Tutorial 10

Let k be a field.

1. Consider the ring

$$A = \left(\frac{k[x,y]}{(xy)}\right)_{(x,y)}.$$

Recall from Tutorial 2 that

$$X := \operatorname{Spec} A = \{(x), (y), (x, y)\}$$

and

$$\mathcal{O}_X(\{(x)\}) = k(y)$$
 $\mathcal{O}_X(\{(y)\}) = k(x)$ $\mathcal{O}_X(\{(x),(y)\}) = k(x) \times k(y)$.

The A-linear map $A \to A$ given by $a \mapsto ax$ induces a homomorphism $f \colon \mathcal{O}_X \to \mathcal{O}_X$ of \mathcal{O}_X -modules.

Show that $\mathcal{M} = \ker f$ and $\mathcal{N} = \operatorname{coker} f$ are coherent \mathcal{O}_X -modules and explicitly compute $\mathcal{M}(U)$ and $\mathcal{N}(U)$ for the three open subsets $U \subset X$ from above.

2. Consider the morphism $f: \mathbb{P}^1_k \to \mathbb{P}^2_k$ which is given in homogeneous coordinates by

$$[x:y] \mapsto [x^5:x^2y^3:y^5]$$
.

Compute the pullback $f^*\mathcal{O}_{\mathbb{P}^2_k}(1)$.

3. True or false? Find a proof or a counterexample.

Statement	True	False
If X is an integral scheme with function field K , the constant sheaf with values in K is a quasi-coherent \mathcal{O}_X -module.		
If $i: U \to X$ is an open immersion, the pushforward $i_*\mathcal{O}_U$ is a coherent \mathcal{O}_X -module.		
Any coherent \mathcal{O}_X -module on $X = \mathbb{A}^2_k \setminus \{(0,0)\}$ is of the form $\mathcal{M} _X$ for a coherent $\mathcal{O}_{\mathbb{A}^2_k}$ -module \mathcal{M} .		