Small exercises 1. Let k be a field. Consider the ring $$A = \left(\frac{k[x,y]}{(xy)}\right)_{(x,y)} .$$ Compute the rings $\mathcal{O}(U)$ for all open subsets $U \subset \operatorname{Spec} A$. - 2. a) What are the possible residue fields of points in Spec $\mathbb{R}[x]$? - b) Describe the map $$\operatorname{Spec} \mathbb{C}[x] \to \operatorname{Spec} \mathbb{R}[x]$$ induced by the field extension $\mathbb{R} \subset \mathbb{C}$. - 3. Let A be a ring. Show that Spec A is compact. - 4. Does there exist an affine scheme having exactly 1 closed and 3 non-closed points? - 5. Consider the continuous map $$f^* \colon \operatorname{Spec} B \to \operatorname{Spec} A$$ induced by a ring homomorphism $f: A \to B$. - a) Suppose that f is surjective. Show that f^* is injective and its image is closed in Spec A. - b) Suppose that f is injective. Show that the image of f^* is dense in Spec A and give an example where f^* is not surjective. - c) Suppose that f^* : Spec $B \to \operatorname{Spec} A$ is a homeomorphism. Does f need to be injective or surjective? - 6. Let A be a ring and let $p \in \operatorname{Spec} A$. Show that $\{p\}$ is closed if and only if the map $A \to \kappa(p)$ is surjective. - 7. For a subset $S \subset \operatorname{Spec} A$, let $$I(S) = \{ f \in A \mid S \subset V(f) \} \ .$$ - a) Show that $V(I(S)) = \overline{S}$ for any subset $S \subset \operatorname{Spec} A$. - b) Show that $I(V(J)) = \sqrt{J}$ for any ideal $J \subset A$. - 8. Let k be a field endowed with the discrete topology. Let A be the ring of all convergent sequences in k. Show that Spec A is homeomorphic to a closed subset of \mathbb{R} and its structure sheaf \mathcal{O} is precisely the sheaf of continuous functions to k.