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Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) The direct image sheaf

Let f : X → Y be a continuous map of topological spaces and let F be a sheaf of abelian groups on

X. Consider the presheaf f∗F on Y which on an open subset V ⊂ Y is given by

f∗F(V ) = F(f−1(V ))

and whose restriction maps are induced by those of F .

(a) Show that f∗F is a sheaf.

(b) Compute the stalks of f∗F in the following examples:

(i) f is constant, i.e. there is a point y0 ∈ Y with f(x) = y0 for all x ∈ X;

(ii) X = Y = R with the euclidean topology and f : R→ R is given by f(x) = x2.

Exercise 2. (4 points) The inverse image sheaf.

Let f : X → Y be a continuous map of topological spaces and let G be a sheaf of abelian groups on

Y . Consider the sheaf f−1G on X which is given as sheafification of the presheaf which on an open

subset U ⊂ X is given by the direct limit

lim
V⊃f(U)

G(V ),

where V runs through all open subsets of Y which contain f(U) and whose restriction maps are

induced by those of G.

(a) Show that f−1Gx ∼= Gf(x) for all x ∈ X.

(b) Show that for any abelian group G, we have f−1GY
∼= GX

(c) Show that f−1 is a functor. That is, for any morphism of sheaves ϕ : G → G′ there is a natural

morphism f−1(ϕ) : f−1G → f−1G′.

(Hint: You may use that sheafification is functorial, i.e. any morphism of presheaves ψ : F1 → F2

induces a unique morphism of sheaves ψ+ : F+
1 → F

+
2 .)

(d) Show that the functor f−1 is exact. That is, for any exact sequence of sheaves G1 → G2 → G3 on

Y the induced sequence f−1G1 → f−1G2 → f−1G3 on X is exact.
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Definition. Let X be a quasi-projective algebraic variety. A (algebraic) vector bundle of rank r on X

is a quasi-projective variety E together with a regular map π : E → X with the following properties:

(1) there is an open covering X =
⋃
i∈I Ui of X and there are isomorphisms

ϕi : π−1(Ui)
∼−→ Ui × kr

that are compatible with the two natural projections to Ui, i.e. pr1 ◦ϕi = π|π−1(Ui)
.

(2) for all i, j ∈ I the composition

ϕj ◦ ϕ−1i : (Ui ∩ Uj)× kr −→ (Ui ∩ Uj)× kr

is of the form

ϕj ◦ ϕ−1i (x, v) = (x, ϕij(x) · v),

where x ∈ Uij , v ∈ kr, and where ϕij(x) ∈ GL(r, k) is an invertible r × r matrix over the field k

whose entries are regular functions on Uij .

Exercise 3. (4 points) Algebraic vector bundles.

Let X be a quasi-projective algebraic variety and let π : E → X be an algebraic vector bundle of rank

r on X.

(a) Show that dimE = dimX + r.

(b) Let E(x) = π−1(x) be the fibre of π above x. Choose an index i ∈ I with x ∈ Ui and define the

structure of a k-vector space on E(x) via the isomorphism E(x) ∼= kr that is induced by ϕi. Show

that the vector space structure thus defined does not depend on i.

(c) Let s0 : X → E be the map which sends x ∈ X to the origin in the vector space E(x) (with vector

space structure defined in (b) above). Show that s0 is a regular map with idX = π ◦ s0.

Exercise 4. (4 points) Sheaf of regular sections of a vector bundle.

Let X be a quasi-projective algebraic variety and let π : E → X be an algebraic vector bundle of rank

r on X. Let E be the presheaf on X given by the regular sections of π, i.e. for any nonempty open

subset U ⊂ X E(U) is given as a set by all regular maps s : U → E with π ◦ s = idU and where the

group law is induced by pointwise addition (which uses that the fibre E(x) above x ∈ X is a k-vector

space).

(a) Show that E is a sheaf.

(b) Show that E carries naturally the structure of an OX -module.

(c) Show that E is in fact a locally free OX -module.

(Remark: One can show conversely that any locally free OX -module M of rank r is isomorphic

to the sheaf of regular sections of an algebraic vector bundle of rank r on X.)

Hand in: before noon on Monday, January 21st in the appropriate box on the 1st floor.
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