouring with at most uj − 1 colours exists.

4.6 The second moment

For the proof of Theorem 4.2, it remains to show that for the sequence (nj)j>1 from

Proposition 4.7,

E[X2
nj ,uj

]/E[Xnj ,uj ]
2 → 1 as j →∞.

We always have E[X2
nj ,uj

] > E[Xnj ,uj ]
2 (this is true for any random variable), so it

suffices to prove that

E[X2
nj ,uj

]/E[Xnj ,uj ]
2 6 1 + o(1) as j →∞. (4.22)

The second moment calculations are similar to those in the proof of Theorem 3.1.

Let j > j0, Nj =
(
nj
2

)
, mj = bpNjc and fj = fnj ,uj as in (4.5) and Pj = Pnj ,uj

as in (4.3), and G ∼ G(nj,mj). To simplify notation, for the rest of this section we

will omit the indices of nj, mj, uj and so on when the context is clear.

Note that since j = n
u

is an integer,

P =
n!

j!u
and f =

n(j − 1)

2
. (4.23)
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As in the last chapter in (3.12),

E[X2
n,u] =

∑
π1,π2 ordered u-equipartitions

P (both π1 and π2 induce proper colourings) .

We again quantify how similar two partitions π1 and π2 are to each other by con-

sidering their overlap sequence r = r(π1, π2) = (ri)
j
i=2. As before, denote by ri the

number of pairs of parts which intersect in exactly i vertices, and call an intersection

of size at least 2 between two parts an overlap block.

Again let Pr denote the number of ordered pairs π1, π2 with overlap sequence r,

and

v = v(r) =

j∑
i=2

iri

ρ = v/n

d = d(r) =

j∑
i=2

ri

(
i

2

)
. (4.24)

Two given ordered u-equipartitions π1 and π2 with overlap sequence r both induce

valid colourings at the same time if and only if exactly 2f − d(r) given forbidden

edges are not present in G, so by (4.6),

E[X2
n,u] =

∑
r

Pr ·
(
N−2f+d(r)

m

)(
N
m

) = µ2
n,u

∑
r

Pr

P 2
·
(
N−2f+d

m

)(
N
m

)(
N−f
m

)2 .

Let

Qr =
Pr

P 2

Sr =

(
N−2f+d(r)

m

)(
N
m

)(
N−f
m

)2 , (4.25)

then to prove (4.22), we need to show that as j →∞,∑
r

QrSr 6 1 + o(1). (4.26)

In Section 4.6.1, we will determine the asymptotic value of Sr. In Section 4.6.2, we

will show that the contribution to the sum (4.26) from the typical overlap range is

at most 1 + o(1), similarly to how this was done in Section 3.5.2 of the last chapter.

In Sections 4.6.3 and 4.6.4, we will discuss how the remaining cases follow directly

from simplifications of the arguments in Sections 3.5.3 and 3.5.4. The contribution

from these cases to the sum (4.26) is o(1), concluding the proof of Theorem 4.2.
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4.6.1 Asymptotics of Sr

Consider an overlap sequence r. Again letting ε = Np−m ∈ [0, 1], and d = d(r),

Sr =
(N − 2f + d)!N ! (N −m− f)!2

(N − f)!2 (N −m)! (N −m− 2f + d)!

=
(N − 2f + d)!N ! (qN + ε− f)!2

(N − f)!2 (qN + ε)! (qN + ε− 2f + d)!
.

Since d 6 f = O(n log n) = o(N), applying Stirling’s formula n! ∼
√

2πnnn/en

gives

Sr ∼
(N − 2f + d)N−2f+dNN (qN + ε− f)2qN+2ε−2f

(N − f)2N−2f (qN + ε)qN+ε (qN + ε− 2f + d)qN+ε−2f+d

= q−d ·

(
1− 2f−d

N

)N−2f+d
(

1− f−ε
qN

)2qN+2ε−2f

(
1− f

N

)2N−2f
(1 + ε

qN
)qN+ε

(
1− 2f−d−ε

qN

)qN+ε−2f+d

∼ bd ·

(
1− 2f−d

N

)N−2f+d
(

1− f−ε
qN

)2qN−2f

(
1− f

N

)2N−2f
(1 + ε

qN
)qN
(

1− 2f−d−ε
qN

)qN−2f+d
.

Using log(1 + x) = x− x2

2
+O(x3) for x→ 0, and as d 6 f = O(n log n), we get

logSr = d log b+
d2

2N
+
f 2

N
− d2

2qN
− f 2

qN
− 2df

N
+

2df

qN
+O

(
f 3

N2

)
= d log b+

−p(d2 + 2f 2 − 4df)

2qN
+ o(1).

Therefore,

Sr ∼ bd exp

(
−p(d

2 + 2f 2 − 4df)

2qN

)
, (4.27)

where d = d(r) is given in (4.24).

4.6.2 The typical overlap case

Let

c =
1

2

(
1− log b

2

)
, (4.28)

then c ∈ (0, 1) since p < 1− 1/e2. Similarly as in the proof of Theorem 3.1, let

R1 = {r | ρ = ρ(r) 6 c} .
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In this section we will show how to amend the arguments from Section 3.5.2 to prove

that ∑
r∈R1

QrSr 6 1 + o(1). (4.29)

We can proceed analogously to Section 3.5.2 to bound Qr as in (3.26). However,

we make one refinement to our argument: in (3.24), we simply bounded

exp

(
−
∑u

x=1 sx(sx − 1)
∑u

y=1 ty(ty − 1)

2(n− v)2
+O

(
log4 n

n

))
. 1.

Instead, as
∑u

x=1 sx = n− v, applying Jensen’s inequality with the convex function

x(x− 1) gives

u∑
x=1

sx(sx − 1) > u ·
(
n− v
u

)(
n− v
u
− 1

)
= (n− v)

(
n− v
u
− 1

)
,

and the corresponding inequality of course also holds for
∑u

y=1 ty(ty−1). This yields

the following refined version of (3.26), noting that n/u = j:

Qr . exp

(
−1

2

(
n− v
u
− 1

)2
)

j∏
i=2

(
1

ri!

(
eρiu2j!2

nii! (j − i)!2

)ri)
.

Recall that d =
∑j

i=2

(
i
2

)
ri. Together with (4.27), this gives

QrSr . exp

(
−1

2

(
n− v
u
− 1

)2

− p(d2 + 2f 2 − 4df)

2qN

)

·
j∏
i=2

(
1

ri!

(
eρib(

i
2)u2j!2

nii! (j − i)!2

)ri)
.

Letting

T̃i :=
eρib(

i
2)u2j!2

nii! (j − i)!2
,

we have

QrSr . exp

(
−1

2

(
n− v
u
− 1

)2

− p(d2 + 2f 2 − 4df)

2qN

)
j∏
i=2

T̃ rii
ri!
. (4.30)

Recalling that p < 1− 1/e2 and therefore log b < 2, let

c̃ = min

(
1

2

(
1

log b
− 1

2

)
,
1

2

)
∈ (0, 1).
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Lemma 4.8. If j (and thereby n = nj) is large enough and ρ ∈ R1, then for all

3 6 i 6 j,

T̃i 6 n−c̃.

Proof. The proof is similar to the proof of Lemma 3.10. We assume throughout that

j (and n = nj) is large enough for all bounds to hold. We first need to check that

the assertion holds for i = 3 and i = j. For this, note that

T̃3 6
e3b3u2j6

n33!
= n−1+o(1) 6 n−c̃. (4.31)

Since j = γj + o(1) = 2 logb n− 2 logb logb n− 2 logb 2 + o(1),

b(
j
2) =

(
n

2 logb n

)j−1

no(1),

so with Stirling’s formula and as u = n/j = n1+o(1) and j ∼ 2 logb n,

T̃j =
eρjb(

j
2)u2j!

nj
= no(1) eρjnjj

(2 logb n)j−1 ej
= n1+o(1)e−j+ρj.

As ej = n
2

log b
+o(1), and ρ 6 c = 1

2

(
1− log b

2

)
since r ∈ R1,

T̃j 6 n1−(1−ρ) 2
log b

+o(1) = n
1
2
− 1

log b
+o(1) 6 n−c̃. (4.32)

Now as in (3.28),

T̃i+1

T̃i
=
eρbi(j − i)2

n(i+ 1)
.

In particular, for all i 6 0.8 logb n,

T̃i+1

T̃i
6 n−0.2+o(1) 6 1,

so by (4.31), for all 3 6 i 6 0.8 logb n,

T̃i 6 T̃3 6 n−c̃.

Furthermore, for i > 1.2 logb n,

T̃i+1

T̃i
> n0.2+o(1) > 1,
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so by (4.32), for all 1.2 logb n 6 i 6 j,

T̃i 6 T̃j 6 n−c̃.

For the remaining case 0.8 logb < i < 1.2 logb n, note that as j 6 2 logb n,

T̃i 6
eib

i2

2 n2j2i

ni
6 nO(1)n

0.6ij2i

ni
6 nO(1)−0.3i = n−Θ(logn) 6 n−c̃.

Let

R3 =

j∑
i=3

ri,

then by Lemma 4.8, (4.30) and the definition (4.23) of f ,

QrSr . exp

(
−1

2

(
n− v
u
− 1

)2

− p(d2 + 2f 2 − 4df)

2qN

)
T̃ r22

r2!
n−c̃R3

6 exp

(
−1

2

(
n− v
u
− 1

)2

− p(f 2 − 2df)

qN

)
T̃ r22

r2!
n−c̃R3

∼ exp

(
−1

2

(
n− v
u
− 1

)2

− 2pf 2

qn2
+

4pdf

qn2

)
T̃ r22

r2!
n−c̃R3

∼ exp

(
−1

2

(
n− v
u
− 1

)2

− p(j − 1)2

2q
+

2pd(j − 1)

qn

)
T̃ r22

r2!
n−c̃R3 . (4.33)

We are almost ready to sum (4.33) over r ∈ R1, but first we need to make a simple

observation and then handle the cases where either v or d are large.

Lemma 4.9. Given R3, there are at most (2e logb n)R3 ways to select r3, . . . , rj such

that
∑j

i=3 ri = R3.

Proof. Since j 6 2 logb n, there are at most(
R3 + j − 3

R3

)
6

(
e (R3 + j − 3)

R3

)R3

6 (e (1 + j − 3))R3 6 (2e logb n)R3

ways to write R3 as an ordered sum of j − 2 nonnegative summands.

Lemma 4.10. Let Rex
1 be the set of all r ∈ R1 with v = v(r) > n

log3 n
or d = d(r) >

n
log3 n

, then ∑
r∈Rex

1

QrSr = o(1).
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Proof. Again we assume throughout that j is large enough for all estimates to be

valid. Let r ∈ Rex
1 . We first note that as d 6 f = O(n log n), j = Θ(log n) and

u = Θ(n/ log n),

exp

(
−1

2

(
n− v
u
− 1

)2

− p(j − 1)2

2q
+

2pd(j − 1)

qn

)
= exp

(
O(log2 n)

)
, (4.34)

and

T̃2 6
e2b(

2
2)u2j4

n22!
= Θ(log2 n). (4.35)

Since v =
∑j

i=2 iri 6 2r2 + 2R3 logb n and d =
∑j

i=2

(
i
2

)
ri 6 r2 + 2R3 log2

b n, if

r ∈ Rex
1 , then either r2 > n/ log6 n or R3 > n/ log6 n.

Case 1: r2 > n/ log6 n.

Then from (4.33), (4.34), and (4.35), and as r2! > r2
r2/er2 ,

QrSr . exp
(
O(log2 n)

) (Θ (log2 n
))r2

r2!
n−c̃R3

6 exp
(
O(log2 n)

)(Θ
(
log2 n

)
r2

)r2

n−c̃R3

. exp
(
O(log2 n)

)( log9 n

n

)r2
n−c̃R3 .

With Lemma 4.9, summing over r2 and R3 gives

∑
r∈Rex

1

r2>n/ log6 n

QrSr 6 exp
(
O(log2 n)

) ∑
r2>n/ log6 n, R3

((
log9 n

n

)r2 (
2e logb n

nc̃

)R3
)

= o(1). (4.36)

Case 2: R3 > n/ log6 n.

By Lemma 4.9, (4.34), and (4.35),

∑
r∈Rex

1

R3>n/ log6 n

QrSr 6 exp
(
O(log2 n)

) ∑
r2, R3>n/ log6 n

(
T̃ r22

r2!

(
2e logb n

nc̃

)R3
)

= exp
(
O(log2 n)

)(2e logb n

nc̃

) n
log6 n ∑

t>0

(
2e logb n

nc̃

)t
= o(1).

(4.37)
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The claim now follows from (4.36) and (4.37).

We will now sum (4.33) for all r ∈ R1 \ Rex
1 . If v < n

log3 n
and d < n

log3 n
, then

exp

(
−1

2

(
n− v
u
− 1

)2

− p(j − 1)2

2q
+

2pd(j − 1)

qn

)

∼ exp

(
−1

2

(n
u
− 1
)2

− p(j − 1)2

2q

)
= exp

(
−(j − 1)2

(
1

2
+

p

2q

))
= exp

(
− b

2
(j − 1)2

)
. (4.38)

Furthermore, note that

T̃2 =
e2ρb(

2
2)u2j!2

n22! (j − 2)!2
=
e2ρbu2j2(j − 1)2

2n2
= e2ρ b

2
(j − 1)2.

For all r ∈ R1 \ Rex
1 , ρ = v/n < 1

log3 n
, so

T̃2 6 e
2

log3 n
b

2
(j − 1)2 =: T.

Therefore, from (4.33) and together with (4.38) and Lemma 4.9,

∑
r∈R1\Rex

1

QrSr . exp

(
− b

2
(j − 1)2

) ∑
r2,R3>0

T r2

r2!

(
2en−c̃ logb n

)R3

∼ exp

(
− b

2
(j − 1)2

)∑
r2>0

T r2

r2!
= exp

(
− b

2
(j − 1)2 + T

)
= exp

(
− b

2
(j − 1)2

(
1− e

2
log3 n

))
= exp

(
− b

2
(j − 1)2O

(
log−3 n

))
= exp

(
−O

(
log2 n

)
O
(
log−3 n

))
= exp(o(1)) = 1 + o(1).

Together with Lemma 4.10, this gives (4.29).

4.6.3 The intermediate overlap case

The case where two partitions have an intermediate degree of overlap cases follows

directly from a simplification of the arguments in Section 3.5.3.

Given c from (4.28) and an arbitrary constant c′ ∈ (0, 1 − c), define Rc′
2 as in

(3.34). Note that by (4.27), for all r,

QrSr = Qrb
d(r) exp

(
O(log2 n)

)
6 Qrb

d(r) exp (o(n)) .
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Therefore, we can proceed as in Section 3.5.3 to bound the contribution from Rc′
2

to the sum (4.26). As from (3.41), Lemma 3.14 and (3.45), we can show that

∑
r∈Rc′2

QrSr 6 o(1) +
∑

cn6v6(1−c′)n; v16v; d1,d26f

bn(1−ρ) logb(1−ρ)+
v1
2
−∆v

2 exp(o(n))

= o(1) +
∑

cn6v6(1−c′)n; v16v

bn(1−ρ) logb(1−ρ)+
v1
2
−∆v

2 exp(o(n)),

where we took the sum over v, the number of vertices in overlap blocks between two

given partitions, and v2, the number of such vertices in parts of size larger than j in

the first partition. However, in our case there are no such parts since all parts have

exactly the same size j, and furthermore ∆ = γ − bγc = o(1). Therefore, this can

be sharpened to

∑
r∈Rc′2

QrSr 6 o(1) +
∑

cn6v6(1−c′)n

bn(1−ρ) logb(1−ρ) exp(o(n)) 6 o(1) + nbtn,

where t = min ((1− c) log(1− c), c′ log c′) < 0 for any constant 0 < c′ < 1 − c.

Therefore,

∑
r∈Rc′2

QrSr = o(1).

4.6.4 The high overlap case

Fix an arbitrary ordered u-equipartition π1 and a constant c′ ∈ (0, 1− c) which will

be determined later. As in the last chapter, for an overlap sequence r, we denote by

P ′r the number of ordered k-equipartitions with overlap r with π1. Define Rc′
3 and

P3 as in (3.50) and (3.51).

By the definition (4.25) of Qr, the asymptotics (4.27) of Sr and (4.6) of the first
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moment µn,u, and since d = d(r) 6 f for all r, we have

∑
r∈Rc′3

QrSr ∼
∑
r∈Rc′3

(
P ′r
P
bd(r) exp

(
−p(d(r)2 + 2f 2 − 4d(r)f)

2qN

))

∼ 1

µn,u

∑
r∈Rc′3

P ′rb
d−f exp

(
−p(d

2 + 3f 2 − 4df)

2qN

)

=
1

µn,u

∑
r∈Rc′3

P ′rb
d−f exp

(
−p(f − d)(3f − d)

2qN

)

6
1

µn,u

∑
r∈Rc′3

P ′rb
d−f =

1

µn,u

∑
π2∈P3

b−(f−d(π1,π2))),

where d(π1, π2) := d(r) if r is the overlap sequence of π1 and π2.

Comparing this to (3.52), we see that we can proceed as in Section 3.5.4 to

bound the contribution to the sum (4.26) from Rc′
3 . Recall that we could choose the

constant c′ in such a way that this contribution is bounded by

O

(
k1!k2!

µk
2k
)
,

where k was the number of parts, k1, k2 were the numbers of parts of size
⌈
n
k

⌉
and⌊

n
k

⌋
, respectively, and µk denoted the expected number of ordered k-equipartitions

which induce valid colourings. The factor 2k came from varying part sizes: in the

proof of Lemma 3.18, we bounded the number of ways in which the part sizes

may change between
⌊
n
k

⌋
and

⌈
n
k

⌉
by 2k. Since we picked k large enough so that

µk/(k1!k2!) grows exponentially in n, the overall product is still o(1).

In our case, all parts have exactly the same size j, so there is no need to account

for varying part sizes. Therefore, the arguments from Section 3.5.4 give

∑
r∈Rc′3

QrSr = O

(
u!

µn,u

)
= O

(
1

µ̄n,u

)
.

This expression is o(1) as soon as µ̄n,u →∞, which is indeed the case by our choice

of (nj)j>1 — see c) of Proposition 4.7. This completes the proof of Theorem 4.2.
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Chapter 5

The hitting time of rainbow
connection number two

5.1 Background and results

The rainbow connection number was introduced in 2008 by Chartrand, Johns,

McKeon and Zhang [12] as a way of quantifying the connectivity of a graph. Given

an edge-coloured connected graph G, we call a path a rainbow path if all of its edges

have distinct colours, and we call the colouring a rainbow colouring if every pair of

vertices is joined by at least one rainbow path. The least number of colours where

this is possible is called the rainbow connection number (or rainbow connectivity)

rc(G) of the graph G. Rainbow connectivity has received considerable attention

since its introduction, being both of theoretical interest and highly applicable (see

for example the survey [38]).

Generally speaking, a low rainbow connection number indicates that a graph is

well connected. At the extreme end, the complete graph Kn has rainbow connection

number 1, while any tree on n vertices has rainbow connection number n− 1. It is

easy to show that for any connected graph G on n vertices that is neither complete

nor a tree,

1 < rc(G) < n− 1.

A trivial lower bound for the rainbow connection number of any graph is its diameter,

as pointed out in [12]: in a rainbow colouring with r colours, every pair of vertices

is joined by a path of length at most r. Kamčev, Krivelevich and Sudakov [34] also
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gave an upper bound for the rainbow connection number in terms of the diameters

of pairs of spanning subgraphs.

In general, the rainbow connection number and the diameter of a graph can

be far apart from each other — for instance, the complete bipartite graph K1,n−1

has diameter 2 but rainbow connection number n− 1. In random graphs, however,

the rainbow connection number often does not stray far from the diameter. For

example, Frieze and Tsourakakis [25] showed that for the random graph G(n, p) near

the connectivity threshold, whp the rainbow connection number is asymptotically

equal to the maximum of the diameter and the number of degree one vertices.

Dudek, Frieze and Tsourakakis [19] proved that the rainbow connection number of

the random r-regular graph with r > 4 fixed is of the same order as its diameter.

In this and the next chapter, we will study the occurrence of rainbow connection

number r in random graphs where r is constant, particularly threshold functions.

Recall the definitions of different types of thresholds from Section 2.3.2, especially

the non-standard notion of a semi-sharp threshold.

We are interested in the graph property

Rr = {G : rc(G) 6 r} (5.1)

of having rainbow connection number at most r. Caro, Lev, Roditty, Tuza and

Yuster [11] showed that
√

logn
n

is a semisharp threshold for R2, and He and Liang

[29] proved that for general r > 2, (logn)1/r

n1−1/r is a semi-sharp threshold for Rr. As

observed by Friedgut [23], a coarse threshold can only occur near rational powers

of n. More specifically, from Theorem 1.4 in [23], if the semi-sharp threshold for

Rr were not sharp, there would be a sequence (nk) and p(nk) = Θ

(
(lognk)1/r

n
1−1/r
k

)
such

that b1n
α
k 6 p(nk) 6 b2n

α
k for some constants b1, b2 ∈ R and α ∈ Q, which is a

contradiction. Therefore, a sharp threshold for the property Rr must exist.

Bollobás [5] showed that for any fixed r > 2, (2 logn)1/r

n1−1/r is a sharp threshold for

the graph property

Dr = {G : diam(G) 6 r} (5.2)
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of having diameter at most r. In particular, Rr and Dr have the same weak thresh-

old. Since rc(G) > diam(G) for any graph G, the function (2 logn)1/r

n1−1/r is a lower bound

for the sharp threshold of Rr. It is a natural question whether the sharp thresholds

for rainbow connection number r and diameter r coincide as well.

In this chapter, we will answer this question affirmatively for r = 2 in the

strongest possible sense, showing that rainbow connection number 2 and diameter 2

occur essentially at the same time in random graphs and indeed even in the random

graph process. We will examine the case r > 3 in Chapter 6, where the situation

seems fundamentally different, and propose an alternative sharp threshold function

in this case.

For the rest of this chapter we only consider the case r = 2, so to simplify

notation we let

R = R2 and D = D2.

Let us first consider G(n, p) close to the threshold for diameter 2.

Theorem 5.1. Let p = p(n) =
√

2 logn+ω(n)
n

where ω(n) = o(log n) and let G ∼

G(n, p). Then whp rc(G) = diam(G) ∈ {2, 3}.

From [5] (see also Theorem 10.10 and Corollary 10.11 in [7]), we immediately

get the following corollaries.

Corollary 5.2. Let p =
√

2 logn+c
n

where c ∈ R is a constant, and let G ∼ G(n, p).

Then limn→∞ P(rc(G) = 2) = e−e
−c/2 and limn→∞ P(rc(G) = 3) = 1− e−e−c/2.

Corollary 5.3. Let p =
√

2 logn+ω(n)
n

where ω(n) → ∞ such that (1 − p)n2 → ∞,

and let G ∼ G(n, p). Then rc(G) = 2 whp.

We will in fact prove something even stronger than Theorem 5.1. Consider the

random graph process (Gt)
N
t=0, N =

(
n
2

)
, which was defined in Chapter 2. Recall

also that for a monotone increasing graph property Q, we let τQ denote the hitting

time of Q, i.e., the smallest t such that Gt has property Q.
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As D and R are monotone increasing and D is clearly necessary for R, we always

have τD 6 τR for any order in which the edges are added to the graph. But in fact,

whp D and R occur at the same time.

Theorem 5.4. In the random graph process (Gt)
N
t=0, whp τD = τR.

5.2 Proofs

5.2.1 Overview

We will construct a rainbow colouring in three rounds. We first add some of the edges

of the random graph and 2-colour them randomly, up to edge density
√

1.01 logn
n

.

Then we add most of the remaining edges — up to edge density
√

1.99 logn
n

— and

colour them more intelligently by adding rainbow paths whenever possible to pairs

of vertices which are joined by only a few rainbow paths already. At this point the

resulting random graph has diameter 3 whp, and we will show that whp this graph

together with the given edge colouring has a certain desirable monotone increasing

propertyM. Finally, we add all remaining edges, and prove that if the final random

graph has diameter 2 and property M, we can tweak the edge colouring ‘by hand’

so that it becomes a rainbow 2-colouring.

It should be noted that there is an alternative proof which uses Lemma 6.5 from

the next chapter. It follows from this lemma that our second stage of colouring is

not necessary: we could, in fact, randomly 2-colour the edges up to edge density√
1.01 logn

n
, then add all of the remaining edges and tweak the edge colouring in a

somewhat different way. Lemma 6.5 ensures this is possible whp. Both Lemma 6.5

and its proof are of a somewhat technical nature, so we present the simpler three

colouring rounds version of the proof here.

5.2.2 Definitions

For the proofs of Theorems 5.1 and 5.4, we will need a number of definitions. In

a graph G with a given edge 2-colouring, we call a pair of non-adjacent vertices

dangerous if they are joined by at most d = 66 rainbow paths of length 2. Moreover,
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we call a pair of non-adjacent vertices sparsely connected if they are joined by at

most d = 66 paths of length 2 (rainbow or otherwise) and richly connected otherwise.

Definition 5.5. We say that a graph has propertyM if it has a spanning subgraph

which has an edge 2-colouring such that

(i) Every vertex is in at most 3 dangerous pairs.

(ii) Every vertex is joined by edges to both vertices of at most 15 dangerous pairs.

(iii) Every vertex is in at most one sparsely connected pair.

Note that M is a monotone increasing graph property because it is defined by

the existence of a spanning subgraph with some property. The property of having

a colouring satisfying conditions (i)–(iii) is not itself monotone increasing, since

condition (ii) does not necessarily stay true if we add more edges.

The following two propositions will form the main part of our proof.

Proposition 5.6. If p =
√

1.99 logn
n

, then whp the graph G ∼ G(n, p) has property

M.

Proposition 5.7. If a graph has properties M and D, it also has property R.

Before turning to the proofs of Propositions 5.6 and 5.7, we show how they can

be used to prove Theorems 5.1 and 5.4.

5.2.3 Proofs of Theorems 5.1 and 5.4

Proof of Theorem 5.1. Let p = p(n) =
√

2 logn+ω(n)
n

where ω(n) = o(log n), and let

G ∼ G(n, p). Since p is well above the threshold (logn)1/3

n2/3 for the property rc(G) 6 3

established by He and Liang [29], we certainly have rc(G) 6 3 whp. In fact, for this

p, it is easy to check that a random 3-colouring is rainbow whp. Since p(
n
2) = o(1),

whp G is not complete, so whp diam(G) > 2. Since diam(G) 6 rc(G), it remains

only to show that whp diam(G) = 2 implies rc(G) = 2.

103



For n large enough, p >
√

1.99 logn
n

. Since M is monotone increasing, it follows

from Proposition 5.6 that whp G has propertyM. By Proposition 5.7, if diam(G) =

2, i.e., G has property D, then G also has property R, so its rainbow connection

number is at most 2.

For Theorem 5.4, we need to construct the random graph process so that we can

couple it with G(n, p), p ∈ [0, 1].

Proof of Theorem 5.4. Take a set V of vertices where |V | = n, and assign to each

potential edge e a random variable Xe which is distributed uniformly on [0, 1], in-

dependently. Order the potential edges in ascending order of the corresponding

random variables Xe. Almost surely, no two of the Xe take the same value, and

any order of the Xe is equally likely. Therefore, we can add the edges to the graph

one-by-one in the ascending order of the corresponding Xe, yielding a random graph

process (Gt)
N
t=0, N =

(
n
2

)
, with the required distribution.

Let p =
√

1.99 logn
n

and let G = (V,E) where e ∈ E iff Xe 6 p. Then since the

random variables Xe are i.i.d. and distributed uniformly on [0, 1], G ∼ G(n, p).

By Proposition 5.6, whp G has property M. Since, as shown by Bollobás [5]

(see Theorem 10.10 in [7]),
√

2 logn
n

is a sharp threshold for the property D, whp G

does not have property D.

Since in the random graph process we added the edges in ascending order of

their corresponding random variables, there is a (random) time 0 6 t 6 N such

that G = Gt. Therefore, there is whp a time t such that Gt has propertyM but not

property D, so τM < τD whp. From Proposition 5.7, we get τR 6 max{τD, τM} = τD

whp, and together with the trivial observation τD 6 τR, this implies the result.

5.2.4 Proof of Proposition 5.6

We will generate the graph and an edge 2-colouring together in two steps. First

consider the random graph G1 ∼ G(n, p1) where p1 =
√

(1+ε) logn
n

and ε = 0.01. We

will colour the edges of this graph randomly.
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Next, we will add more edges to generate G2 ∼ G(n, p) where p =
√

1.99 logn
n

.

Each edge which is not already present will be added independently with probability

p2, where 1 − p = (1 − p1)(1 − p2). We will colour these new edges so they add a

rainbow 2-path to a dangerous pair whenever possible. We will show in Lemma 5.11,

Corollary 5.13 and Lemma 5.14 that whp this gives an edge colouring which fulfills

conditions (i)–(iii) of property M (with G2 itself as the spanning subgraph).

First step: a random colouring

Let G1 ∼ G(n, p1) where p1 =
√

(1+ε) logn
n

and ε = 0.01. Colour the edges of G1

using two colours independently and uniformly at random.

We will now gather some information about the structure of the random graph

and of the dangerous pairs in G1. Recall that we denote the neighbourhood of a

vertex v by Γ(v).

Lemma 5.8. With probability 1− o(n−2), for every vertex v in G1,√(
1 +

ε

2

)
n log n 6 |Γ(v)| 6

√
(1 + 2ε)n log n.

Proof. For a given vertex v, the number of neighbours of v is binomially distributed

with parameters n − 1 and p1 and has mean (n − 1)p1 =
√

(n−1)2

n
(1 + ε) log n ∼√

(1 + ε)n log n. By Corollary 2.5, the event that v has more than
√

(1 + 2ε)n log n

or fewer than
√

(1 + ε
2
)n log n neighbours has probability o(n−3). Taking the union

bound over all vertices gives the result.

Lemma 5.9. The probability that a given pair {v, w} of vertices is dangerous in G1

is O(n−
1
2

(1+ ε
2

)). Moreover, with probability 1 − o(n−2), every vertex in G1 is in at

most n
1
2

(1− ε
4

) dangerous pairs.

Proof. Fix a vertex v and explore the graph in the following way. Test all edges inci-

dent with v and their colours. With probability 1−o(n−3), |Γ(v)| >
√

(1 + ε
2
)n log n

as in the proof of Lemma 5.8. Assume this is the case and condition on a choice for

Γ(v) of at least this size.
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If w ∈ Γ(v), then {v, w} is not dangerous, so suppose w /∈ Γ(v) ∪ {v}. The

number of edges between w and Γ(v) which have the correct colour for a rainbow

2-path between w and v is distributed binomially with parameters |Γ(v)| and 1
2
p1,

with mean at least 1
2

√
(1 + ε)(1 + ε

2
) log n for every possible choice for Γ(v). So the

probability that w has at most d edges of the appropriate colour for a rainbow path

to Γ(v) is O(n−
1
2

√
(1+ε)(1+ ε

2
)(log n)d) by Corollary 2.6.

Therefore, conditional on a choice for Γ(v) of size at least
√

(1 + ε
2
)n log n, the

pair {v, w} is dangerous with probability O(n−
1
2

(1+ ε
2

)), and this happens indepen-

dently for different w /∈ Γ(v) ∪ {v}. So the number of dangerous pairs that v is in

is dominated by a binomial random variable with parameters n and O(n−
1
2

(1+ ε
2

)),

which has mean O(n
1
2

(1− ε
2

)). By Corollary 2.5, with probability 1 − o(n−3), v is

in at most n
1
2

(1− ε
4

) dangerous pairs. Taking the union bound over all v gives the

result.

We call a pair of non-adjacent vertices {x, y} in G1 a fix for a pair {v, w} if

adding an edge e = xy of a certain colour would add a rainbow path of length 2

between v and w. We call a fix {x, y} for a pair {v, w} an exclusive fix if there is no

other dangerous pair (other than possibly {v, w} if {v, w} is dangerous) that {x, y}

is a fix for.

We expect to have about 2np1 fixes for every pair {v, w} (of the form {x,w}

where x ∈ Γ(v) or {v, y} where y ∈ Γ(w)). We will now show that in fact most of

these fixes are exclusive.

Lemma 5.10. Whp, every non-adjacent pair {v, w} of vertices in G1 has at least

2
√

(1 + ε
4
)n log n exclusive fixes.

Proof. Take v out of the graph G1 and just look at the remaining graph G′1. Then by

Lemma 5.8 and (a slight variant of) Lemma 5.9, with probability 1− o(n−2), every

vertex in G′1 has at most
√

(1 + 2ε)n log n neighbours and is in at most n
1
2

(1− ε
4

)

dangerous pairs (dangerous within G′1).
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Figure 5.1: Two ways in which {x,w} can be a fix for a dangerous pair other than {v, w}.
The dotted lines show dangerous pairs.

In particular, if W ′
1 denotes the set of vertices x such that x is in a dangerous

pair (within G′1) with a neighbour of w, and W ′
2 denotes the set of vertices x such

that x is a neighbour of a vertex that is in a dangerous pair (within G′1) with w,

then with probability 1− o(n−2), |W ′
1| 6 n1− ε

16 and |W ′
2| 6 n1− ε

16 .

In the whole graph G1, let W1 denote the set of all x ∈ V \{v, w} such that there

is a neighbour k 6= v of w such that {x, k} is dangerous (in G1). Let W2 denote the

set of all x ∈ V \ {v, w} which have a neighbour l 6= v such that {l, w} is dangerous

(in G1). Any pair {s, t} ⊂ V \ {v} which is dangerous in G1 is also dangerous in

G′1. Therefore, W1 ⊂ W ′
1 and W2 ⊂ W ′

2.

A pair {x,w} where x ∈ Γ(v) can only fail to be an exclusive fix for {v, w} in

one of the following three ways. Either x and w are adjacent, or there is a k ∈ Γ(w)

such that {x, k} is dangerous, or there is an l ∈ Γ(x) \ {v} such that {l, w} is

dangerous (see Figure 5.1). If v and w are not adjacent, this can only happen if

x ∈ W1 ∪W2 ∪ Γ′(w) ⊂ W ′
1 ∪W ′

2 ∪ Γ′(w), where Γ′(w) denotes the neighbourhood

of w in G′1.

Condition on G′1. With probability 1 − o(n−2), |W ′
1 ∪W ′

2 ∪ Γ′(w)| 6 3n1− ε
16 . If

this is the case, there are at least n − 2 − 3n1− ε
16 potential neighbours x of v such

that {x,w} would be an exclusive fix for {v, w}; and each is actually adjacent to v

with probability p1 independently of each other and of G′1.

Therefore, if v and w are not adjacent, the number of x ∈ Γ(v) such that {x,w}

is an exclusive fix for {v, w} is bounded from below by a binomial random variable

with parameters n − 2 − 3n1− ε
16 and p1 =

√
(1+ε) logn

n
, which has mean greater

than
√

(1 + ε
2
)n log n if n is large enough. By Corollary 2.5, it follows that with
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probability 1− o(n−2), there are at least
√

(1 + ε
4
)n log n exclusive fixes of the form

{x,w} where x ∈ Γ(v). Analogously, with probability 1 − o(n−2), there are at

least
√

(1 + ε
4
)n log n exclusive fixes of the form {v, y} where y ∈ Γ(w), so overall

with probability 1 − o(n−2), there are at least 2
√

(1 + ε
4
)n log n exclusive fixes for

{v, w}.

Second step: more edges with a more intelligent colouring

Now we are ready to introduce some additional edges which will be coloured more

intelligently. Each edge which is not already present in the graph is now added

independently with probability p2, where p2 is chosen so that 1−p = (1−p1)(1−p2).

This ensures that after the second step, the probability that a particular edge is

present is exactly p =
√

1.99 logn
n

.

Note that p2 = p− p1 + p1p2 > p− p1 =
√

1.99 logn−
√

(1+ε) logn
√
n

> 0.4
√

logn
n

(recall

that ε = 0.01).

Whenever a new edge is a fix for a dangerous pair, we give it the appropriate

colour so that it adds a rainbow path of length 2 joining the dangerous pair. If there

are several such dangerous pairs, we pick an arbitrary colour.

By Lemma 5.10, whp in G1 there are at least 2
√

(1 + ε
4
)n log n exclusive fixes for

every dangerous pair. Assume this from now on. These exclusive fixes will always

get the correct colour for this pair if they are added. For a dangerous pair {v, w} in

G1, let N{v,w} be the number of exclusive fixes of {v, w} added in the second step.

By definition, the sets of exclusive fixes are disjoint for different dangerous pairs.

Therefore, conditional on G1, the random variables N{v,w} are independent.

For a fixed dangerous pair {v, w} in G1, N{v,w} is bounded from below by a

binomial random variable with parameters 2
√

(1 + ε
4
)n log n and p2, which has mean

at least 0.8
√

1 + ε
4

log n. Therefore, by Corollary 2.6,

P(N{v,w} 6 d) = O(n−0.8·
√

1+ ε
4 (log n)d) = O(n−0.8). (5.3)

Lemma 5.11. In G2 whp no vertex is in more than three dangerous pairs.
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Proof. Let L denote the event that every pair of vertices is either adjacent or has

at least 2
√

(1 + ε
4
)n log n exclusive fixes in G1, so L holds whp by Lemma 5.10. Let

v, w1, . . . , w4 be distinct vertices, and let Dv
w1,...,w4

denote the event that the pairs

{v, w1}, . . . , {v, w4} are dangerous in G2. Then

Dv
w1,...,w4

⊂ LC ∪ (L ∩Dv
w1,...,w4

). (5.4)

Let D̃v
w1,...,w4

denote the event that {v, w1},. . . ,{v, w4} are dangerous inG1. Then,

since Dv
w1,...,w4

⊂ D̃v
w1,...,w4

,

P(L ∩Dv
w1,...,w4

) = P(D̃v
w1,...,w4

∩Dv
w1,...,w4

∩ L)

= P(D̃v
w1,...,w4

∩ L)P(Dv
w1,...,w4

|D̃v
w1,...,w4

∩ L)

6 P(D̃v
w1,...,w4

)P(Dv
w1,...,w4

|D̃v
w1,...,w4

∩ L). (5.5)

We first want to bound P(D̃v
w1,...,w4

). If z ∈ V \ {v, w1, . . . , w4}, let Ez be the event

that there is a rainbow path of length 2 from v to at least one wi via z. The edge vz

is present in G1 with probability p1, and if it is present, each edge zwi is present in

G1 and has a different colour than vz with probability p1

2
, independently. Therefore,

q := P(Ez) = p1(1 − (1 − p1

2
)4) ∼ 2p2

1, and the events Ez are independent for all

z ∈ V \ {v, w1, . . . , w4}. Let K be the number of vertices z such that Ez holds. If

{v, w1},. . . ,{v, w4} are all dangerous pairs, then K 6 4d.

Since K is distributed binomially with parameters n − 5 and q and with mean

(n−5)q ∼ 2np2
1 = 2(1+ε) log n, the probability that K 6 4d is O(n−2(1+ ε

2
)(log n)4d)

by Corollary 2.6. Hence,

P(D̃v
w1,...,w4

) = O(n−2). (5.6)

Conditional on G1, if D̃v
w1,...,w4

and L hold, the probability of the event N{v,wi} 6 d

that {v, wi} does not get at least d + 1 of its exclusive fixes in the second round is

O(n−0.8) by (5.3), and these events are independent for different wi. Therefore, by

(5.5) and (5.6),

P(L ∩Dv
w1,...,w4

) = O(n−2n−3.2) = o(n−5).
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Hence, by (5.4),

P

( ⋃
v,w1,...,w4

Dv
w1,...,w4

)
6 P(LC) + P

( ⋃
v,w1,...,w4

L ∩Dv
w1,...,w4

)
6 o(1) + n5o(n−5) = o(1).

Lemma 5.12. In G2 whp no vertex is joined by edges to both vertices of more than

3 vertex disjoint dangerous pairs.

Proof. Let v, ui, wi, i = 1, . . . , 4, be distinct vertices. Let A denote the event that

v is adjacent in G2 to all vertices ui and wi, i = 1, . . . , 4. Let D denote the event

that all pairs {ui, wi}, i = 1, . . . , 4, are dangerous in G2. Then we want to bound

the probability of the event A ∩D.

For this, we will explore the edges of G2 in several steps. First reveal the

edges of the graph G′1 = G1 \ {v} and their colours. Let D′ denote the event

that all pairs {ui, wi}, i = 1, . . . , 4, are dangerous in G′1. Then D ⊂ D′. By a

variant of Lemma 5.9, a given pair {ui, wi} is dangerous in G′1 with probability

O(n−
1
2

(1+ ε
2

)), and it is easy to see that P (D′) = O(n−2(1+ ε
4

)). Indeed, for each

z /∈ {v, u1, w1, . . . , u4, w4}, the probability that z is the middle vertex of a rain-

bow path joining one of the pairs {ui, wi}, i = 1, . . . , 4, in G′1 is 2p2
1(1 + o(1)).

These events are independent for different z, and at most 4d of these events can

hold for D′ to hold. Since (n − 9)2p2
1 ∼ 2(1 + ε) log n, by Corollary 2.6, we have

P(D′) = O(n−2(1+ ε
2

)(log n)4d) = O(n−2(1+ ε
4

)).

Next, reveal the edges of G1 incident with v and their colours. They are inde-

pendent from G′1. For k ∈ {0, . . . , 8}, let Ak denote the event that v is adjacent

in G1 to exactly k of the vertices {u1, w1, . . . , u4, w4}. Then, since Ak and D′ are

independent,

P (Ak ∩D′) 6
(

8

k

)
pk1O(n−2(1+ ε

4
)) = O(n−2− k

2 ). (5.7)

As before, let L denote the event that in G1 all non-adjacent pairs of vertices

have at least 2
√

(1 + ε
4
)n log n exclusive fixes, which holds whp by Lemma 5.10. For
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every pair {ui, wi}, at most two exclusive fixes contain the vertex v (namely {v, ui}

and {v, wi}). So if L holds, then for n large enough, all pairs {ui, wi}, i = 1, . . . 4,

are either adjacent or have at least 2
√

(1 + ε
8
)n log n exclusive fixes which do not

contain the vertex v. Call these fixes v-free exclusive fixes.

Now add the edges of G2 not incident with v. Let D′′ denote the event that

every pair {ui, wi}, i = 1, . . . , 4, not adjacent in G1 now gets at most d of its v-

free exclusive fixes. Note that D ⊂ D′′. Conditional on G1, if L holds and n is

large enough, every non-adjacent pair {ui, wi} has at least 2
√

(1 + ε
8
)n log n v-free

exclusive fixes, and each one is added with probability p2 > 0.4
√

logn
n

, independently.

Hence, by Corollary 2.6, if L and D′ hold,

P(D′′ | G1) =
(
O(n−0.8

√
1+ ε

8 (log n)d)
)4

= O(n−3.2).

Finally, we add the remaining edges incident with v in G2. Note that D′′ depends

on (G1 and) the edges of G2 not incident with v. Therefore, conditional on G1, D′′

and A are independent, so if k ∈ {0, . . . , 8}, whenever L, D′ and Ak hold in G1, we

have

P(A ∩D | G1) 6 P(A ∩D′′ | G1) = P(A | G1)P(D′′ | G1) = p8−k
2 O(n−3.2).

This gives for k ∈ {0, . . . , 8},

P(A ∩D | Ak ∩ L ∩D′) = O(n−3.2− 8−k
2 (log n)

8−k
2 ). (5.8)

Since A ∩D ⊂
(⋃8

k=0Ak
)
∩D′, we have with (5.7) and (5.8),

P(A ∩D ∩ L) =
8∑

k=0

P(A ∩D ∩ L ∩ Ak ∩D′)

=
8∑

k=0

P(L ∩ Ak ∩D′)P(A ∩D | L ∩ Ak ∩D′)

6
8∑

k=0

P(Ak ∩D′)P(A ∩D | L ∩ Ak ∩D′)

6
8∑

k=0

O(n−2− k
2 )O(n−3.2− 8−k

2 (log n)
8−k

2 )

= O(n−9.2(log n)4) = o(n−9). (5.9)
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Now, since we want to bound the probability that there exist vertices v, u1, w1,

. . . , u4, w4 such that A ∩D holds for them, we now add indices Av,(ui,wi)i , D(ui,wi)i

to our events A and D to make clear which vertices they refer to. The event L is a

global event which is the same for all specific vertices v, u1, w1,. . . ,u4, w4, so it does

not require an index. Then using (5.9), the probability that there are vertices v, u1,

w1,. . . ,u4, w4 such that Av,(ui,wi)i ∩D(ui,wi)i holds is at most

P

 ⋃
v,(ui,wi)i

(Av,(ui,wi)i ∩D(ui,wi)i)


6 P(LC) + P

 ⋃
v,(ui,wi)i

(Av,(ui,wi)i ∩D(ui,wi)i ∩ L)

 = o(1) + n9o(n−9) = o(1),

as required.

Corollary 5.13. In G2 whp no vertex is joined by edges to both vertices of more

than 15 dangerous pairs.

Proof. By Lemma 5.12, whp no vertex is adjacent to both vertices of more than 3

vertex disjoint dangerous pairs, and by Lemma 5.11, whp every vertex is in at most

3 dangerous pairs. Assume this from now on.

Note that if a graph has maximum degree at most ∆ > 1 and more than t(2∆−1)

edges, where t ∈ N0, then it contains at least t + 1 pairwise vertex-disjoint edges.

This can be seen by induction on t — note that if one edge and its endpoints are

removed from the graph, there are more than t(2∆−1)− (2∆−1) = (t−1)(2∆−1)

edges left.

Therefore, if some vertex v is joined to both vertices of more than 15 = 3 · (2 ·

3 − 1) pairs, and every vertex is in at most 3 dangerous pairs, then v is joined to

both vertices of at least 4 = 3 + 1 pairwise disjoint dangerous pairs, which is not

possible.

Recall that we call a non-adjacent pair of vertices sparsely connected if they are

joined by at most d = 66 paths of length 2 (rainbow or otherwise).
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Lemma 5.14. Whp every vertex in G2 is in at most one sparsely connected pair.

Proof. Consider some vertex v in G2. Explore G2 in the following way. Explore all

edges incident with v. By Corollary 2.5, with probability 1−o(n−1), we have |Γ(v)| >
√

1.98n log n. Condition on a choice for Γ(v) where this is the case. Now for every

vertex w /∈ Γ(v) ∪ {v} (by definition sparse pairs are not adjacent), the probability

that w has at most d edges to Γ(v) is O(e−
√

1.98·1.99 logn(log n)d) = O(n−1.98) by

Corollary 2.6, and this is independent for different w. Therefore, for every possible

choice for Γ(v) of size at least
√

1.98n log n, the probability that v is in two sparsely

connected pairs is O(n2(n−1.98)2) = O(n−1.96) = o(n−1). Hence, the unconditioned

probability that v is in two sparsely connected pairs is o(n−1). Using the union

bound, it follows that whp there is no such v.

By Lemma 5.11, Corollary 5.13 and Lemma 5.14, the graph G2 with the given

edge colouring has property M whp (with G2 itself as the spanning subgraph),

which completes the proof of Proposition 5.6.

5.2.5 Proof of Proposition 5.7

To prove that D andM implyR, we will take the edge 2-colouring given by property

M and re-colour some edges to make a rainbow colouring. We will do this by first

re-colouring paths joining sparsely connected dangerous pairs (this step only works

if there are such paths at all, i.e., if we have diameter 2), and then doing the same

for richly connected dangerous pairs.

So suppose properties M and D hold in some graph G = (V,E). Take the

spanning subgraph G′ = (V,E ′) and the edge 2-colouring of G′ given by property

M. Do not assign colours to the edges in E \ E ′ yet.

We will now assign some colours and change the colours of some edges in E ′

in order to make all dangerous pairs rainbow connected. We will flag all edges we

(re-)assign a colour to as we go along so that they do not get reassigned another

colour later on.
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Call a pair of vertices sparsely sub-connected if it is sparsely connected in the

subgraph G′, and call it richly sub-connected otherwise. Call a pair sub-dangerous

if it is dangerous in G′. Every sparsely connected pair in G is also sparsely sub-

connected. Every dangerous pair in G is also sub-dangerous.

We start with the sparsely sub-connected sub-dangerous pairs. Take some arbi-

trary order of these pairs.

We will go through the sparsely sub-connected sub-dangerous pairs one by one

in the given order, and each time ensure there is a rainbow path in E joining them,

which is then flagged. Let {v, w} be a pair we consider. Since D holds, either

vw ∈ E, in which case we do not need to do anything, or v and w are joined by at

least one path of length 2 in E. Let vzw be such a path.

It is not possible that both of the edges vz and zw are flagged already by the

time we look at {v, w}: suppose that the edge e = vz is flagged already. This

can only have happened in one of the following two ways as shown in Figure 5.2.

Either there is a vertex w′ 6= w such that {v, w′} is sparsely sub-connected and

sub-dangerous and the path vzw′ was flagged for it, or there is a vertex z′ such that

{z, z′} is sparsely sub-connected and sub-dangerous and the path zvz′ was flagged

for it. But the first case is impossible because by property M, the vertex v is in at

most one sparsely sub-connected pair (namely {v, w}). So the edge vz was flagged

for a sparsely sub-connected sub-dangerous pair {z, z′}. Similarly, if zw is flagged

already, this can only be because there is a vertex z′′ such that {z, z′′} is sparsely

sub-connected and sub-dangerous and zw was flagged for it. But then z′ 6= z′′, so

z is in two sparsely sub-connected pairs, contradicting part (iii) of the definition of

M.

So take the path vzw. If necessary, adjust the colour of an un-flagged edge on it

to make it a rainbow path, then flag both edges (if they are not flagged already).

Repeat this procedure until all sparsely sub-connected sub-dangerous pairs have

rainbow paths. Now we will deal with richly sub-connected sub-dangerous pairs.

Again take some arbitrary order of these pairs and consider them one by one.
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Figure 5.2: Possible ways in which the edge e could have been flagged before considering
{v, w}. The dotted lines show sub-dangerous pairs other than {v, w}.

Let {v, w} be the richly sub-connected sub-dangerous pair we consider. By

definition, it is either adjacent in G, in which case we do not need to do anything, or

joined by at least 67 paths of length 2 within E ′. Let vzw be such a path. Then as

before and as shown in Figure 5.2, the edge e = vz can only be previously flagged for

another (sparsely or richly sub-connected) sub-dangerous pair in one of the following

two ways. Either there is a vertex w′ 6= w such that {v, w′} is sub-dangerous and the

path vzw′ was flagged for it — since by propertyM, v is in at most 3 sub-dangerous

pairs in G′, at most 3 edges in E ′ incident with v can be flagged this way (now or

ever). Or there is a vertex z′ such that {z, z′} is sub-dangerous and the path zvz′

was flagged for it — since by property M, v is joined by edges to both vertices of

at most 15 dangerous pairs in G′, and for each such pair at most 2 edges incident

with v are flagged, at most 30 edges in E ′ incident with v can be flagged this way

(now or ever).

So at most 33 edges in E ′ incident with v can be flagged in this process. Anal-

ogously, at most 33 edges incident with w can be flagged. Since {v, w} is joined by

at least 67 paths of length 2 in G′, there is at least one completely unflagged path

at the time we look at {v, w}. Select one such path for {v, w}, adjust its colours if

necessary to make it a rainbow path, then flag both of its edges and move on to the

next richly sub-connected sub-dangerous pair.

Repeat this procedure until all richly sub-connected sub-dangerous pairs have

rainbow paths. If there are any uncoloured edges left, assign them arbitrary colours.

All sub-dangerous pairs are now joined by rainbow paths. It only remains to check

that no non-sub-dangerous pairs have been rainbow disconnected in the process.
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By the same argument as above (in the description of the procedure for richly sub-

connected sub-dangerous pairs), for every vertex v at most 33 edges incident with v

can be flagged and potentially re-coloured by the time we are done. If a pair {v, w}

is not sub-dangerous, it is either adjacent or is joined by at least 67 rainbow paths,

of which at most 66 have been re-coloured. Therefore, every previously non-sub-

dangerous pair still has at least one rainbow path left, so all pairs of vertices are

joined by at least one rainbow path now.
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Chapter 6

On the threshold for rainbow
connection number r > 3

6.1 Background and results

In the last chapter, we saw that rainbow connection number 2 and diameter 2 happen

essentially at the same time in the random graph G(n, p), and indeed in the random

graph process. It is a natural question to ask whether this result may be extended

to r > 3.

Recall the definitions (5.1) and (5.2) of the graph properties Rr and Dr. As

noted in the last chapter, we know that Rr has a sharp threshold, and that Rr and

Dr share the same semisharp threshold. The results of the last chapter imply that

R2 and D2 also share the same sharp threshold. However, the situation in the case

r > 3 seems to be quite different from r = 2, and there are good reasons to believe

that the following may be the true sharp threshold for Rr where r > 3.

Conjecture 6.1. Fix an integer r > 3, set C = rr−2

(r−2)!
, and let

p(n) =
(C log n)1/r

n1−1/r
. (6.1)

Then p(n) is a sharp threshold for the graph property Rr.

The constant C = C(r) is chosen in such a way that if G ∼ G(n, p(n)) with p(n)

as in (6.1) and we r-colour the edges of G independently and uniformly at random,

then the number of pairs of vertices which are joined by only a few rainbow paths is

very roughly the same as the number of edges in G. For r = 2, this happens below
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sharp threshold for diameter 2 already, whereas for r > 3, this happens above the

sharp threshold for diameter r.

In one direction, consider the following heuristic argument that (6.1) is a lower

bound for the sharp threshold for Rr. Let ε > 0 and p = (C(1−ε) logn)1/r

n1−1/r , and colour

the edges of G ∼ G(n, p) with r colours independently and uniformly at random. For

a given pair of vertices v, w, there are about nr−1 potential paths of length r joining

them. Each is present with probability pr and a rainbow path with probability

r!
rr

. Therefore, the expected number of rainbow paths joining v and w is about

r!
rr
nr−1pr = (1 − ε)

(
1− 1

r

)
log n. If we assume that these potential rainbow paths

behave roughly independently, then the distribution of the number of rainbow paths

joining v and w can be approximated with a Poisson random variable with mean

(1 − ε)
(
1− 1

r

)
log n. The probability that v and w are not joined by any rainbow

path is then about n−(1−ε)(1− 1
r ).

Hence, the expected number of pairs of vertices not joined by any rainbow path

should be about Θ
(
n1+ 1

r
+ε(1− 1

r )
)

. Again assuming that these events behave roughly

independently for different pairs of vertices, and approximating the number of such

events that occur with a Poisson random variable with mean Θ
(
n1+ 1

r
+ε(1− 1

r )
)

, we

would expect the overall probability of the random colouring being a rainbow colour-

ing (i.e. that there is no pair of vertices not joined by any rainbow path) to be about

exp
(
−Θ

(
n1+ 1

r
+ε(1− 1

r )
))

. Conditional on G having O∗
(
n1+ 1

r

)
edges, which holds

with very high probability, there are exp
(
O∗
(
n1+ 1

r

))
possible edge colourings. The

probability that there exists at least one rainbow colouring is then bounded by the

total number of colourings multiplied by the probability that a random colouring is

a rainbow colouring, which tends to 0.

The upper bound for the sharp threshold of the property Rr from the proof of

the semi-sharp threshold in [29] is (220r logn)1/r

n1−1/r . We will establish the other direction

of Conjecture 6.1, i.e., we will prove the following result.

Theorem 6.2. Fix an integer r > 3 and ε > 0, and let C = rr−2

(r−2)!
. Set p = p(n) =

(C(1+ε) logn)1/r

n1−1/r , and let G ∼ G(n, p). Then whp, rc(G) = r.
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6.2 Proof of Theorem 6.2

Let G = (V,E) ∼ G(n, p). The basic idea of the proof is as follows. First we colour

the edges of G independently and uniformly at random using r colours. We call a

pair of vertices dangerous if it is joined by at most K rainbow paths of length r in

this colouring, where K is a constant which will be defined later.

For each dangerous pair, we will select one path joining it and change the colours

of the edges to make it a rainbow path, which will yield a rainbow colouring. To see

that this is possible without any conflicts and that this does not rainbow-disconnect

the pairs that previously had many rainbow paths, we need to study the structure

of the graph and its dangerous pairs.

The rest of the chapter is organised as follows. Section 6.2.1 contains general

observations on the distribution of edges of each colour and paths of length r in the

randomly coloured graph. The heart of the proof is Section 6.2.2, where the key

lemma is proved. This lemma ensures that when we later select a path of length r

for every dangerous pair of vertices and recolour it to make it a rainbow path, it is

possible to do so without using any edges from a path that was previously assigned

to another dangerous pair of vertices. Finally, in Section 6.2.3, the recolouring

procedure will be described in detail and we shall show that we can indeed find a

rainbow r-colouring of the edges of G with this strategy.

6.2.1 General observations

For the rest of the chapter, define p = p(n) as in Theorem 6.2, let G ∼ G(n, p) and

colour the edges of G independently and uniformly at random using r colours.

Lemma 6.3. Let δ > 0 be constant, let W ⊂ V be a set of vertices with |W | ∼ n,

and let v ∈ V . Then for every colour, with probability 1− o
(
exp

(
−n1/r

))
, there are

at least 1−δ
r
np and at most 1+δ

r
np edges between v and W of the given colour.

Proof. The number of such edges is distributed binomially with parameters |W | (or

|W | − 1 if v ∈ W ) and p/r. Since |W |p/r ∼ ((1 + ε)Cn log n)1/r /r, the probability
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that there are fewer than 1−δ
r
np or more than 1+δ

r
np such edges is o

(
exp

(
−n1/r

))
by Corollary 2.5.

For k ∈ N, we call a path of length k in G a k-path, so a k-path is of the form

x0x1 . . . xk where the xi are distinct vertices. We call a collection of paths in the

graph independent if no two of them share any inner vertices.

Lemma 6.4. There is a constant c > 0 such that whp every pair of vertices in G is

joined by at least c log n independent r-paths.

Proof. Fix two distinct vertices v and w. Step-by-step, we shall explore the (r− 1)-

neighbourhood of v, and apply Lemma 6.3 at each step with a suitable δ > 0 to see

that the sets we discover have the right size. Let δ > 0 be such that (1−δ)(1+ε)1/r =

(1 + ε
2
)1/r.

We start by considering all edges between v and W1 = V \ {v, w}. By Lemma

6.3, with probability 1− o
(
exp

(
−n1/r

))
there are between (1− δ)np and (1 + δ)np

edges between v and W1. Condition on this, and denote by N1 the set of vertices in

W1 which are adjacent to v.

Next, let W2 = W1 \ N1, and consider the edges between N1 and W2. Note

that by our condition on the size of N1, |W2| ∼ n. Furthermore, the edges between

N1 and W2 are disjoint from and therefore independent of the edges we have con-

sidered so far. We go through the vertices z in N1 one after the other, revealing

the edges present. However, we disregard any edges to vertices which are adjacent

to another vertex in N1 which was considered earlier, so that the edges revealed

form a tree. Applying Lemma 6.3 at each step, we can see that with probabil-

ity 1 − |N1|o
(
exp

(
−n1/r

))
= 1 − o

(
exp

(
−n1/2r

))
, at each step there are between

(1− δ)np and (1 + δ)np edges.

Denote by N2 the set of vertices in W2 adjacent to a vertex in N1, and let

W3 = W2 \N2. We now proceed in the same way and explore the neighbours in W3

of all vertices in N2 disjointly, conditional on the neighbourhoods so far having the

right sizes for all vertices according to Lemma 6.3.
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We continue in this way until the entire (r − 1)-neighbourhood Nr−1 of the

vertex v in W1 is explored. Note that if all neighbourhoods have the right size,

in total O ((np)r−1) = o(n) vertices are revealed, so we can apply Lemma 6.3

at each step. With probability 1 − o(exp
(
−n1/2r

)
), we now have a tree with at

least ((1− δ)np)r−1 =
(
(1 + ε

2
)Cn log n

)(r−1)/r
leaves. We can group the leaves

together depending on which of the edges incident with v their path to v con-

tains (i.e., which vertex in N1 they originate from) — each group has size at least(
(1 + ε

2
)Cn log n

)(r−2)/r
, and there are at least

((
1 + ε

2

)
Cn log n

)1/r
groups. The

edges between w and the leaves of the tree are independent from the edges that

have been explored before. The probability that w has a neighbour in a given

vertex group is therefore at least

1−(1− p)((1+ ε
2)Cn logn)

(r−2)/r

> 1− exp

(
−p
((

1 +
ε

2

)
Cn log n

)(r−2)/r
)

> 1− exp

(
−
((

1 +
ε

2

)
C log n

)(r−1)/r

n−1/r

)
∼
((

1 +
ε

2

)
C log n

)(r−1)/r

n−1/r,

using the fact that 1 − x 6 exp(−x) for all x ∈ R and that 1 − exp(−x) ∼ x

as x → 0. These events are independent for the different vertex groups, so the

number of groups with at least one edge to w is distributed binomially. If we

pick one edge from each such vertex group, this gives independent paths from v

to w by construction. Since there are at least
(
(1 + ε

2
)Cn log n

)1/r
vertex groups,

the expected number of such paths is at least (1 + ε
3
)C log n if n is large enough.

Note that ϕ(x) → 1 as x ↘ −1, where ϕ is the function defined in Corollary 2.4.

Therefore, since r > 3 and C = rr−2

(r−2)!
> 2, if we pick c > 0 small enough, the

probability that there are fewer than c log n independent r-paths joining v and w is

o(n−2) by Corollary 2.4.

6.2.2 The main lemma

Let

L =

⌈
17r

ε(r − 1)

⌉
, K = rL, and S = 2Lr2 + 2.
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Call a pair of vertices dangerous if it is joined by at most K independent rainbow

r-paths in the random colouring. The following lemma will form the main part of

the proof.

Lemma 6.5. For a pair {v, w} of vertices, denote by Av,w the event shown in

Figure 6.1: there are L independent r-paths P1, . . . , PL joining v and w, and L r-

paths Q1, . . . , QL such that, writing {xi, yi} for the end vertices of Qi, the following

conditions hold.

i) For each i, Pi contains an edge ei that is also on Qi.

ii) The pairs {xi, yi}, i = 1, . . . , L, and {v, w} are distinct (but not necessarily

disjoint).

iii) All pairs {xi, yi}, i = 1, . . . , L, are dangerous.

Then whp Av,w does not hold for any pair {v, w} of vertices.

The idea of the proof is the following. For one pair {xi, yi} as in the lemma, the

expected number of rainbow r-paths joining xi and yi is roughly r!
rr
nr−1pr = r!

rr
C(1+

ε) log n = r−1
r

(1 + ε) log n. Since the rainbow paths behave roughly binomially, the

probability that {xi, yi} is dangerous is about n−
r−1
r

(1+ε)(log n)K by Corollary 2.6.

Therefore, given v and w, the probability that there is one path Pi containing

an edge ei which also lies on an r-path joining a dangerous pair {xi, yi} is about

O∗
(
n2r−2p2r−1n−

r−1
r

(1+ε)
)

= O∗(n−ε
r−1
r ).

Therefore, if we can show that these events do not depend on each other too much

for different Pi, then we would expect that the overall probability that there are L

such paths is about O∗
(
n−Lε

r−1
r

)
. If L is chosen large enough, this will then be

o(n−2), completing the proof of the lemma.

A formal proof of this idea requires some care.

122



��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������������������������������������������������������������������

���������������������������������������������������������������������������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
��������������������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������������������������������������������������������������������

v w

e1

e2

eL

x1

x2

xL

y1

y2

yL

P1

P2

PL

Q1

Q2

QL

..
.

..
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Figure 6.1: The event Av,w. Dashed lines show dangerous pairs. The paths Pi only meet
at v and w, while the paths Qi may share vertices with each other and with the paths Pi.
The pairs {xi, yi} are distinct, but not necessarily disjoint.

Proof of Lemma 6.5. Fix distinct vertices v and w. Consider a possible configu-

ration of vertices and edges for the paths Pi, Qi, edges ei and pairs {xi, yi} as in

conditions (i) and (ii) of Av,w. Denote by k the number of vertices in the configu-

ration other than v and w, and let l be the number of edges in the configuration.

Then k 6 2(r − 1)L, as the configuration consists of L r-paths Pi with endpoints v

and w, and L r-paths Qi which each share at least two vertices with a path Pi.

Note that the configuration is connected and remains connected if we remove one

edge on all but one path Pi, since there is still one v-w path left. Since a connected

graph with m vertices has at least m−1 edges, it follows that l−(L−1) > (k+2)−1,

so l > k + L. Therefore,

nkpl 6 (np)kpL 6 (np)2(r−1)LpL = n2(r−1)Lp(2r−1)L. (6.2)

Now condition on a specific such configuration being present in G. Let W denote the

set of vertices involved in the configuration, including v and w, and let V ′ = V \W .

Then |W | = k + 2 6 2Lr, and |V ′| ∼ n. The edges between W and V ′ and
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z

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

R(z)

R1(z)

R2(z)

Rjz(z)

Figure 6.2: The tree of depth s obtained by the exploration of the rainbow s-
neighbourhood of z. The paths from the root z to the leaves are rainbow paths. We
have one such tree for each z ∈ D; these trees are disjoint.

within V ′ are disjoint from and therefore independent from the edges involved in

the configuration.

Let s =
⌊
r−1

2

⌋
, and let D be the set of all vertices xi and yi from the configuration.

We now explore the s-neighbourhoods Γs(z) of the vertices z ∈ D within V ′. We

want to find disjoint subsets of Γs(z) such that all elements are joined to z by a

rainbow s-path and all such paths are independent, except if they come from the

same neighbour of z. We do this as in the proof of Lemma 6.4 — first explore

the neighbours of z1 ∈ D in V ′, then explore their neighbours in V ′ and so on,

then proceed with the next vertex z2 ∈ D, and so on. As before, at each step, we

disregard edges to vertices that have been explored already. Unlike in the proof of

Lemma 6.4, at each step we only check for new neighbours joined by edges with

colours not appearing on the path from z to the current vertex. We group together
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vertices that come from the same edge incident with some z ∈ D. This gives disjoint

subsets Rj(z) of V ′ for every z ∈ D, 1 6 j 6 jz, where the Rj(z) are the vertex

groups which come from the same neighbour of z, as shown in Figure 6.2. Let

R(z) =
⋃

16j6jz
Rj(z). Then by definition, the following properties hold.

i) For every z1, z2 ∈ D, 1 6 j1 6 jz1 and 1 6 j2 6 jz2 , if z1 6= z2 or if j1 6= j2 then

the sets Rj1(z1) and Rj2(z2) are disjoint.

ii) For every z ∈ D, every vertex z′ ∈ R(z) is joined to z by a rainbow s-path Pz′

with all inner vertices in V ′.

iii) For every z1, z2, j1, j2 and z′1 ∈ Rj1(z1), z′2 ∈ Rj2(z2), if z1 6= z2 or if j1 6= j2,

then the paths Pz′1 and Pz′2 do not share any inner vertices.

Applying Lemma 6.3 at each step of our exploration with δ > 0 such that (1−δ)(1+

ε)1/r >
(
1 + ε

2

)1/r
and (1 + δ)(1 + ε)1/r 6 (1 + 2ε)1/r, we see that with probability

1− o(n−2Lr), the following additional properties hold.

iv) For all z ∈ D,
(
C
(
1 + ε

2

)
n log n

)1/r
6 jz 6 (C (1 + 2ε)n log n)1/r.

v) For all z ∈ D and 1 6 j 6 jz, |Rj(z)| = O∗
(
n
s−1
r

)
.

vi) For every subset S of the r available colours such that |S| = s and for all z ∈ D

there are at least

s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
and at most

s!

rs
(C (1 + 2ε)n log n)s/r

vertices z′ ∈ R(z) such that the colours appearing on Pz′ are exactly the colours

in S.

Assume (i) – (vi) from now on. Then |R| = O((n log n)s/r) = o(n), so |V ′ \ R| ∼ n.
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Case 1: r is odd. In this case s =
⌊
r−1

2

⌋
= r−1

2
. For every subset S of colours of

size s, there are
(
r−s
s

)
= s + 1 sets of colours of size s disjoint from S. Therefore,

for every vertex u1 in some set R(xi) there are at least

(s+ 1)
s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
vertices u2 in R(yi) such that an edge u1u2 of the correct colour would complete a

rainbow r-path from xi to yi.

Therefore, there are at least(
r

s

)
(s+ 1)

(s!)2

r2s

(
C
(

1 +
ε

2

)
n log n

)2s/r

=
r!

rr−1

(
C
(

1 +
ε

2

)
n log n

)(r−1)/r

potential edges between R(xi) and R(yi) such that each one would complete a

rainbow path from xi to yi. Each of these edges is present and has the correct

colour for a rainbow path with probability 1
r
p, independently from the edges that

have been revealed so far. Therefore, the number of such edges is distributed

binomially with mean at least

r!

rr
C
(

1 +
ε

2

)
log n =

r − 1

r

(
1 +

ε

2

)
log n.

If we denote by Ei the event that there are at most 2SK edges of the correct colour

between R(xi) and R(yi) to complete a rainbow path between xi and yi, then by

Corollary 2.6,

P(Ei) = O∗
(
n−(1+ ε

2) r−1
r

)
.

The events Ei are independent for different pairs {xi, yi} since the pairs {xi, yi}

are distinct and all sets R(xi), R(yi) are disjoint. Hence,

P

( ⋂
16i6L

Ei

)
= O∗

(
n−L(1+ ε

2) r−1
r

)
= O

(
n−L(1+ ε

4) r−1
r

)
. (6.3)

For every z ∈ D and 1 6 j 6 jz, let Bz
j denote the event that there are at least S

edges between Rj(z) and R \Rj(z). Then

P(Bz
j ) 6 (|Rj(z)||R|p)S = O∗

(
nS(s−1)/rnSs/rpS

)
= O∗

(
n−S/r

)
,
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as |Rj(z)| = O∗
(
n(s−1)/r

)
and |R| = O∗

(
ns/r

)
. Hence, letting B =

⋃
(z,j):16j6jz

Bz
j ,

P (B) = O∗
(
n1/rn−S/r

)
= o(n−2Lr), (6.4)

by choice of S.

If Bc∩Ec
i holds for some 1 6 i 6 L, then the pair {xi, yi} is not dangerous. This is

because we have at least 2SK edges of the correct colour between R(xi) and R(yi)

to complete a rainbow path between xi and yi, but there are at most S such edges

from each particular vertex group Rj(xi) or Rj(yi), so we can successively pick K

such edges between pairwise distinct vertex groups Rj(xi) or Rj(yi), yielding K

independent rainbow paths between xi and yi by property (iii).

Therefore, if all L pairs {xi, yi} are dangerous, then B∪
⋂

16i6LEi holds. Hence, by

(6.3) and (6.4), the probability that all L pairs {xi, yi} are dangerous is bounded

by

O
(
n−L(r−1)(1+ ε

4)/r
)

+ o(n−2Lr).

Case 2: r is even.

In this case s =
⌊
r−1

2

⌋
= r

2
− 1. Let u ∈ V ′ \ R. Given a vertex u1 in some R(xi),

there are at least (
r − s
s

)
s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
and at most (

r − s
s

)
s!

rs
(C (1 + 2ε)n log n)s/r

vertices u2 in R(yi) such that adding edges u1u and uu2 of appropriate colours

would complete a rainbow r-path from xi to yi via u1, u and u2. Therefore, there

are at least(
r

s

)(
r − s
s

)
s!2

r2s

(
C
(

1 +
ε

2

)
n log n

)2s/r

=
r!

2rr−2

(
C
(

1 +
ε

2

)
n log n

) r−2
r

(6.5)

and at most

r!

2rr−2
(C (1 + 2ε)n log n)

r−2
r (6.6)
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pairs of vertices u1 ∈ R(xi), u2 ∈ R(yi) such that edges u1u and uu2 of appropriate

colours would complete a rainbow path from xi to yi. For one such pair {u1, u2}

and u ∈ V ′ \R, denote by Mu1,u2
u the event that the edges u1u and uu2 are present

and have one of the two possible colour combinations. Then

P(Mu1,u2
u ) =

2

r2
p2. (6.7)

Moreover, if the events Mu1,u2
u and M

u′1,u
′
2

u hold for different pairs {u1, u2} and

{u′1, u′2}, then u is adjacent to three or more distinct vertices from {u1, u2, u
′
1, u
′
2},

so

P
(
Mu1,u2

u ∩Mu′1,u
′
2

u

)
= O(p3). (6.8)

For a vertex u ∈ V ′ \R, denote by Fu the event that u is the middle vertex of any

path as above for any 1 6 i 6 L. Then by Lemma 2.2 and (6.5), (6.6), (6.7), (6.8),

P(Fu) > L
r!

rr

(
C
(

1 +
ε

2

)
n log n

) r−2
r
p2 −O∗

(
n

2(r−2)
r

)
O
(
p3
)

> L
r − 1

r

(
1 +

ε

2

)
n−1 log n−O∗

(
n−1− 1

r

)
∼ L

r − 1

r

(
1 +

ε

2

)
n−1 log n.

The events Fu are independent for different u ∈ V ′\R. Thus, since |V ′\R| ∼ n, the

number of events Fu that hold is distributed binomially with mean asymptotically

at least

L
r − 1

r

(
1 +

ε

2

)
log n.

By Corollary 2.6, the probability of the event F that at most 2KLS of the events

Fu hold is

P(F ) = O∗
(
n−(1+o(1))L r−1

r (1+ ε
2)
)

= O
(
n−L

r−1
r (1+ ε

4)
)
. (6.9)

For every z ∈ D and 1 6 j 6 jz, denote by B̃z
j the event that there are at least

S independent 2-paths from (not necessarily distinct) vertices in Rj(z) to (not

necessarily distinct) vertices in R with middle vertices in V ′ \ R. Then, since

|Rj(z)| = O∗
(
n(s−1)/r

)
and |R| = O∗

(
ns/r

)
,

P(B̃z
j ) 6

(
|Rj(z)| |V | |R| p2

)S
= O∗

((
n
s−1
r

+1+ s
r p2
)S)

= O∗
(
n−S/r

)
.
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Therefore, if we let B̃ =
⋃

(z,j):16j6jz
B̃z
j , then

P(B̃) = O∗
(
n1/rn−S/r

)
= o(n−2Lr), (6.10)

by choice of S.

If neither B̃ nor F holds, then one of the pairs {xi, yi} is not dangerous. This

is because there are more than 2KLS vertices u ∈ V ′ \ R which are the middle

vertices of rainbow paths joining pairs {xi, yi}, so there is an index 1 6 i0 6 L

such that there are more than 2KS vertices u ∈ V ′ \ R which are the middle

vertices of rainbow r-paths joining the pair {xi0 , yi0} (we can just pick the index

with the maximum number of such vertices u). If B̃ does not hold, at most S of

those paths pass through any particular vertex groupRj(xi0) orRj(yi0). Hence, we

can successively select more than K rainbow r-paths joining {xi0 , yi0} which pass

through pairwise distinct vertex groups. These rainbow paths are independent by

property (iii), so {xi0 , yi0} is not dangerous.

Hence, if all pairs {xi, yi} are dangerous, then B̃ or F holds, which by (6.9) and

(6.10) has probability

O
(
n−L(1+ ε

4) r−1
r

)
+ o

(
n−2Lr

)
.

So in each case, conditional on a configuration of paths Pi and Qi, edges ei and pairs

{xi, yi} as in conditions (i) and (ii) of the event Av,w, the probability that all pairs

{xi, yi} are dangerous is at most

O
(
n−L(1+ ε

4) r−1
r

)
+ o

(
n−2Lr

)
.

Using (6.2), it follows that the overall probability of Av,w is at most

O
(
n2(r−1)Lp(2r−1)Ln−L(1+ ε

4) r−1
r

)
+ o(n−2L) =

= O

((
n2r−2−(1+ ε

4) r−1
r p2r−1

)L)
+ o(n−2) = O

(
n−

ε(r−1)
8r

L
)

+ o(n−2)

= o(n−2),

by choice of L. So whp, there is no such pair {v, w}.
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6.2.3 Completing the proof

To finish the proof, we want to construct a rainbow colouring of the edges of G from

the given random colouring. By Lemmas 6.4 and 6.5, we can assume that every pair

of vertices is joined by at least c log n independent r-paths for a constant c > 0, and

that Av,w does not hold for any pair {v, w} of vertices.

Recall that we call a pair of vertices dangerous if it is joined by at most K

independent rainbow r-paths in the original random colouring. Take an arbitrary

ordering of the dangerous pairs. We will go through them one by one, each time

selecting an r-path joining the dangerous pair, changing its colours if necessary to

make it a rainbow path, then flagging all edges on the path to ensure they do not

get recoloured later on.

Let {v, w} be the pair we consider. It is joined by at least c log n > rL indepen-

dent r-paths if n is large enough. We want to find one such path where no edge is

flagged yet.

So take a set I of rL independent r-paths joining v and w, and consider any such

path P1 in I. Either none of its edges is flagged — in this case, we have found our

path. Otherwise, it contains (at least) one edge which is also on an r-path joining a

dangerous pair other than {v, w}. For this dangerous pair, one path of length r was

flagged previously. Therefore, at most r−1 of the other paths in I can contain edges

flagged for the same dangerous pair. Discard those paths and P1. We are left with

at least r(L− 1) paths joining v and w. Select any such path P2 and proceed in the

same way as with P1: either P2 is completely unflagged, or we remove P2 and any

other path with edges flagged for the same dangerous pair as P2 from consideration,

and are left with at least r(L− 2) paths. We repeat this procedure until we find a

completely unflagged path. This happens at PL at the latest. Otherwise, if PL also

contains an edge flagged for a new dangerous pair, then Av,w holds, a contradiction.

Therefore, there is a path joining {v, w} where no edge is flagged at the time we

consider {v, w}. Select this path, change its colours if necessary to make it a rainbow
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path, then flag all its edges and move on to the next dangerous pair. Repeat this

procedure until all dangerous pairs have been assigned rainbow paths.

It only remains to check that during our recolouring procedure no previously

non-dangerous pair has lost all of its rainbow paths. Let {v, w} be a pair that was

not dangerous before we started recolouring. Since it was originally joined by at

least K = rL rainbow paths, by the same argument as above for dangerous pairs,

one of these paths must be completely unflagged, otherwise Av,w would hold. This

path has retained its original colours and is therefore still a rainbow path. So all

pairs of vertices are joined by rainbow paths now.
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[34] N. Kamčev, M. Krivelevich, and B. Sudakov. Some remarks on rainbow con-

nectivity. Journal of Graph Theory, 2015.

[35] R. Kang and C. McDiarmid. Colouring random graphs. In Topics in Chromatic

Graph Theory, volume 156 of Encyclopedia of Mathematics and Its Applications,

pages 199–229. Cambridge University Press, 2015.

[36] S. Krantz. Handbook of Complex Variables. Birkhäuser, Boston, 1999.
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