Tutorial 8

1. Compute the following tensor products.

 $\mathbb{Z}/6 \otimes_{\mathbb{Z}/60} \mathbb{Z}/10$

 $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$

 $\mathbb{C}[x]/(x^2) \otimes_{\mathbb{R}} \mathbb{C}[x]/(x^2)$ $\mathbb{R}(x) \otimes_{\mathbb{R}[x]} \mathbb{C}[x]$

- **2.** Let X and Y be schemes defined over fields of different characteristic. Show that the fibre product $X \times_{\mathbb{Z}} Y$ is empty.
- **3.** Let $X \to S$ be a morphism of schemes. Show that the diagonal morphism

$$\Delta \colon X \to X \times_S X$$

is separated.

4. Consider the \mathbb{R} -scheme

$$X = \operatorname{Proj} \frac{\mathbb{R}[x, y, z]}{(x^2 + y^2 + z^2)} \; .$$

Show that X is not isomorphic to $\mathbb{P}^1_{\mathbb{R}}$, but the \mathbb{C} -scheme

$$X_{\mathbb{C}} = X \times_{\mathbb{R}} \mathbb{C}$$

is isomorphic to $\mathbb{P}^1_{\mathbb{C}}$.

5. True or false? Find a proof or a counterexample.

Statement	True	False
For any fibre product $X \times_S Y$ of schemes, the projection morphism $X \times_S Y \to X$ is separated.		
If $f: X \to Y$ is a surjective morphism of schemes such that Y is connected and the fibre $f^{-1}(y)$ is connected for all $y \in Y$, then X is connected.		
A finite morphism of schemes is always separated.		