Solutions to sheet 2

- 1. Let A be a ring and let \mathcal{O} be the structure sheaf on Spec A.
 - a) Show that the stalk of \mathcal{O} at \mathfrak{p} is isomorphic to $A_{\mathfrak{p}}$.

Proof. For any open neighbourhood U of \mathfrak{p} , consider the ring homomorphism

$$\mathcal{O}(U) \to A_{\mathfrak{p}}$$
$$s \mapsto s(\mathfrak{p})$$

Since these morphisms are compatible with the restriction maps, the universal property of the direct limit yields a well-defined ring homomorphism

$$\mathcal{O}_{\mathfrak{p}} \to A_{\mathfrak{p}}$$
$$[(s, U)] \mapsto s(\mathfrak{p})$$

We aim to show that this map is an isomorphism.

To prove injectivity, let $[(s, U)] \in \mathcal{O}_{\mathfrak{p}}$ such that $s(\mathfrak{p}) = 0 \in A_{\mathfrak{p}}$. By definition of $\mathcal{O}(U)$, after shrinking U we may assume that there exist $f, g \in A$ such that for all $\mathfrak{q} \in U$, we have $g \notin \mathfrak{q}$ and $s(\mathfrak{q}) = \frac{f}{g} \in A_{\mathfrak{q}}$. In particular, $\frac{f}{g} = 0 \in A_{\mathfrak{p}}$ implies fh = 0 for some $h \in A \setminus \mathfrak{p}$. By intersecting U with the open neighbourhood $U_h = \operatorname{Spec} A \setminus V(h)$ of \mathfrak{p} , we may further assume that $h \in A \setminus \mathfrak{q}$ for all $\mathfrak{q} \in U$. But then $s(\mathfrak{q}) = \frac{f}{g} = 0 \in A_{\mathfrak{q}}$ for all $\mathfrak{q} \in U$, i. e. $[(s, U)] = 0 \in \mathcal{O}_{\mathfrak{p}}$.

To prove surjectivity, let $\frac{f}{g} \in A_{\mathfrak{p}}$ with $f, g \in A$ and $g \notin \mathfrak{p}$. We may then define $s \in \mathcal{O}(U_g)$ via $s(\mathfrak{q}) = \frac{f}{g} \in A_{\mathfrak{q}}$ for all $\mathfrak{q} \in U_g$, which is even globally a fraction. Now, $[(s, U_g)] \in \mathcal{O}_{\mathfrak{p}}$ maps to $s(\mathfrak{p}) = \frac{f}{g} \in A_{\mathfrak{p}}$.

b) Show that for any $f \in A$, $\mathcal{O}(U_f) = A_f$.

Proof. Consider the ring homomorphism

$$A_f \to \mathcal{O}(U_f)$$

$$\frac{g}{f^n} \mapsto (\mathfrak{p} \mapsto \frac{g}{f^n} \in A_\mathfrak{p}) .$$

This is well-defined because $f^n \notin \mathfrak{p}$ for all $\mathfrak{p} \in U_f$. We prove that this map is an isomorphism.

To prove injectivity, let $\frac{g}{f^n} \in A_f$ with $g \in A$ and $n \in \mathbb{N}$ such that $\frac{g}{f^n} = 0 \in A_p$ for all $\mathfrak{p} \in U_f$. Hence, for all $\mathfrak{p} \in U_f$ there exists some $h_{\mathfrak{p}} \in A \setminus \mathfrak{p}$ such that $gh_{\mathfrak{p}} = 0$. This yields an open cover $U_f \subset \bigcup_{\mathfrak{p} \in U_f} U_{h_{\mathfrak{p}}}$. In other words, $V(f) \supset V(I)$ where $I = \sum_{\mathfrak{p} \in U_f} h_{\mathfrak{p}} A$. In particular,

$$f \in \bigcap_{\mathfrak{q} \ni f} \mathfrak{q} \subset \bigcap_{\mathfrak{q} \supset I} \mathfrak{q} = \sqrt{I} ,$$

i.e. $f^m = h_{\mathfrak{p}_1} a_1 + \cdots + h_{\mathfrak{p}_k} a_k$ for some $m \in \mathbb{N}, \mathfrak{p}_1, \ldots, \mathfrak{p}_k \in U_f$, and $a_1, \ldots, a_k \in A$. But this implies

$$gf^m = gh_{\mathfrak{p}_1}a_1 + \dots + gh_{\mathfrak{p}_k}a_k = 0 ,$$

so $\frac{g}{f^n} = 0 \in A_f$, as wanted.

To prove surjectivity, let $s \in \mathcal{O}(U_f)$ be given. By definition of $\mathcal{O}(U_f)$, for all $\mathfrak{p} \in U_f$ there exists an open neighbourhood $V_{\mathfrak{p}} \subset U_f$ of \mathfrak{p} and $g_{\mathfrak{p}}, h_{\mathfrak{p}} \in A$ such that for all $\mathfrak{q} \in V_{\mathfrak{p}}$, we have $h_{\mathfrak{p}} \notin \mathfrak{q}$ and $s(\mathfrak{q}) = \frac{g_{\mathfrak{p}}}{h_{\mathfrak{p}}} \in A_{\mathfrak{q}}$. Since the standard open sets U_e for $e \in A$ form a basis of the Zariski topology on Spec A, by shrinking $V_{\mathfrak{p}}$ we may assume that $V_{\mathfrak{p}} = U_{e_{\mathfrak{p}}}$ for some $e_{\mathfrak{p}} \in A \setminus \mathfrak{p}$. By replacing $h_{\mathfrak{p}}$ and $e_{\mathfrak{p}}$ by their product (and $g_{\mathfrak{p}}$ by $g_{\mathfrak{p}}e_{\mathfrak{p}}$), we may further assume that $e_{\mathfrak{p}} = h_{\mathfrak{p}}$. As in the proof of injectivity, the open cover $U_f \subset \bigcup_{\mathfrak{p} \in U_f} U_{h_{\mathfrak{p}}}$ gives rise to an equation $f^m = h_{\mathfrak{p}_1}a_1 + \cdots + h_{\mathfrak{p}_k}a_k$ for suitable $m \in \mathbb{N}, \mathfrak{p}_1, \ldots, \mathfrak{p}_k \in U_f$, and $a_1, \ldots, a_k \in A$. For simplicity, we write g_i and h_i instead of $g_{\mathfrak{p}_i}$ and $h_{\mathfrak{p}_i}$ in the following. Let $i, j \in \{1, \ldots, k\}$. Since for all $\mathfrak{q} \in U_{h_i} \cap U_{h_j} = U_{h_i h_j}$ we have $\frac{g_i}{h_i} = s(\mathfrak{q}) = \frac{g_j}{h_j}$ in $A_{\mathfrak{q}}$, the already proven injectivity of the map $A_{h_i h_j} \to$ $\mathcal{O}(U_{h_ih_j})$ yields $\frac{g_i}{h_i} = \frac{g_j}{h_i}$ in $A_{h_ih_j}$, which means that $(h_ih_j)^N(g_ih_j - g_jh_i) = 0$ for sufficiently large $N \in \mathbb{N}$. Since there are only finitely many pairs (i, j), we can choose $N \in \mathbb{N}$ independent of *i* and *j*. Let $g'_i = h_i^N g_i$ and $h'_i = h_i^{N+1}$ for $i \in \{1, \ldots, k\}$. Then we have $s(\mathfrak{q}) = \frac{g_i}{h_i} = \frac{g'_i}{h'_i} \in A_\mathfrak{q}$ for all $\mathfrak{q} \in U_{h_i} = U_{h'_i}$ and $g'_i h'_j = g'_j h'_i$ for all $i, j \in \{1, \ldots, k\}$. The open cover $U_f \subset U_{h'_1} \cup \cdots \cup U_{h'_k}$ shows that $f^{m'} = h'_1 a'_1 + \dots + h'_k a'_k$ for some $m' \in \mathbb{N}$ and certain $a'_1, \dots, a'_k \in A$. We now replace m, g_i, h_i, a_i by m', g'_i, h'_i, a'_i . We claim that the element

$$b = \frac{g_1 a_1 + \dots + g_k a_k}{f^m} \in A_f$$

maps to s. Let $\mathfrak{q} \in U_f$, so $\mathfrak{q} \in U_{h_i}$ for at least one $i \in \{1, \ldots, k\}$. We now have

$$b = \frac{(g_1a_1 + \dots + g_ka_k)h_i}{f^m h_i} = \frac{(h_1a_1 + \dots + h_ka_k)g_i}{f^m h_i} = \frac{g_i}{h_i} = s(\mathfrak{q})$$

as desired.

- 2. Recall that a ring A is a local ring if it has a unique maximal ideal \mathfrak{m}_A . A homomorphism between local rings $\varphi \colon A \to B$ is called a local homomorphism if $\varphi(\mathfrak{m}_A) \subset \mathfrak{m}_B$.
 - a) Show that a ring A is a local ring if and only if Spec A has a unique closed point.

Proof. We know that the closed points of Spec A are precisely the maximal ideals of A. Therefore, A has a unique maximal ideal if and only if Spec A has a unique closed point. \Box

b) Show that a homomorphism $\varphi \colon A \to B$ between local rings is local if and only if the induced map Spec $B \to \text{Spec } A$ maps the closed point of Spec B to the closed point of Spec A.

Proof. We need to show the equivalence $\varphi(\mathfrak{m}_A) \subset \mathfrak{m}_B \iff \varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$. The direction " \Leftarrow " is clear. Conversely, if $\varphi(\mathfrak{m}_A) \subset \mathfrak{m}_B$, we have $\mathfrak{m}_A \subset \varphi^{-1}(\mathfrak{m}_B)$. But $\mathfrak{m}_A \subset A$ is a maximal ideal and $\varphi^{-1}(\mathfrak{m}_B) \subset A$ is a prime ideal, so $\mathfrak{m}_A = \varphi^{-1}(\mathfrak{m}_B)$.

c) Give an example of a homomorphism $\varphi \colon A \to B$ between local rings which is not local. Describe the induced map Spec $B \to \text{Spec } A$ in your example.

Proof. Let k be a field. Let $A = k[x]_{(x)}$ and B = k(x). Then A is a local ring (because it is a localization at a prime ideal) with maximal ideal $\mathfrak{m}_A = xA$ and B is a local ring (because it is a field) with maximal ideal $\mathfrak{m}_B = (0)$. But for the canonical ring homomorphism $\varphi \colon A \to B$, we have $\varphi(\mathfrak{m}_A) = B \not\subset \mathfrak{m}_B$ because $x \in B$ is a unit, so φ is not local. The induced map Spec $B \to$ Spec A corresponds to the embedding of the generic point into the irreducible one-dimensional scheme Spec A.

- d) Give examples of local rings A such that Spec A has exactly
 - i. one point;

Proof. Take
$$A = k$$
 to be a field. \Box

ii. two points;

Proof. Take A to be a discrete valuation ring (see next exercise). \Box

iii. infinitely many points.

Proof. Take any local ring of dimension at least two, for example $A = k[x, y]_{(x,y)}$.

- 3. Let R be a discrete valuation ring with maximal ideal \mathfrak{m} , residue field $k = R/\mathfrak{m}$ and fraction field $K = \operatorname{Frac} R$.
 - a) Describe the topological space $\operatorname{Spec} R$.

Proof. Since R is a one-dimensional integral domain, the only other prime ideal apart from the maximal ideal \mathfrak{m} is the zero ideal, hence $\operatorname{Spec} R = \{(0), \mathfrak{m}\}$. We know that the generic point $(0) \in \operatorname{Spec} R$ is dense and the point $\mathfrak{m} \in \operatorname{Spec} R$ corresponding to the maximal ideal is closed. Hence, the open subsets of $\operatorname{Spec} R$ are precisely \emptyset , $\{(0)\}$ and $\operatorname{Spec} R$.

b) Compute the structure sheaf \mathcal{O} on any open subset of Spec R.

Proof. We know that $\mathcal{O}(\emptyset) = 0$ and $\mathcal{O}(\operatorname{Spec} R) = R$. And by the first exercise, $\mathcal{O}(\{(0)\}) = \mathcal{O}_{(0)} = A_{(0)} = K$.

c) Compute all stalks of the structure sheaf \mathcal{O} on Spec R.

Proof. By the first exercise, $\mathcal{O}_{(0)} = A_{(0)} = K$ and $\mathcal{O}_{\mathfrak{m}} = R_{\mathfrak{m}} = R$. (The corresponding residue fields would be K and k.)

- 4. a) Give an example of a ring A and a non-zero element $f \in \mathcal{O}(\operatorname{Spec} A)$ such that for all $\mathfrak{p} \in \operatorname{Spec} A$, the value of f in the residue field $\kappa(\mathfrak{p})$ vanishes.
 - b) Can you give an example as above in the case where A = k[X] for an affine variety X over an algebraically closed field k? If not, try to pin down the ring theoretic property that k[X] has which excludes a phenomenon as above.

Proof. Note that an element $f \in \mathcal{O}(\operatorname{Spec} A) = A$ satisfies $f(\mathfrak{p}) = 0 \in \kappa(\mathfrak{p})$ for all $\mathfrak{p} \in \operatorname{Spec} A$ if and only if $f \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p} = \sqrt{(0)}$, i. e. f is nilpotent.

Therefore, for (a) we can take any non-reduced ring A and any non-zero nilpotent element $f \in A$. For example, if $A = k[x]/(x^2)$ and f = x, we have $f((x)) = 0 \in k = \kappa((x))$ at the only point $(x) \in \text{Spec } A$.

Conversely, no such examples exist if A is reduced, in particular, if A = k[X]. \Box