

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry

Sheet 2

Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) Closed, open or dense?

Let $k = \mathbb{C}$ and decide for each of the following subsets $S \subset \mathbb{A}^2_{\mathbb{C}}$ whether they are closed, open or dense (in the Zariski topology):

- (a) $S = \{(t, t^2) \mid t \in \mathbb{C}\};$
- (b) $S = \{(t, st) \mid s, t \in \mathbb{C}\};$
- (c) $S = \{(s,t) \mid s, t \in \mathbb{Q}\}$;
- (d) $S = \{(t, 2^t) \mid t \in \mathbb{Z}\}.$

Exercise 2. (4 points) *Irreducible components of an algebraic set.* Decompose the algebraic set

$$X := V(x_1^2 - x_2 x_3, \ x_1 x_3 - x_1) \subset \mathbb{A}_k^3$$

into its irreducible components.

Exercise 3. (4 points) The quadric cone. Let $X := V(x_1x_2 - x_3x_4) \subset \mathbb{A}^4$.

- (a) Show that k[X] is not a unique factorization domain;
- (b) Find a regular function $f \in k[X]$ whose vanishing locus $V_X(f) \subset X$ has the property that none of its irreducible components are given by the vanishing of a single regular function on X.

Exercise 4. (4 points) A criterion for a regular map to be an isomorphism. Let $\phi : X \to Y$ be a regular map between affine algebraic sets. Show that ϕ is an isomorphism if $\phi^* : k[Y] \to k[X]$ is an isomorphism.

(**Hint:** Let $X \subset \mathbb{A}^n$ with affine coordinates t_1, \ldots, t_n on \mathbb{A}^n . To guess the correct formula for the inverse ψ of ϕ , assume for a moment that it exists. Then $\psi = (\psi_1, \ldots, \psi_n)$ with regular functions $\psi_i \in k[Y]$ which are explicitly given by $\psi_i = \psi^*(t_i)$, where ψ^* is an inverse of ϕ^* .)

Hand in: before noon on Monday, October 29th in the appropriate box on the 1st floor.