Tutorial 11

Let k be a field.

- **1.** One of the following categories is not abelian. Can you find it?
 - \Box The category of countably generated k[x]-modules
 - \square The category of locally free $\mathcal{O}_{\mathbb{P}^1_k}$ -modules
 - \Box The category of finite abelian groups whose order is a power of 3
 - \Box The category \mathcal{C} defined by $ob(\mathcal{C}) = \mathbb{N}_0$ and $\operatorname{Hom}_{\mathcal{C}}(m, n) = k^{n \times m}$ for all $m, n \in \mathbb{N}_0$, where the composition is given by matrix multiplication
 - \Box The category \mathcal{A}^{op} obtained from an abelian category \mathcal{A} by reversing the directions of all arrows
- **2.** Let $f: A \to B$ be a morphism in an abelian category.
 - a) Show that f is a monomorphism if and only if ker f = 0.
 - b) Show that f is an epimorphism if and only if coker f = 0.
 - c) Show that f is an isomorphism if and only if ker f = 0 and coker f = 0.
 - d) Show that there exists an isomorphism coker ker $f \cong \ker \operatorname{coker} f$ such that the following diagram commutes:

3. For an abelian group A, we define $\text{Ext}^i(A, -)$ as the *i*-th right derived functor of the left-exact functor Hom(A, -) from the category of abelian groups to itself. Compute the following abelian groups for all *i*:

$$\operatorname{Ext}^{i}(\mathbb{Z}/4,\mathbb{Z}/6)$$
 $\operatorname{Ext}^{i}(\mathbb{Q},\mathbb{Z}/5)$

4. Let $f: A^{\bullet} \to B^{\bullet}$ be a morphism of complexes in an abelian category. We define the complex $C^{\bullet}(f)$ by $C^{k}(f) = A^{k+1} \oplus B^{k}$ for all $k \in \mathbb{Z}$, where the differential $d^{k-1}: C^{k-1}(f) \to C^{k}(f)$ is given as the sum of the three morphisms shown below:

$$C^{k-1}(f) = \begin{array}{c} A^k & \xrightarrow{-d_A^k} & A^{k+1} \\ \oplus & f^k & \oplus \\ B^{k-1} & \xrightarrow{-d_A^k} & B^k \end{array} = C^k(f)$$

Show that f is a quasi-isomorphism if and only if $C^{\bullet}(f)$ has no cohomology.