

LUDWIG-MAXIMILIANS[.] UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry

Sheet 12

Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) The direct image sheaf

Let $f: X \to Y$ be a continuous map of topological spaces and let \mathcal{F} be a sheaf of abelian groups on X. Consider the presheaf $f_*\mathcal{F}$ on Y which on an open subset $V \subset Y$ is given by

 $f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$

and whose restriction maps are induced by those of \mathcal{F} .

(a) Show that $f_*\mathcal{F}$ is a sheaf.

(b) Compute the stalks of $f_*\mathcal{F}$ in the following examples:

- (i) f is constant, i.e. there is a point $y_0 \in Y$ with $f(x) = y_0$ for all $x \in X$;
- (ii) $X = Y = \mathbb{R}$ with the euclidean topology and $f : \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2$.

Exercise 2. (4 points) The inverse image sheaf.

Let $f: X \to Y$ be a continuous map of topological spaces and let \mathcal{G} be a sheaf of abelian groups on Y. Consider the sheaf $f^{-1}\mathcal{G}$ on X which is given as sheafification of the presheaf which on an open subset $U \subset X$ is given by the direct limit

$$\lim_{V\supset f(U)}\mathcal{G}(V),$$

where V runs through all open subsets of Y which contain f(U) and whose restriction maps are induced by those of \mathcal{G} .

- (a) Show that $f^{-1}\mathcal{G}_x \cong \mathcal{G}_{f(x)}$ for all $x \in X$.
- (b) Show that for any abelian group G, we have $f^{-1}\underline{G}_Y \cong \underline{G}_X$
- (c) Show that f^{-1} is a functor. That is, for any morphism of sheaves $\varphi : \mathcal{G} \to \mathcal{G}'$ there is a natural morphism $f^{-1}(\varphi) : f^{-1}\mathcal{G} \to f^{-1}\mathcal{G}'$.

(**Hint:** You may use that sheafification is functorial, i.e. any morphism of presheaves $\psi : \mathcal{F}_1 \to \mathcal{F}_2$ induces a unique morphism of sheaves $\psi^+ : \mathcal{F}_1^+ \to \mathcal{F}_2^+$.)

(d) Show that the functor f^{-1} is exact. That is, for any exact sequence of sheaves $\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ on Y the induced sequence $f^{-1}\mathcal{G}_1 \to f^{-1}\mathcal{G}_2 \to f^{-1}\mathcal{G}_3$ on X is exact.

Definition. Let X be a quasi-projective algebraic variety. A (algebraic) vector bundle of rank r on X is a quasi-projective variety E together with a regular map $\pi : E \to X$ with the following properties:

(1) there is an open covering $X = \bigcup_{i \in I} U_i$ of X and there are isomorphisms

$$\varphi_i: \pi^{-1}(U_i) \xrightarrow{\sim} U_i \times k^r$$

that are compatible with the two natural projections to U_i , i.e. $\operatorname{pr}_1 \circ \varphi_i = \pi|_{\pi^{-1}(U_i)}$.

(2) for all $i, j \in I$ the composition

$$\varphi_j \circ \varphi_i^{-1} : (U_i \cap U_j) \times k^r \longrightarrow (U_i \cap U_j) \times k^r$$

is of the form

$$\varphi_j \circ \varphi_i^{-1}(x, v) = (x, \varphi_{ij}(x) \cdot v),$$

where $x \in U_{ij}$, $v \in k^r$, and where $\varphi_{ij}(x) \in \operatorname{GL}(r,k)$ is an invertible $r \times r$ matrix over the field k whose entries are regular functions on U_{ij} .

Exercise 3. (4 points) Algebraic vector bundles.

Let X be a quasi-projective algebraic variety and let $\pi : E \to X$ be an algebraic vector bundle of rank r on X.

- (a) Show that $\dim E = \dim X + r$.
- (b) Let $E(x) = \pi^{-1}(x)$ be the fibre of π above x. Choose an index $i \in I$ with $x \in U_i$ and define the structure of a k-vector space on E(x) via the isomorphism $E(x) \cong k^r$ that is induced by φ_i . Show that the vector space structure thus defined does not depend on i.
- (c) Let $s_0 : X \to E$ be the map which sends $x \in X$ to the origin in the vector space E(x) (with vector space structure defined in (b) above). Show that s_0 is a regular map with $id_X = \pi \circ s_0$.

Exercise 4. (4 points) Sheaf of regular sections of a vector bundle.

Let X be a quasi-projective algebraic variety and let $\pi : E \to X$ be an algebraic vector bundle of rank r on X. Let \mathcal{E} be the presheaf on X given by the regular sections of π , i.e. for any nonempty open subset $U \subset X \mathcal{E}(U)$ is given as a set by all regular maps $s : U \to E$ with $\pi \circ s = \mathrm{id}_U$ and where the group law is induced by pointwise addition (which uses that the fibre E(x) above $x \in X$ is a k-vector space).

- (a) Show that \mathcal{E} is a sheaf.
- (b) Show that \mathcal{E} carries naturally the structure of an \mathcal{O}_X -module.
- (c) Show that \mathcal{E} is in fact a locally free \mathcal{O}_X -module.

(**Remark:** One can show conversely that any locally free \mathcal{O}_X -module \mathcal{M} of rank r is isomorphic to the sheaf of regular sections of an algebraic vector bundle of rank r on X.)

Hand in: before noon on Monday, January 21st in the appropriate box on the 1st floor.