

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Wintersemester 2018/19

Prof. Dr. Stefan Schreieder Dr. Feng Hao

Algebraic Geometry

Sheet 11

Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) The sheaf of rational functions.

Let X be a quasi-projective variety. Consider the presheaf \mathcal{K} on X whose sections on a non-empty open subset $U \subset X$ are given by

 $\mathcal{K}(U) = \{ f : U \dashrightarrow k \mid f \text{ is a rational function} \}.$

- (a) Show that \mathcal{K} is a sheaf.
- (b) Show that \mathcal{K} is isomorphic to the constant sheaf $\underline{k(X)}_X$ on X with values in the function field k(X).

Exercise 2. (4 points) The sheaf associated to a divisor.

Let X be a normal quasi-projective variety and let $D \in \text{Div}(X)$ be a divisor on X. Consider the presheaf $\mathcal{O}_X(D)$ on X which on a nonempty open subset $U \subset X$ is given by

$$\mathcal{O}_X(D)(U) := \{ f \in k(X) \mid \text{Div}(f)|_U + D|_U \ge 0 \}.$$

In other words, the sections of $\mathcal{O}_X(D)$ over a nonempty open subset $U \subset X$ are given by all rational functions f on X such that the divisor Div(f) + D is effective when restricted to U, i.e. Div(f) + D = D' + D'' for an effective divisor D' and a divisor D'' which is supported on $X \setminus U$.

- (a) Show that $\mathcal{O}_X(D)$ is a sheaf of abelian groups. Show further that $\mathcal{O}_X(D)$ is an \mathcal{O}_X -module, i.e. for any nonempty open subset $U \subset X$, $\mathcal{O}_X(D)(U)$ is a module over the ring $\mathcal{O}_X(U)$ and this module structure is compatible with the restriction maps on both sides.
- (b) Let D = 0 be the trivial divisor. Show that $\mathcal{O}_X(D) \cong \mathcal{O}_X$.
- (c) Let D_1 and D_2 be two divisors on X with $D_1 \sim D_2$, i.e. D_1 and D_2 have the same class in Cl(X). Show that $\mathcal{O}_X(D_1) \cong \mathcal{O}_X(D_2)$. In particular, $\mathcal{O}_X(D) \cong \mathcal{O}_X$ if $D \sim 0$.
- (d) Let $D \in \text{Div}(X)$ be a divisor such that there is an isomorphism $\varphi : \mathcal{O}_X(D) \xrightarrow{\sim} \mathcal{O}_X$ of sheaves which is compatible with the natural \mathcal{O}_X -module structures on both sides. Prove that $D \sim 0$.

Exercise 3. (4 points) Surjective morphisms of sheaves.

- (a) Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves of abelian groups on a topoplogical space X. Show that φ is surjective if and only if for all open subsets $U \subset X$ and for every $s \in \mathcal{G}(U)$ there is a covering $U = \bigcup U_i$ of U by open subsets U_i and sections $t_i \in \mathcal{F}(U_i)$ with $\varphi_{U_i}(t_i) = s|_{U_i}$ for all i.
- (b) Give an example of a topological space X and a surjective morphism of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$ of abelian groups on X such that for some open subset $U \subset X$,

$$\varphi_U: \mathcal{F}(U) \to \mathcal{G}(U)$$

is not surjective.

Exercise 4. (4 points) Stalks.

- (a) Let G be an abelian group and let X be a topological space. Compute the stalks of the following sheaves on X
 - (i) the constant sheaf \underline{G}_X with values in G on X;
 - (ii) the skyscraper sheaf $\underline{G}_{\{x\}}$ concentrated on a point $x \in X$.
- (b) Let $\pi : E \to X$ be a real topological vector bundle. That is, π is a continuous map of topological spaces and there is an open covering $X = \bigcup_{i \in I} U_i$ such that there are homeomorphisms $\varphi_i : \pi^{-1}(U_i) \xrightarrow{\sim} U_i \times \mathbb{R}^r$ with $\pi|_{\pi^{-1}(U_i)} = \operatorname{pr}_1 \circ \varphi_i$, and such that additionally for any i, j the transition map

$$\varphi_i \circ \varphi_i^{-1} : (U_i \cap U_j) \times \mathbb{R}^r \to (U_i \cap U_j) \times \mathbb{R}^r$$

is of the form $(x, v) \mapsto (x, \varphi_{ij}(x) \cdot v)$, where $\varphi_{ij}(x) \in \operatorname{GL}_r(\mathbb{R})$ depends continuously on x. (This implies in particular that the fibre $\pi^{-1}(x)$ has a well-defined structure of a real vector space.)

Consider the presheaf \mathcal{E} on X whose sections over $U \subset X$ are all continuous maps $s : U \to E$ with $\pi \circ s = \mathrm{id}_U$.

- (i) Show that the stalks of \mathcal{E} and the stalks of the sheaf $\mathcal{C}^0_{X,\mathbb{R}^k}$ are isomorphic.
- (ii) In the previous exercise, specialize to the case where $X = S^1$ is the circle and E is the real rank one vector bundle which corresponds to the Moebius strip. Show that there is no isomorphism of sheaves $\varphi : \mathcal{E} \to \mathcal{C}^0_{S^1,\mathbb{R}}$ which is compatible with the natural $\mathcal{C}^0_{S^1,\mathbb{R}}$ -module structure that we have on both sides, i.e. $\varphi_U(fs) = f\varphi_U(s)$ for any $f \in \mathcal{C}^0_{S^1,\mathbb{R}}(U), s \in \mathcal{E}(U)$ and any $U \subset X$ open.

Hint: You may use without proof that $E \setminus s_0(S^1)$ is connected, where $s_0 : S^1 \to E$ is the zero section, e.g. $s_0 = 0 \in \mathcal{E}(S^1)$.

Hand in: before noon on Monday, January 14th in the appropriate box on the 1st floor.