

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

## Algebraic Geometry

Sheet 8

Unless specified otherwise, we will always work over an algebraically closed field k.

**Exercise 1.** (4 points) A family of cubic curves For  $t \in k$ , consider the cubic curve

$$X_t := V_{\mathbb{P}^2}(x_0^3 + x_1^3 + x_2^3 + t(x_0 + x_1 + x_2)^3) \subset \mathbb{P}^2.$$

For which values of t is  $X_t$  singular and what are the corresponding singular points?

**Exercise 2.** (4 points) Singular points on cubic curves

Let  $X \subset \mathbb{P}^2$  be a hypersurface of degree 3, i.e.  $X = V_{\mathbb{P}^2}(F)$  where  $F \in k[x_0, x_1, x_2]$  is a homogeneous polynomial of degree three.

- (a) Show that if X has two singular points  $x, y \in X$  with  $x \neq y$ , then the line joining x and y is an irreducible component of X.
- (b) Deduce that X has at most 3 singular points. Show further that if X has exactly three singular points, then it is the union of three lines.
- (c) Show that X has at most one singular point if it is irreducible.

**Exercise 3.** (4 points) Smooth hypersurfaces.

Let d, n be positive integers. Find an example of an irreducible homogeneous polynomial  $F \in k[x_0, \ldots, x_{n+1}]$ of degree d such that  $X = V_{\mathbb{P}^{n+1}}(F) \subset \mathbb{P}^{n+1}$  is smooth.

**Hint:** For simplicity, you may assume that the characteristic of k does not divide d, but the desired examples exist without that assumption.

**Exercise 4.** (4 points) The tangent space of a union of two components.

Let  $X = X_1 \cup X_2$  be the union of two affine varieties  $X_1, X_2 \subset \mathbb{A}^n$  with  $X_i \not\subset X_j$  for  $i \neq j$  and let  $x \in X_1 \cap X_2$  be a point in the intersection of  $X_1$  and  $X_2$ .

(a) Show that x is a singular point of X.

**Hint:** You can use that the local ring  $\mathcal{O}_{X,x}$  at a smooth point  $x \in X$  is regular, that is, its maximal ideal  $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$  is generated by  $\dim_x(X)$  elements. This statement has accidentally been skipped in the lecture and it will be catched up next week in class.

(b) Show that  $T_{X_1,x} + T_{X_2,x} \subset T_{X,x}$ . Is it always true that equality holds here?

Hand in: before noon on Monday, December 10th in the appropriate box on the 1st floor.