Tutorial 5

Let k be a field.

1. Decide for each of the following schemes whether they are connected, irreducible, reduced, or integral.

 $\operatorname{Spec} \mathbb{Z}/9$ $\operatorname{Spec} \mathbb{Z}/10$ $\operatorname{Spec} \mathbb{Z}/11$ $\operatorname{Spec} \mathbb{Z}/12$

2. Which of the following schemes are isomorphic to each other?

Spec k Spec $(k \times k)$ Proj k[x] Spec $k[x]_x$ Proj $(k[x, y]) \setminus V(xy)$ Proj $\frac{k[x, y]}{(xy)}$

(We assume $\deg x = \deg y = 1$ in all cases.)

- **3.** Consider the graded ring S = k[u, v] where deg u = 2 and deg v = 3. Show that the scheme Proj S is isomorphic to \mathbb{P}^1_k .
- **4.** True or false? Find a proof or a counterexample.

Statement	True	False
A scheme is irreducible if and only if it has a generic point.		
A morphism $f: X \to Y$ of schemes over k sends a k-rational point of X to a k-rational point of Y.		
Let X be a scheme. If $\mathcal{O}_X(X)$ is reduced, then X is reduced.		
A dense open subset of a connected scheme is connected.		
If X is an integral scheme, then for any non-empty open subset $\emptyset \neq U \subset X$ the restriction map $\mathcal{O}_X(X) \to \mathcal{O}_X(U)$ is injective.		