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Unless specified otherwise, we will always work over an algebraically closed field k.

Exercise 1. (4 points) The sheaf of rational functions.

Let X be a quasi-projective variety. Consider the presheaf K on X whose sections on a non-empty

open subset U ⊂ X are given by

K(U) = {f : U 99K k | f is a rational function}.

(a) Show that K is a sheaf.

(b) Show that K is isomorphic to the constant sheaf k(X)
X

on X with values in the function field

k(X).

Exercise 2. (4 points) The sheaf associated to a divisor.

Let X be a normal quasi-projective variety and let D ∈ Div(X) be a divisor on X. Consider the

presheaf OX(D) on X which on a nonempty open subset U ⊂ X is given by

OX(D)(U) := {f ∈ k(X) | Div(f)|U +D|U ≥ 0}.

In other words, the sections of OX(D) over a nonempty open subset U ⊂ X are given by all rational

functions f on X such that the divisor Div(f) +D is effective when restricted to U , i.e. Div(f) +D =

D′ +D′′ for an effective divisor D′ and a divisor D′′ which is supported on X \ U .

(a) Show that OX(D) is a sheaf of abelian groups. Show further that OX(D) is an OX -module, i.e. for

any nonempty open subset U ⊂ X, OX(D)(U) is a module over the ring OX(U) and this module

structure is compatible with the restriction maps on both sides.

(b) Let D = 0 be the trivial divisor. Show that OX(D) ∼= OX .

(c) Let D1 and D2 be two divisors on X with D1 ∼ D2, i.e. D1 and D2 have the same class in Cl(X).

Show that OX(D1) ∼= OX(D2). In particular, OX(D) ∼= OX if D ∼ 0.

(d) Let D ∈ Div(X) be a divisor such that there is an isomorphism ϕ : OX(D)
∼−→ OX of sheaves

which is compatible with the natural OX -module structures on both sides. Prove that D ∼ 0.
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Exercise 3. (4 points) Surjective morphisms of sheaves.

(a) Let ϕ : F → G be a morphism of sheaves of abelian groups on a topoplogical space X. Show that

ϕ is surjective if and only if for all open subsets U ⊂ X and for every s ∈ G(U) there is a covering

U =
⋃
Ui of U by open subsets Ui and sections ti ∈ F(Ui) with ϕUi(ti) = s|Ui for all i.

(b) Give an example of a topological space X and a surjective morphism of sheaves ϕ : F → G of

abelian groups on X such that for some open subset U ⊂ X,

ϕU : F(U)→ G(U)

is not surjective.

Exercise 4. (4 points) Stalks.

(a) Let G be an abelian group and let X be a topological space. Compute the stalks of the following

sheaves on X

(i) the constant sheaf GX with values in G on X;

(ii) the skyscraper sheaf G{x} concentrated on a point x ∈ X.

(b) Let π : E → X be a real topological vector bundle. That is, π is a continuous map of topological

spaces and there is an open covering X =
⋃
i∈I Ui such that there are homeomorphisms ϕi :

π−1(Ui)
∼→ Ui ×Rr with π|π−1(Ui)

= pr1 ◦ϕi, and such that additionally for any i, j the transition

map

ϕi ◦ ϕ−1j : (Ui ∩ Uj)× Rr → (Ui ∩ Uj)× Rr

is of the form (x, v) 7→ (x, ϕij(x) · v), where ϕij(x) ∈ GLr(R) depends continuously on x. (This

implies in particular that the fibre π−1(x) has a well-defined structure of a real vector space.)

Consider the presheaf E on X whose sections over U ⊂ X are all continuous maps s : U → E with

π ◦ s = idU .

(i) Show that the stalks of E and the stalks of the sheaf C0
X,Rk are isomorphic.

(ii) In the previous exercise, specialize to the case where X = S1 is the circle and E is the

real rank one vector bundle which corresponds to the Moebius strip. Show that there is no

isomorphism of sheaves ϕ : E → C0
S1,R which is compatible with the natural C0

S1,R-module

structure that we have on both sides, i.e. ϕU (fs) = fϕU (s) for any f ∈ C0
S1,R(U), s ∈ E(U)

and any U ⊂ X open.

Hint: You may use without proof that E \ s0(S1) is connected, where s0 : S1 → E is the

zero section, e.g. s0 = 0 ∈ E(S1).

Hand in: before noon on Monday, January 14th in the appropriate box on the 1st floor.
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