

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry

Sheet 13

Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) Locally free \mathcal{O}_X -modules are coherent.

(a) Let X be an affine algebraic variety with ring of regular functions R = k[X]. Show that there is a natural isomorphism of \mathcal{O}_X -modules

 $\widetilde{R} \xrightarrow{\sim} \mathcal{O}_X.$

(b) Let X be a quasi-projective variety and let \mathcal{E} be a locally free \mathcal{O}_X -module of rank r. Show that \mathcal{E} is coherent (hence also quasi-coherent).

Exercise 2. (4 points) Restriction of quasi-coherent sheaves to standard open subsets.

(a) Let \mathcal{F} be a sheaf of abelian groups on a toppological space X. Let $i: U \hookrightarrow X$ be the inclusion of an open subset $U \subset X$. Recall that the restriction of \mathcal{F} to U is defined via $\mathcal{F}|_U := i^{-1}\mathcal{F}$. Show that

$$\mathcal{F}|_U(V) = \mathcal{F}(V)$$

for all open subsets $V \subset U$.

(b) Let X be an affine variety, let R = k[X] be its ring of regular functions and let M be an R-module. Let $f \in R$ and let $U_f := X \setminus V_X(f)$ be the corresponding standard open subset. Prove that

$$\widetilde{M}|_{U_f} \cong \widetilde{M_f}.$$

That is, the restriction of the \mathcal{O}_X -module \widetilde{M} to U_f is naturally isomorphic to the \mathcal{O}_{U_f} -module which corresponds to the $k[U_f] = R_f$ -module M_f .

Remark: You should prove this directly, without using Exercise 3 below (whose solution most likely will use the result you prove here).

Exercise 3. (4 points) Right exactness of global section functor for quasi-coherent sheaves on affine varieties.

Let X be an affine variety with ring of regular functions R = k[X] and let \mathcal{M} be a quasi-coherent \mathcal{O}_X -module on X.

- (a) Show that there is a finite covering $X = \bigcup_{i=1}^{n} U_i$ of X by standard open subsets $U_i = U_{g_i}$, such that $\mathcal{M}|_{U_i} \cong \widetilde{M}_i$ for some R_{g_i} -module M_i .
- (b) Let $s \in \mathcal{M}(X)$ be a global section and let $f \in R$ be a nonzero regular function on X. Show that $s|_{U_f} = 0$ implies that $f^m s = 0$ for some $m \ge 0$.
- (c) Let $f \in R$ be a nonzero regular function on X and let $s \in \mathcal{M}(U_f)$ be a section of \mathcal{M} over U_f . Show that for some $m \geq 0$, the section $f^m s \in \mathcal{M}(U_f)$ extends to X, i.e. it lies in the image of the restriction map $\mathcal{M}(X) \to \mathcal{M}(U_f)$.
- (d) Use the above items to show that there is a natural isomorphism

$$\phi: \widetilde{\mathcal{M}}(X) \xrightarrow{\sim} \mathcal{M}.$$

(e) Conclude from part (d) that for any short exact sequence $0 \to \mathcal{M}_1 \to \mathcal{M}_2 \to \mathcal{M}_3 \to 0$ of quasi-coherent \mathcal{O}_X -modules on X, the corresponding sequence on global sections

$$0 \to \mathcal{M}_1(X) \to \mathcal{M}_2(X) \to \mathcal{M}_3(X) \to 0$$

is again exact.

Exercise 4. (4 points) *Differential forms*

- (a) Let R be a finitely generated k-algebra. Show that the module of Kähler differentials $\Omega^1_{R/k}$ is a finitely generated R-module.
- (b) Let $R = k[t_1, \ldots, t_n]$ be the polynomial ring over k in n variables. Show that the symbols dt_1, \ldots, dt_n form a basis of the module of Kähler differentials $\Omega^1_{R/k}$. In particular, $\Omega^1_{R/k} \cong R^{\oplus n}$ is free of rank n.
- (c) Let R = k[X] be the coordinate ring of the affine variety $X = V(t_1^2 t_2^3) \subset \mathbb{A}^2$. Show that the module of Kähler differentials $\Omega^1_{R/k}$ is not a free *R*-module.

Hand in: before noon on Monday, January 28th in the appropriate box on the 1st floor.