Small exercises

1. Let k be a field. Consider the ring

$$A = \left(\frac{k[x,y]}{(xy)}\right)_{(x,y)} .$$

Compute the rings $\mathcal{O}(U)$ for all open subsets $U \subset \operatorname{Spec} A$.

- 2. a) What are the possible residue fields of points in Spec $\mathbb{R}[x]$?
 - b) Describe the map

$$\operatorname{Spec} \mathbb{C}[x] \to \operatorname{Spec} \mathbb{R}[x]$$

induced by the field extension $\mathbb{R} \subset \mathbb{C}$.

- 3. Let A be a ring. Show that Spec A is compact.
- 4. Does there exist an affine scheme having exactly 1 closed and 3 non-closed points?
- 5. Consider the continuous map

$$f^* \colon \operatorname{Spec} B \to \operatorname{Spec} A$$

induced by a ring homomorphism $f: A \to B$.

- a) Suppose that f is surjective. Show that f^* is injective and its image is closed in Spec A.
- b) Suppose that f is injective. Show that the image of f^* is dense in Spec A and give an example where f^* is not surjective.
- c) Suppose that f^* : Spec $B \to \operatorname{Spec} A$ is a homeomorphism. Does f need to be injective or surjective?
- 6. Let A be a ring and let $p \in \operatorname{Spec} A$. Show that $\{p\}$ is closed if and only if the map $A \to \kappa(p)$ is surjective.
- 7. For a subset $S \subset \operatorname{Spec} A$, let

$$I(S) = \{ f \in A \mid S \subset V(f) \} \ .$$

- a) Show that $V(I(S)) = \overline{S}$ for any subset $S \subset \operatorname{Spec} A$.
- b) Show that $I(V(J)) = \sqrt{J}$ for any ideal $J \subset A$.
- 8. Let k be a field endowed with the discrete topology. Let A be the ring of all convergent sequences in k. Show that Spec A is homeomorphic to a closed subset of \mathbb{R} and its structure sheaf \mathcal{O} is precisely the sheaf of continuous functions to k.